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3 Modular arithmetic

For further reading on the material in this subsection, consult Rosen 4.1, PMF 7.1-2,

Stein 2.1, Shoup 2.1-2,2.5.

Modular arithmetic is a powerful tool that lets us do arithmetic while preserving infor-

mation about divisibility, and has a broad range of number theory applications. We’ll be

studying various aspects of it for the next few sections.

3.1 Congruences

Definition 3.1. Let m be a positive integer. If a, b are integers, we say that a is congruent

to b modulo m, and write a ≡ b mod m, if m divides a− b.

Proposition 3.2. The congruence mod m relation is an equivalence relation; that is:

• (Reflexive Property) If a is an integer, then a ≡ a mod m.

• (Symmetric Property) If a, b are integers and a ≡ b mod m then b ≡ a mod m.

• (Transitive property) If a, b, c are integers, and a ≡ b mod m and b ≡ c mod m, then

a ≡ c mod m.

Proof. • We see that m|0 = (a− a) so a ≡ a mod m.

• If a ≡ b mod m then m|a − b, which means that there is an integer k such that

km = a− b. Then (−k)m = b− a so m|b− a so b ≡ a mod m.

• If a ≡ b mod m and b ≡ c mod m then m|a− b and m|b− c. By the lemma on linear

combinations, m|(a− b) + (b− c) = a− c, so a ≡ c mod m.

You should recall from Math 210 that an equivalence relationship partitions a set into

equivalence classes, which in this case are called congruence classes mod m. Two integers

are in the same congruence class mod m if they are congruent to each other. For a fixed

integer m, there are precisely m congruence classes mod m. For example, if m = 2, the two

congruence classes are even integers (congruent to 0 mod m) and odd integers (congruent

to 1 mod m).

We’d like to pick canonical representatives of each equivalence class. There are a few

different ways to do this.
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Definition 3.3. Let a be an integer and m a positive integer. By the Division Algorithm,

there is a unique r with 0 ≤ r < m such that a = mq + r for some integer q. We call this r

the reduction of a mod m.

Proposition 3.4. • The reduction of a mod m is congruent to a mod m.

• The reduction of a mod m is an element of the set {0, 1, . . . ,m− 1}.

Proof. • Let r be the reduction of a mod m. Then a = mq + r for some integer q, so

a− r = mq is divisible by m. Thus a ≡ r mod m.

• We know that r is an integer with 0 ≤ r < m from the division algorithm.

Definition 3.5. We say a set S is a complete system of residues mod m if any integer a

is congruent mod m to exactly one element of S.

Corollary 3.6. The set {0, 1, . . . ,m − 1} is a complete system of residues mod m. We

sometimes call it the set of least nonnegative residues mod m. I will sometimes write

Z/mZ for this set.

Example 3.7. The set {1, 5, 9} is a complete system of residues mod 3.

Example 3.8. If m is an odd positive integer, then the set{
−m− 1

2
,−m− 2

2
, . . . ,−1, 0, 1, . . . ,

m− 1

2

}
is a complete system of residues mod m. We sometimes call it the set of absolute least

residues mod m.

Exercise 3.9. Let S be a set of m integers such that no element of S is congruent to any

other element of S mod m. Prove that S is a complete system of residues.

Possibly the most useful fact about congruences is that they behave well with respect to

basic arithmetic operations.

Theorem 3.10. If a, b, c, d,m are integers with m > 0, and a ≡ b mod m and c ≡ d

mod m, then

1. a + c ≡ b + d mod m

2. a− c ≡ b− d mod m
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3. ac ≡ bd mod m.

Proof. Since m|a−b and m|c−d, there are integers k, ` such that km = a−b and `m = c−d.

Then

1. (a + c)− (b + d) = (a− b) + (c− d) = km + `m = (k + `)m. Thus m|(a + c)− (b + d)

and a + c ≡ b + d mod m by definition.

2. The same proof holds here.

3. ac − bd = ac − bc + bc − bd = c(a − b) + b(c − d) = ckm + b`m = m(ck + b`). Thus

m|ac− bd and ac ≡ bd by definiton.

Remark 3.11. For those of you who have taken algebra: we can interpret these results as

showing that the set of integers mod m form an abelian group under addition, and in fact

form a ring under the usual addition and multiplication. Then the reduction modulo m map

is a group (or ring) homomorphism from the integers to the integers modulo m. And in this

case we can interpret Z/mZ as the quotient of the integers with respect to the kernel of this

homomorphism. See PMF 8.1-2, or Stein or Shoup for more on this perspective.

Remark 3.12. Note that division is not on this list. Division in modular arithmetic is in fact

somewhat subtle, in contrast to the straightforwardness of addition and multiplication.

For instance, we see that 7 · 2 = 14 ≡ 8 = 4 · 2 mod 6. But it is not true that 7 · 4
mod 6.

Exponentiation, however, works as well as we’d like.

Lemma 3.13. Let a, b, k,m be integers with k,m > 0, and a ≡ b mod m. Then ak = bk

mod m.

Proof. Recall that

ak − bk = (a− b)(ak−1 + ak−2b + · · ·+ abk−2 + bk−1) = (a− b)
k−1∏
i=0

ak−1−ibi.

Thus since m|(a− b), we also know that m|ak− bk and so ak ≡ bk mod m by definition.

Remark 3.14. The converse is not actually true, which is easy to see: e.g. 12 ≡ 22 mod 3.
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Remark 3.15. When computing the reduction mod p of some large exponent, it’s hopelessly

inefficient to do the entire exponentiation and then do a division. It’s moderately more

efficient to see what power you need to raise the base to to get a reduction, and then iterate:

e.g. if I want to compute 2100 mod 5 I will observe that 24 = 16 ≡ 1 mod 5, and thus

2100 = (24)20 ≡ 120 ≡ 1 mod 5.

Rosen covers a more efficient way still towards the end of §4.1, which turns the problem

mostly into a huge bitwise XOR.

Corollary 3.16. Let n be an integer. Then 3|n if and only if 3 divides the sum of the (base

ten) digits of n.

Proof. Write n = n0 + n1 · 101 + n2 · 102 + · · · + nk · 10k (with 0 ≤ ni ≤ 9). We notice that

10 ≡ 1 mod 3 and thus for any ` > 0, 10` ≡ 1` = 1 mod 3. Thus

n ≡ n0 + n1 + · · ·+ nk mod 3

and the right-hand side is the sum of the decimal digits.

Then in particular n ≡ 0 mod 3 if and only if the sum of the digits is congruent to 0

mod 3, as desired.

Remark 3.17. Similar arguments can be made for divisibility by other integers, like 9 or 11.

3.2 Linear Congruences and Modular Division

For further reading on the material in this subsection, consult Rosen 4.1-2, PMF 8.3,

Stein 2.1.1, Shoup 2.3.

Modular division is a bit trickier to understand than other modular arithmetic. Recall

our earlier example:

Example 3.18. 8 ≡ 2 mod 6 but 4 6≡ 1 mod 6.

However, you might notice that 4 ≡ 1 mod 3; we have essentially divided the modulus

by 2 as well as the two equivalent integers. It turns out that this is basically what’s going

on.

Proposition 3.19 (Modular cancellation law). Let a, b, c,m be integers with m > 0, and set

d = (c,m). Then if ac ≡ bc mod m then a ≡ b mod m/d.

Proof. If ac ≡ bc mod m then m|ac − bc = c(a − b), so there is a k with km = c(a − b).

Dividing through by d gives km/d = c/d(a− b). Thus m/d|(c/d)(a− b).

But (m/d, c/d) = 1, so we know that m/d|a− b and thus a ≡ b mod m/d.
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Corollary 3.20. Let a, b, c,m are integers with m > 0 and (c,m) = 1. Then if ac ≡ bc

mod m then a ≡ b mod m.

But often we would really like not to change the modulus. Thus we ask ourselves how

division works with respect to a fixed modulus.

To answer this question, let’s think about what division really means. Division is in

essence undoing multiplication. So when we compute b/a, we are actually solving the equa-

tion ax = b for x. Similarly, if we want to understand modular division, we should study

the congruence ax ≡ b mod m.

Definition 3.21. A congruence of the form ax ≡ b mod m , where a, b are constant integers

and x is unknown, is a linear congruence in one variable.

First notice that if this congruence has any solution, it has infinitely many. Suppose

x0 is a solution to this equation, and x1 is an integer such that x1 ≡ x0 mod m. Then

ax1 ≡ ax0 ≡ b mod m so x1 is another solution.

Thus if x0 solves a linear congruence mod m, any element of its congruence class will.

(This will generally be the case for solving congruences, whether linear or not). But in

modular arithmetic we tend to want to treat elements of the same congruence class as being

the same.

The next question we might ask is how many solutions a given congruence has? Non-

modularly, a linear equation ax = b has either zero solutions (when b is not divisible by

a), or exactly one solution (when it is). The modular situation is a bit more complicated;

fortunately, we have already done some work towards solving this problem in another form.

Lemma 3.22 (Linear Diophantine Equations). Let a, b be integers with d = (a, b). Then the

equation ax + by = c has solutions if and only if d | c.
Further, if d|c then there are infinitely many solutions, all of which have the following

form: if x0, y0 is some particular solution, the set of all solutions is given by

x = x0 + (b/d)t, y = y0 − (a/d)t

where t is an integer.

Proof. The first statement was show in Homework 2 problem 1.

Suppose d|c and let (x0, y0) be a solution. Then

a(x0 + (b/d)t) + b(y0 − (a/d)t) = ax0 + abt/d + by0 − abd/t

= ax0 + by0 = c.
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Thus every pair of this form is a solution, and there are infinitely many solutions.

Finally, we prove every solution is of this form. Suppose x, y are integers with ax+by = c.

Then subtracting ax0 + by0 = c from this equation gives

a(x− x0) + b(y − y0) = 0

a(x− x0) = b(y − y0)

(a/d)(x− x0) = (b/d)(y − y0).

Since (a, b) = d, we know that (a/d, b/d) = 1 and thus (a/d)|(y − y0). Thus there is an

integer t with (a/d)t = y − y0, which we can rewrite y = y0 + (a/d)t.

Plugging this in to our earlier equation gives

a(x− x0) = b(a/d)t

x− x0 = (b/d)t

x = x0 + (b/d)t

as desired.

Proposition 3.23. Let a, b,m be integers with m > 0, and set (a,m) = d. If d6 |b, then

ax ≡ b mod m has no solutions. If d|b, then ax ≡ b mod m has exactly d “distinct” or

incongruent solutions modulo m.

Proof. The key step here is to turn our linear congruence in one variable into a linear equation

in two variables. We know that ax ≡ b mod m if m|ax − b, which is true precisely when

there is some integer y such that my = ax− b. Thus x is a solution to ax ≡ b mod y if and

only if there is a y such that (x, y) is a solution to ax−my = b.

We showed in homework 2 problem 1 that ax − my = b has solutions if and only if

d = (a,m)|b. This proves the first claim.

If d|b, then ax − my = b has infinitely many solutions, all of which are given by the

formulas

x = x0 + (m/d)t, y = y0 − (a/d)t

Thus the values x = x0 + (m/d)t are the infinitely many solutions of the linear congruence.

Finally, we wish to prove that there are d incongruent solutions. Let x1 = x0 + (m/d)t1

and x2 = x0 + (m/d)t2 be two solutions; they are congruent modulo m if and only if

(m/d)t1 ≡ (m/d)t2 mod m.

But (m,m/d) = m/d, so by the modular cancellation law of proposition 3.19, this holds

if and only if t1 ≡ t2 mod (m/(m/d)) = d.
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Thus we have two incongruent solutions when we have solutions whose t are congruent

modulo d but not modulo m. In particular, the set of solutions {x = x0+(m/d)t : 0 ≤ t < d}
is a set of d mutually incongruent solutions,

Corollary 3.24. If a, b,m are integers with m > 0 and (a,m) = 1, then the linear congruence

ax ≡ b mod m has a unique solution modulo m.

This tells us that division is not, in general, unique modulo m; sometimes b is not divisible

by a, but sometimes b/a gives multiple reasonable answers. But if (a,m) = 1, then division

by a modulo m always gives one solution, thus every number is uniquely divisble by a.

In even more particular, if p is a prime number, then every number is uniquely divisible

by every non-zero number modulo p. We will use this fact a lot during the rest of the course.

Example 3.25. Let’s compute 10/4 mod 14. I.e. let’s find solutions to 4x ≡ 10 mod 14.

We first note that (10, 14) = 2 and 2|10, so there are exactly 2 incongruent solutions.

We first need to find a particular solution. In small cases like this it’s easy enough to

just plug numbers in; a more general approach is to use the Euclidean algorithm to write

the 2 = −3 · 4 + 1 · 14 as a linear combination of 4 and 14. We then use this to solve the

equation 4x− 14y = 10, giving us

10 = 5 · 2 = 5 · (−3 · 4 + 1 · 14) = −15 · 4 + 5 · 14

and thus one solution is given by x0 = −15 ≡ 13 mod 14 and y0 = 10.

Then a complete set of incongruent solutions is given by

x = x0 + (m/d)t = 13 + (14/2)t = 13 + 7t

and thus we have x = x0 = 13 and x = x0 + 7 = 20 ≡ 6.

We can somewhat simplify this process by understanding how reciprocals work.

Definition 3.26. Given an integer a with (a,m) = 1, an integer solution x to ax ≡ 1

mod m is called an inverse of a modulo m.

Remark 3.27. Note that we never have a modular inverse if (a,m) 6= 1.

Example 3.28. What is a modular inverse of 9 mod 29?

We use the Euclidean algorithm:

29 = 3 · 9 + 2

9 = 4 · 2 + 1 = 4(29− 3 · 9) + 1

1 = 9− (4 · 29− 12 · 9) = 13 · 9− 4 · 29
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thus (13, 4) is a solution to 9x− 29y = 1 and we see that 9 · 13 ≡ 1 mod 29. (In particular,

9 · 13 = 117 = 116 + 1 = 4 · 29 + 1).

Importantly, if we have a an inverse of a mod m we can use this to solve other linear

congruences of the form ax ≡ b mod m. In particular, if a−1 is an inverse of a mod m,

then aa−1 ≡ 1 mod m and thus a(a−1b) ≡ b mod m.

Example 3.29. Solve the linear congruence 9x ≡ 5 mod 29.

We know that 13 is an inverse for 9 mod 29. Thus the unique up to congruence solution

for this congruence is 13 · 5 = 65 ≡ 7 mod 29.

Notice that every (non-zero) number has a modular inverse modulo p if p is a prime

number. We state one result for these special cases.

Lemma 3.30. Let p be prime. The positive integer a is its own inverse modulo p if and only

if a ≡ 1 mod p or a ≡ −1 mod p.

Proof. If a ≡ ±1 mod p then a2 ≡ (±1)2 = 1 mod p.

Conversely, suppose a2 ≡ 1 mod p. Then p|a2− 1 = (a+ 1)(a− 1), and since p is prime,

either p|(a + 1) or p|(a− 1). In the first case, a ≡ −1 mod p, and in the second case, a ≡ 1

mod p.

3.3 Multiple Moduli and the Chinese Remainder Theorem

For further reading on the material in this subsection, consult Rosen 4.1,4.3, PMF 7.4,

Stein 2.2, Shoup 2.4.

All of our results so far, except for a few results on division, have kept the modulus m

unchanged. But it is useful sometimes to combine congruences with different moduli, and

this is in fact quite possible.

Exercise 3.31. Let a, b,m, n be integers with m,n > 0 and m|n. If a ≡ b mod n, then

a ≡ b mod m.

Proposition 3.32. If a ≡ b mod m1, a ≡ b mod m2, . . . , a ≡ b mod mk, then

a ≡ b mod lcm(m1,m2, . . . ,mk).

Proof. We know that m1|a − b,m2|a − b, . . . ,mk|a − b. Thus the LCM of m1, . . . ,mk also

divides a−b (by e.g. Exercise 5 of HW2), and a ≡ b mod lcm(m1, . . . ,mk) by definition.
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In the past section we solved single congruences. Now we want to turn our attention to

solving systems of multiple congruences. The first known discussion of this problem comes

from Sunzi Suanjing (also known as Sun Tzu, but not the one who wrote The Art of War)

in the third century:

“There are certain things whose number is unknown. If we count them by threes, we

have two left over; by fives, we have three left over; and by sevens, two are left over. How

many things are there? “

We can rephrase this in our language:

Question 3.33. Suppose we have the following system of congruences:

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7.

What are the possible values of x?

This question was studied by many mathematicians in China, India, the Middle East,

and Europe; the first known algorithm to solve the question is due to Aryabhata in the sixth

century, and the first known complete solution is due to Qin Jiushao in 1247.

Theorem 3.34 (Chinese Remainder Theorem). Let m1,m2, . . . ,mr be pairwise prime posi-

tive integers. Then the system

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr

has a unique solution modulo M = m1m2 . . .mr. Further there is an algorithm for finding

the solution.

Proof. First we will present an algorithm that will always find a solution, proving existence.

Then we will prove uniqueness modulo M .

For each k, set Mk = M/mk = m1m2 . . .mk−1mk+1 . . .mr. We see that (Mk,mk) = 1

since mk is relatively prime to mj for each j 6= k. Thus by modular division we can find an

inverse of Mk modulo mk, which we shall call yk. Thus ykMk ≡ 1 mod mk.
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Now set

x = a1M1y1 + a2M2y2 + · · ·+ arMryr.

We know that if i 6= j, then Mj ≡ 0 mod mi. Thus we see that for each i, we have

x = a1M1y1 + a2M2y2 + · · ·+ arMryr

≡ 0 + 0 + · · ·+ 0 + aiMiyi + 0 + · · ·+ 0 mod mi

≡ ai(Miyi) mod mi

≡ ai · 1 mod mi

and thus x satisfies each congruence.

Now we prove that this solution is unique modulo M . Suppose x0 and x1 are both

solutions to the system of congruences. Then for each i we know that x0 ≡ ai mod mi and

x1 ≡ ai mod mi and thus x0 ≡ x1 mod mi.

But then x0 ≡ x1 mod lcm(m1,m2, . . . ,mr), and since the mi are all relatively prime

lcm(m1,m2, . . . ,mr) = m1m2 . . .mr = M .

Example 3.35. Let’s solve the system of congruences given earlier:

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7.

Then we have M = 3 · 5 · 7 = 105. Then we compute

M1 = 5 · 7 = 35 ≡ 2 mod 3 y1 = 2

M2 = 3 · 7 = 21 ≡ 1 mod 5 y2 = 1

M3 = 3 · 5 = 15 ≡ 1 mod 7 y3 = 1

and thus

x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 140 + 63 + 30 = 233.

We can check that 233 satisfies the three equivalences (and in particular, 3 ·77 = 231, 5 ·46 =

230, 7 · 33 = 231).

A possible last step is to notice that the solution is unique modulo M = 105. Thus

the least nonnegative solution is 233 = 210 = 23, which we can easily see satisfies the

congruences.
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3.4 Systems of linear congruences

For further reading on the material in this subsection, consult Rosen 4.5, PMF 8.3, Stein

2.3.

So far we have solved congruences in one variable; we can also try to solve systems of

congruences in two or more variables.

In this subsection we will study systems of two linear congruences in two variables. We

can generalize this theory to larger systems of linear congruences in more variables, but this

requires a substantial dose of linear algebra (similar to the linear algebra involved in solving

large systems of linear equations), so we shall pass over it here. If you’re interested, this can

make a good course paper.

Theorem 3.36. Let a, b, c, d, e, f,m be integers with m > 0. Set ∆ = ad− bc (notice this is

the determinant of a 2× 2 matrix ). Then if (∆,m) = 1, the system of congruences

ax + by ≡ e mod m

cx + dy ≡ f mod m

has a unique solution modulo m, given by

x ≡ ∆−1(de− bf) mod m

y ≡ ∆−1(af − ce) mod m

where ∆−1 is a multiplicative inverse of ∆ modulo m.

Proof. We can solve these just like we normally solve linear equations. To remove y we see

adx + bdy ≡ de mod m

bcx + bdy ≡ bf mod m

adx− bcx ≡ de− bf mod m

∆x ≡ de− bf mod m

Then since (∆,m) = 1, we know ∆ has a multiplicative inverse ∆−1; multiplying by this

gives

x ≡ ∆−1(de− bf) mod m.

Thus any solution must satisfy this relation, as claimed.
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We can similarly eliminate y from these equations via

acx + bcy ≡ ce mod m

acx + ady ≡ af mod m

ady − bcy ≡ af − ce mod m

∆y ≡ af − ce mod m

y ≡ ∆−1(af − ce) mod m.

Again, this is the relation we claimed was necessary. Thus we have proven uniqueness.

Now we just need to check that any pair like this is a solution. But then

ax + by ≡ a∆−1(de− bf) + b∆−1(af − ce)

≡ ∆−1(ade− abf + abf − bce)

≡ ∆−1(ad− bc)e

≡ ∆−1∆e ≡ e mod m

and similarly

cx + dy ≡ c∆−1(de− bf) + d∆−1(af − ce)

≡ ∆−1(cde− bcf + adf − cde)

≡ ∆−1(ad− bc)e

≡ ∆−1∆e ≡ e mod m.

This analysis could be extended to solve systems with more equations and more variables,

but it’s mostly an exercise in linear algebra, so we won’t do it here.

Example 3.37. Consider the system

2x + 3y ≡ 7 mod 13

5x + 2y ≡ 3 mod 13

We have ∆ = 2 · 2 − 3 · 5 = −11 ≡ 2 mod 13, and thus ∆−1 ≡ 7 mod 13. Then the

system has a unique solution mod 13, given by

x ≡ ∆−1(de− bf) ≡ 7(2 · 7− 3 · 3) ≡ 35 ≡ 9 mod 13

y ≡ ∆−1(af − ce) ≡ 7(2 · 3− 5 · 7) ≡ 7 · (−29) ≡ −21 ≡ 5 mod 13.
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We can check our work by plugging these in:

2 · 9 + 3 · 5 ≡ 18 + 15 ≡ 33 ≡ 7 mod 13

5 · 9 + 2 · 5 ≡ 45 + 5 ≡ 55 ≡ 3 mod 13.

3.5 Solving Polynomial Congruences

For further reading on the material in this subsection, consult Rosen 4.4.

So far we’ve been looking only at linear congruences. But we can also solve congruences

with polynomial equations in the variable.

We can break this problem up into two pieces (as we can with all congruence problems

in the future). If we have a congruence modulo m = pn1
1 . . . pnr

r , we can use the Chinese

Remainder theorem to split this up into a system of r congruences, modulo each prime

power

Example 3.38. Suppose we want to solve the congruence

2x3 + 12x + 4 ≡ 0 mod 100.

We see that 200 = 2352 so we need to solve

2x3 + 12x + 4 ≡ 0 mod 4

2x3 + 12x + 4 ≡ 0 mod 25.

The first we can solve easily enough by testing numbers; we see that it holds when x ≡ 0 or

x ≡ 2 mod 4. As we shall see below, the second equivalence holds when x ≡ 19 mod 25.

Then by the Chinese Remainder theorem, the congruence mod 100 holds if and only if

x = 0 · 25 · 1 + 19 · 4 · 19 = 1444 ≡ 44 mod 100

x2 · 25 · 1 + 19 · 4 · 19 = 1494 ≡ 94 mod 100

So we can reduce the problem of solving congruences in general to the problem of solving

congruences modulo a prime power (i.e. pn for some integer n). Fortunately, we can approach

these congruences mod pn by an even simpler step, by simply solving them mod p.

Example 3.39. We wish to find the solutions to

2x3 + 12x + 4 ≡ 0 mod 25.

http://jaydaigle.net/teaching/courses/2019-fall-322/ 35

http://jaydaigle.net/teaching/courses/2019-fall-322/


Jay Daigle Occidental College Math 322: Number Theory

First we solve

2x3 + 12x + 4 ≡ 0 mod 5

which we can do by the guess-and-check method:

2(0)3 + 12(0) + 4 ≡ 4 mod 5

2(1)3 + 12(1) + 4 ≡ 13 ≡ 3 mod 5

2(2)3 + 12(2) + 4 ≡ 1 + 4− 1 ≡ 4 mod 5

2(3)3 + 12(3) + 4 ≡ 4 + 6− 1 ≡ 4 mod 5

2(4)3 + 12(4) + 4 ≡ −2 + 8− 1 ≡ 0 mod 5

So this has a solution if and only if x ≡ 4 mod 5.

So what about mod 25? Well, we know any solution must be equivalent to 4 mod 5,

so we only need to test solutions of the form 4 + 5t. Plugging this in gives

2(4 + 5t)3 + 12(4 + 5t) + 4 ≡ 0 mod 25

2(64 + 240t + 300t2 + 125t3) + 48 + 60t + 4 ≡ 0 mod 25

3 + 5t + 23 + 10t + 4 ≡ 0 mod 25

15t + 5 ≡ 0 mod 25

which holds only if t ≡ 3 mod 5. Thus the only solution mod 25 is 19.

We call this process “lifting”, where we start with a solution in some small modulus, and

then lift it up to a power of that modulus. We’d like to systematize this, which will require

some tools that are annoyingly familiar.

Definition 3.40. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0. We define the derivative of

f(x) to be

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

We use the notation f (k)(x) to denote the result of repeating the derivative k times.

Remark 3.41. This should be familiar from calculus, but the definition doesn’t actually

require calculus; this is useful, because it means we can use it even when we’re not working

with real numbers. We can do the same trick with functions like log and exp that can be

represented by power series, but we won’t worry about those here.

Lemma 3.42. If f(x), g(x) are polynomials and c is a constant, then (f + g)′(x) = f ′(x) +

g′(x) and (cf)′(x) = cf ′(x). Further, (f + g)(k)(x) = f (k)(x) + g(k)(x) and (cf)(k)(x) =

cf (k)(x).
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Lemma 3.43. If m, k are positive integers, and f(x) = xm, then

f (k) = m(m− 1) . . . (m− k + 1)xm−k =
m!

(m− k)!
xm−k.

Lemma 3.44 (Taylor expansions). If f(x) is a polynomial of degree n, and a, b ∈ R, then

f(a + b) =
n∑

k=0

f (k)(a)bk

k!
= f(a) + f ′(a)b +

f ′′(a)b2

2
+ · · ·+ f (n)(a)bn

n!
.

and this is a polynomial in b whose coefficients are polynomials in a with integer coefficients.

Proof. We will prove this for fm(x) = xm. This is sufficient to prove it for any polynomial

f(x), since any polynomial is the sum a0f0(x) + · · · + anfn(x) of scalar multiples of xm for

various m, and derivatives commute with addition and scalar multiplication.

By the binomial theorem,

(a + b)m =
m∑
k=0

(
m

k

)
am−kbk.

But f
(k)
m (a) = m!

(m−k)!a
m−k = k!

(
m
k

)
am−k, so

fm(a + b) =
m∑
k=0

(
m

k

)
am−kbk =

f
(k)
m (a)bk

k!
.

We can see these coefficients must be integers because f (k)(a)
k!

=
(
m
k

)
am−k and

(
m
k

)
is an

integer.

Now we’re ready to prove the key lemma about lifting, known as Hensel’s Lemma after

Kurt Hensel, who studied a field known as p-adic analysis. This lemma is complicated to

state and annoyingly technical (that’s why we say it’s a lemma!), but is exceptionally useful

for studying polynomial congruences.

Theorem 3.45 (Hensel’s Lemma). Suppose f(x) is a polynomial with integer coefficients,

k is an integer with k ≥ 2, and p is a prime. Suppose r is a solution to f(x) ≡ 0 mod pk−1

(that is, f(r) ≡ 0 mod pk−1). Then

1. If f ′(r) 6≡ 0 mod p, then there is a unique integer t with 0 ≤ t < p such that f(r +

tpk−1) ≡ 0 mod pk. Further, t is given by the formula

t ≡ −(f ′(r))−1(f(r)/pk−1) mod p

where (f ′(r))−1 is an inverse of f ′(r) modulo p.
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2. If f ′(r) ≡ 0 mod p and f(r) ≡ 0 mod pk, then f(r + tpk−1) ≡ 0 mod pk for any

integer t.

3. If f ′(r) ≡ 0 mod p and f(r) 6≡ 0 mod pk, then f(x) ≡ 0 mod pk has no solutions

with x ≡ r mod pk−1.

In particular, this tells us that if the derivative is 0, then a solution modulo pk−1 lifts to a

unique solution modulo pk; if the derivative is not zero, it lifts either to p different solutions

modulo pk, or to none at all.

Proof. Notice that every solution modulo pk is also a solution modulo pk−1. That is, if f(x) ≡
0 mod pk then f(x) ≡ 0 mod pk−1. Therefore, if f(x) ≡ 0 mod pk, then x = r + tpk−1 for

some r which satisfies f(r) ≡ 0 mod pk−1, and some integer t. We just need to determine

the conditions on t.

So suppose f(r + tpk−1) ≡ 0 mod pk. By the lemma on Taylor expansions,

f(r+ tpk−1) =
n∑

i=1

f (i)(r)(tpk−1)i

i!
= f(r)+f ′(r)tpk−1 +

f ′′(r)

2
(tpk−1)2 + · · ·+ f (n)(r)

n!
(tpk−1)n,

with f (i)(r)/i! an integer for 1 ≤ i ≤ n. But when we reduce this modulo pk, we see that all

but the first two terms will disappear, since i(k − 1) ≥ k for i ≥ 2, and thus pk|pi(k−1). So

we have

f(r + tpk−1) ≡ f(r) + f ′(r)tpk−1 mod pk.

But since r + tpk−1 is a solution to f(x) ≡ 0 mod pk, we thus know that

f ′(r)tpk−1 ≡ −f(r) mod pk.

Since by hypothesis f(r) ≡ 0 mod pk−1, we know that pk−1|f(r) (considered as integers).

So we can cancel out the pk−1 on both sides of the congruence by the cancellation law, and

get

f ′(r)t ≡ −f(r)/pk−1 mod p. (1)

So far we’ve shown that if f(r) ≡ 0 mod pk−1, and r + tpk−1 is a lift of r to a solution

modulo pk so that f(r + tpk−1) ≡ 0 mod pk, then t must satisfy this (linear!) congruence in

equation (1). We know proceed to analyze it in the three cases given in the lemma.

1. Suppose f ′(r) 6≡ 0 mod p. Then f ′(r), p) = 1, there is a unique t modulo p satisfying

equation (1), given by

t ≡ (−f(r)/pk−1)(f ′(r))−1 mod p.

http://jaydaigle.net/teaching/courses/2019-fall-322/ 38

http://jaydaigle.net/teaching/courses/2019-fall-322/


Jay Daigle Occidental College Math 322: Number Theory

2. Suppose f ′(r) ≡ 0 mod p, so that (f ′(r), p) = p. Suppose further that f(r) ≡ 0

mod pk, implying that p|f(r)/pk−1. Again by our results on linear congruences, if

p|f(r)/pk−1 then the equation (1) has p solutions, and thus all values of t are solutions.

3. Finally, suppose f ′(r) ≡ 0 mod p, so that (f ′(r), p) = p, but that f(r) 6≡ 0 mod pk

so that p 6 |f(r)/pk−1. Then equation (1) has no solutions.

Example 3.46. Find the solutions of f(x) = x3 + x2 + 29 ≡ 0 mod 25.

We first find the solutions mod 5. By plugging in values we see the only solution is

x ≡ 3 mod 5. We compute f ′(3) = 27 + 6 = 33 ≡ 3 6≡ 0 mod 5, and thus Hensel’s lemma

tells us there is a unique solution mod 25 given by x2 ≡ 3 + 5t where

t ≡ −(f ′(3))−1(f(3)/5) ≡ −3−1(65/5) ≡ −2 · 13 ≡ −26 ≡ 4 mod 5

and thus x2 ≡ 23 mod 25 is a unique solution mod 25.

Example 3.47. Find the solutions of x2 + x + 7 ≡ 0 mod 27.

Let x(x) = x2 + x + 7. We check for solutions modulo 3 and find the only one is when

x ≡ 1 mod 3. We compute f ′(1) = 3 ≡ 0 mod 3. Thus f(x) will have either 3 or 0

solutions modulo 9; we see that f(1) = 9 ≡ 0 mod 9 and thus 1 + 3t is a solution modulo 9

for all integers t; thus the solutions modulo 9 are 1, 4, 7.

We may try to lift again to 27, but we still have f ′(1) = 3 ≡ 0 mod 3, so each solution

either lifts to three solutions or does not lift at all. f(1) = 9 6≡ 0 mod 27 so 1 + 9t is not a

solution modulo 27 for any intger t. f(4) = 27 ≡ 0 mod 27 so 4 + 9t is a solution modulo

27 for any integer t. f(7) = 63 6≡ 0 mod 27 so 7 + 9t is not a solution modulo 27 for any

integer t.

Thus the solutions modulo 27 are x ≡ 4, 13, 22.
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Example 3.48. Find solutions of x3 + x2 + 23 ≡ 0 mod 125.

We first find solutions modulo 5. We observe that the solutions are all congruent to 1 or 2

modulo 5. We calculate f ′(x) = 3x2 +2x so f ′(1) = 3+2 ≡ 0 mod 5 and f ′(2) = 12+4 ≡ 1

mod 5; we have to handle these two cases separately.

First let’s try to lift 1. We see that f ′(1) ≡ 0 mod 5 so either f(1) ≡ 0 mod 25 or

1 has no lifts to roots mod 25. In fact we see that f(1) = 1 + 1 + 23 ≡ 0 mod 25, so

every possible lift of 1 is a root modulo 25. Thus 1, 6, 11, 16, 21 are all solutions to f(x) ≡ 0

mod 25.

Now we need to test if each of these lifts to a root modulo 125. We know the derivatives

are all equivalent to 0 modulo 5, so each solution modulo 25 has either 5 lifts or zero. We

compute

f(1) = 25 ≡ 25 mod 125

f(6) = 275 ≡ 25 mod 125

f(11) = 1475 ≡ 100 mod 125

f(16) = 4375 ≡ 0 mod 125

f(21) = 9725 ≡ 100 mod 125

Thus 1, 6, 11, and 21 all lack lifts, but 16 has a lift and thus has five lifts. So 16, 41, 66, 91, 116

are all solutions of f(x) ≡ 0 mod 125.

Now let’s return to considering the root 2. We have f ′(2) = 12 + 4 = 16 ≡ 1 mod 5

which has 1 as an inverse modulo 5. Thus there is a unique root modulo 25, and by Hensel’s

lemma we have a lift r2 ≡ 2 + t · 5 mod 25 with

t ≡ −(f ′(2))−1
(
f(r)

5

)
≡ −1 · 35

5
≡ −2 ≡ 3 mod 5

and thus our lift r2 ≡ 2 + 3 · 5 = 17 mod 25 is a root of f(x) ≡ 0 mod 25. Now we wish to

lift this again, but our derivative modulo 5 is still 1, so by Hensel’s lemma we have a unique

root modulo 125 given by r3 ≡ 17 + 25t mod 125 with

t ≡ −(f ′(17))−1
f(17)

25
≡ −1 · 5225

25
≡ −249 ≡ 1 mod 5

so r3 ≡ 17 + 25 ≡ 42 mod 125.

Thus the complete set of solutions to f(x) ≡ 0 mod 125 is the set {x : x ≡ 16, 41, 42, 66, 91, 116

mod 125}.

Corollary 3.49. Suppose f(x) is a polynomial and r is a solution to the polynomial con-

gruence f(x) ≡ 0 mod p for a prime number p. If f ′(r) 6≡ 0 mod p, then for each integer
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k ≥ 1 there is a solution rk to the congruence f(x) ≡ 0 mod pk, such that rk ≡ r mod p.

Further, this rk is unique modulo pk. In particular, r1 = r and for k > 1 we have

rk = rk−1 − f(rk−1)(f
′(r))−1.

Proof. We prove this by induction. For k = 1 it is given that there is a unique solution that

is equivalent to r mod p, and f ′(r) 6≡ 0 mod p.

Suppose we have proven that this property for n–that is there is a rn, unique modulo pn,

such that rn ≡ r mod p and f(rn) ≡ 0 mod pn, and further f ′(rn) ≡ f ′(r) 6≡ 0 mod p.

Then by Hensel’s lemma, since f ′(rn) 6≡ 0 mod p, there is a unique integer t with

0 ≤ t < p such that f(rn + tpn) ≡ − mod pn+1, and t ≡ −(f ′(rn))−1(f(rn)/pkn) mod p.

Then there is a unique solution to f(x) ≡ 0 mod pn+1 that is equivalent to rn mod pn,

given by

rn+1 = rn − (f ′(rn))−1f(rn).

Since rn ≡ r mod p and rn+1 ≡ rn mod pn we know that rn+1 ≡ r mod p.

Finally, we see that

f ′(rn+1) = f ′(rn − (f ′(rn))−1f(rn)) ≡ f ′(rn − (f ′(rn))−1 · 0) mod p

≡ f ′(rn) ≡ f ′(r) 6≡ 0 mod p.

Example 3.50. Find the solutions of

x3 + x2 + 2x + 26 ≡ 0 mod 7k.

We first solve x3 + x2 + 2x+ 26 ≡ 0 mod 7, and see that the only solution is x ≡ 2 mod 7.

We see that f ′(x) = 3x2 + 2x + 2 so f ′(2) = 12 + 4 + 2 = 18 ≡ 4 mod 7 6≡ 0 mod 7. Thus

by the corollary, we can find solutions modulo 7k for k ∈ N.

We compute (f ′(2))−1 ≡ 4−1 ≡ 2 mod 7. Thus we have

r2 ≡ 2− f(2)(f ′(2))−1 ≡ 2− 42 · 2 = −82 ≡ 16 mod 49

r3 ≡ 16− f(16)(f ′(2))−1 = 16− 4410 · 2 = −8804 ≡ 114 mod 343

r4 ≡ 114− f(114)(f ′(2))−1 = 114− 1494794 · 2 = −2989474 ≡ 2172 mod 2401
...
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