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5 Discrete Logarithms and Key Exchange

5.1 Key Exchange

One of the major limitations on the algorithms we’ve discussed—and many we haven’t—is

the problem of key exchange. Any symmetric encryption algorithm requires the two parties

to exchange a key in secret. This can often be difficult, since the whole point of cryptography

is to protect your communications from evesdroppers.

Modern algorithms allow us to exchange keys in public, in a way that does not give

evesdroppers access to the key even if they can overhear and understand the message. An

algorithm that enables this is called a key exchange algorithm.

We illustrate the basic idea with a physical analogue. Suppose you want to send presents

to a friend, but need to send them inside a locked box—otherwise the presents will be stolen

out of the box during transit. This is a problem, since you don’t have any locks that your

friend has a key to. So you need to find a way to send the friend a key—without the key

itself being stolen out of the locked box.

One solution is to pack a key inside a box that can be locked with two separate padlocks.

Lock one, and then send the box to your friend. Your friend can’t open the box, but they

can put their own padlock on the box. Now neither of you can open it alone.

Your friend sends the box back to you, and you remove your lock. Send the box back

to your friend, and they can remove their own lock and now retrieve the key you originally

packed. You have successfully exchanged a key without ever sending it unlocked, despite the

fact that you and your friend originally did not have a shared key.

Our task for the day will be to find a mathematical way to implement this idea.

5.2 Merkle’s Puzzles

The first variant of this idea was developed by Ralph Merkle in 1974. He suggested the

following algorithm:

Algorithm 5.1. 1. Bob generates N different symmetric keys and attaches an identifi-

cation code i to each of them.

2. For each key, Bob encrypts a message of the form “This is the ith key on my list.

The key is Ki.” He uses an encryption algorithm that is possible but computationally

expensive to brute force.
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3. Bob sends Alice all N of the messages generated this way. Alice chooses one at random

and brute-force decrypts it, and sends the identifier to Bob.

4. Bob and Alice can now communicate using the symmetric key they have agreed on.

Notice that Alice only needs to brute-force decrypt one of the messages Bob sends. How-

ever, if Eve does not know which message Alice chose, so if she intercepts Bob’s transmission,

she must decrypt all of them to find the identifiers and know the¡ key Alice and Bob are

using.

However, while Eve’s job here is harder than Alice’s, it’s not enough harder—it’s at most

quadratically harder, which isn’t generally considered a good enough speed advantage for

secure cryptography.

5.3 The Discrete Logarithm Problem

Recall that in the real numbers, the logarithm loga(b) is the (unique) solution to the equation

ax = b. We can define an analog of this operation in modular arithmetic, after we lay some

groundwork.

Definition 5.1. Let m be a positive integer. We call a number a ∈ Z/mZ a unit modulo

m if a has an inverse modulo m. We denote the set of units modulo m by Z/mZ×.

If p is a prime, then Z/pZ× = {1, 2, . . . , p− 1}.

By Fermat’s Little Theorem, we know that if g ∈ Z/pZ× then gp−1 ≡ 1 mod p.

Definition 5.2. We say that a number g ∈ Z/pZ is a primitive root modulo p if the set

{g, g2, g3, . . . , gp−1} = Z/pZ×—that is, if raising g to successive powers gives every unit

modulo p.

Necessarily, if the p− 1 elements of {g, g2, . . . , gp−1} hit all p− 1 elements in Z/pZ, then

there are no repetitions.

Example 5.3. 3 is a primitive root mod 7, since we have 3, 9 ≡ 2, 6, 18 ≡ 4, 12 ≡ 5, 15 ≡ 1.

2 is not a primitive root mod 7, since we get 2, 4, 8 ≡ 1 and we hit a repetition before we

get every element of Z/7Z×.

But 2 is a primitive root mod 11, since we get 2, 4, 8, 16 ≡ 5, 10, 20 ≡ 9, 18 ≡ 7, 14 ≡
3, 6, 12 ≡ 1.
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There’s no algorithm for finding primitive roots; all you can do is keep trying until one

of them works. 2 often but not always works. We can reduce the time it takes to test a

number with the following fact:

Fact 5.4. If g ∈ Z/pZ× then #{gi mod p : 1 ≤ i ≤ p− 1}|p− 1.

Thus in particular, if we compute g, g2, . . . , g(p−1)/2 and we haven’t found a number equiv-

alent to 1, then we know g is a primitive root.

Definition 5.5. Let p be prime, g a primitive root mod p, and h ∈ Z/pZ×. Then if x is

a natural number such that gx ≡ h mod m, we say that x is a discrete logarithm of h to

the base g modulo m. The problem of finding a solution to this congruence is the Discrete

Logarithm Problem.

Some authors will call this the index of h with respect to g, denoted indg(h).

As posed here, the Discrete Logarithm Problem always has a solution. In fact it will

always have infinitely many, because if x is a solution then x + n(p − 1) is also a solution

for any n ∈ Z. We generally take “the” solution to have the property that 0 ≤ x ≤ p − 2.

(Notice that this same problem comes up in complex analysis, where the logarithm is only

defined modulo 2πi).

Example 5.6. We know that 2 is a primitive root mod 11. So what is log2(6) mod 11?

We compute 2, 4, 8, 16 ≡ 5, 10, 20 ≡ 9, 18 ≡ 7, 14 ≡ 3, 6, so log2(9) = 4.

Example 5.7. 3 is a primitive root mod 7. What is log3(4) mod 7?

We compute 3, 9 ≡ 2, 6, 18 ≡ 4 so log3(4) = 4.

Example 5.8. 2 is a primitive root mod 29. What’s log2(7) mod 29?

We compute 2, 4, 8, 16, 32 ≡ 3, 6, 12, 24, 48 ≡ 19, 38 ≡ 9, 18, 36 ≡ 7. So log2(7) = 12.

Remark 5.9. Like the problem of finding a primitive root, there isn’t really a much better

way to find the discrete logarithm of a number than just trying things until one works.

You can get a speed up from O(p) (trying all p − 2 possibilities), to to O(
√
p) with clever

algorithms, but that doens’t help as much as you’d think against the inherent exponential

growth.

The modular logarithm maintains many of the same properties that the real-number

logarithm has.

Fact 5.10. 1. logg(1) = 0
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2. logg(ab) ≡ logg(a) + logg(b) mod p− 1

3. logg(a
r) ≡ r logg(a) mod p− 1.

Remark 5.11. Property (2) tells us that logg is a group isomorphism from Z/pZ× to Z/(p−
1)Z.

5.4 Diffie-Hellman key exchange

Diffie-Hellman key exchange is an algorithm first published by Diffie and Hellman in 1976. (It

was actually discovered in 1975 by James H. Ellis, Clifford Cocks, and Malcolm J. Williamson

of British intelligence, but their discovery wasn’t declassified until 1997).

Algorithm 5.2. Alice and Bob wish to exchange a key. They follow the following steps:

1. Choose a large prime p, and a non-zero integer g ∈ Z/pZ×.

2. Alice chooses a secret integer a, and Bob chooses a secret integer b. Neither party

reveals this integer to anyone.

3. Alice computes A ≡ ga mod p and Bob computes B ≡ gb mod p, and they (publicly)

exchange these values with each other.

4. Now Alice computes A′ ≡ Ba mod p and Bob computes B′ ≡ Ab mod p.

5. A′ ≡ B′ mod p, so Alice and Bob use this shared information as their key.

Remark 5.12. Technically this doesn’t exchange a key so much as create a commonly known

key. But it does allow Alice and Bob to mutually share information to get a mutual key,

without sharing the key with evesdroppers.

Proposition 5.13. A′ ≡ B′ mod p.

Proof. A′ ≡ Ba ≡ (gb)a ≡ (ga)b ≡ Ab ≡ B′ mod p.

Example 5.14. A toy example: Suppose Alice and Bob have chosen the prime 29 and the

primitive root 2. (These are terrible choices for security). Alice chooses a secret key a = 7

and Bob chooses a secret key b = 17. Then Alice computes A = ga = 27 ≡ 12 mod 29; and

Bob computes B = gb = 217 ≡ 21 mod 29.

Alice sends A = 12 to Bob, and Bob sends B = 21 to Alice. Eve can observe both these

numbers, which are public knowledge.

Then Alice computes A′ = Ba = 217 ≡ 12 mod 29, and Bob computes B′ = Ab = 1217 ≡
12 mod 29. So Alice and Bob have a shared secret of 12.
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Example 5.15. Suppose Alice and Bob are working with the prime modulus p = 941 and

primitive root g = 627. Alice chooses a secret key a = 347, computes A = ga = 627347 ≡ 390

mod 941; and Bob chooses b = 781 and compute B = gb = 627781 ≡ 691 mod 941.

Alice sends the number 390 to Bob, and Bob sends the number 691 to Alice. Both of

these numbers are visible to Eve and are public knowledge. Then Alice computes

A′ = Ba = 691347 ≡ 470 mod 941.

And Bob computes

B′ = Ab = 390781 ≡ 470 mod 941.

Now Alice and Bob have a secret number 470 in common that Eve doesn’t know.

So how secure is this, really? Remember that for any sort of encryption algorithm, we

want it to be easy for Alice and Bob to compute, but expensive for Eve to compute. We

first need to talk about what it means for a computation to be easy or hard.

5.5 Complexity and big-O notation

Definition 5.16. Let f(x) and g(x) be positive functions of x. We say that f is big-O of g,

and write f(x) = O(g(x)), if there are positive constants c, C such that f(x) ≤ cg(x) for all

x ≥ C.

This represents the idea that when x is very big, f(x) will not be much bigger than g(x)..

Generally we’ll use this when f is a relatively complicated function, and we can replace it

with a simpler function g.

Proposition 5.17. If limx→∞
f(x)
g(x)

exists and is finite, then f(x) = O(g(x)).

Example 5.18. If f(x) is bounded for all x ≥ C, then we write f(x) = O(1).

It’s easy to see that x = O(x2). It’s also the case that 7x2 + 5x+ 3 = O(x2).

xn = O(2x) for any natural number n.

When we study algorithms, we use big-O notation to describe the running time of algo-

rithms. In particular, we want to compare the number of steps an algorithm takes to the

number of bits in the input, since computers operate in bits. (Importantly, this means that

if our algorithm takes a number n as input, we don’t want to think about the size of the

number n; instead we want to think about the number of bits it takes to represent n, which

is approximately log2(n)).
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If an algorithm takes f(k) steps when given k bits as input, and f(kn) = O(g(k)), then

we say that the algorithm has a running time of O(g(k)).

If an algorithm is O(k`) for some constant ` > 0, we say that the algorithm runs in

polynomial time. (If ` = 1 then we say the algorithm runs in linear time; if ` = 2 we say it

runs in quadratic time, and so on). We consider polynomial-time algorithms to be “fast”.

If an algorithm is O(2ck) for some c > 0, we say the algorithm runs in exponential time.

Exponential time algorithms are considered “slow”. Thus in the ideal cryptosystem, encryp-

tion and decryption knowing the key will be polynomial-time computations, but decryption

without the key will be an exponential-time computation.

There is a third important category of subexponential time algorithms. These algorithms

are O(2εk) for every ε > 0. Thus they’re faster than exponential, but not necessarily as

fast as polynomial algorithms. For instance, an algorithm that runs in O(2
√
k) time is

subexponential, but significantly slower than polynomial.

Remark 5.19. I should make a remark here about the famous NP complexity class. A

problem is said to be “in NP” if it’s possible to verify a solution in polynomial time, but not

necessarily possible to find one in polynomial time. It’s currently believed but not known

that P 6= NP—that is, there are problems whose answers can be verified in polynomial time,

but not found in polynomial time.

Almost all reasonable cryptography is in NP. Since decryption with a known key should

be doable in polynomial time, we can always check if a key is correct by trying it out. So

most cryptography relies on the belief that P 6= NP .

5.6 Security of Diffie-Hellman

First let’s look at the computation Alice and Bob need to do. Each of them needs to do

exponentiations: Alice first computes ga and then she computes Ba. (Bob computes gb and

Ab, which is exactly the same process, so we’ll just look at Alice for simplicity).

So how do we do a large exponentiation mod p? The obvious and naive method is to

compute g, g2, g3, g4, . . . , ga. So in our toy example 5.14 Alice would compute

21 = 2 22 = 4 23 = 8 24 = 16

25 = 32 ≡ 3 26 ≡ 6 27 ≡ 12.

This is totally manageable when a and p are this small, but when they get bigger, this leads

to a large number of multiplications. Alice will have to conduct a multiplications to compute
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ga, and another a multiplications to compute Ba, so in total she will need to conduct 2a

multiplications. This algorithm is thus O(a).

But this is actually an exponential algorithm! Remember we don’t care about the size

of the number that is the input; we care about the number of bits. And the number of bits

involved is k ≈ log2(a). Since a = 2k by definition, we see that this algorithm is O(2k), and

thus exponential time.

Fortunately, Alice has an easier algorithm.

Algorithm 5.3. 1. Compute g2
k

for 2k ≤ a. That is, compute g, g2, g4, g8, . . . , g2
k
. We

can do this by repeated squaring, without computing intermediate powers.

2. Now express the exponent a in binary. That is, write a = c0 + c1 ·2+ c2 ·22 + · · ·+ ck2
k,

where ci ∈ {0, 1}.

3. Now we can compute

ga = gc0+c1·2+c2·2
2+···+ck2k = gc0gc1·2gc2·2

2 · · · gck2k

= gc0(g2)c1(g2
2

)c2 · · · (g2k)ck .

But we already know g2
i

for each i, and the ci are all either 0 or 1 so don’t involve any

computation. So we only have to multiply up to k things together here.

With this algorithm, we do k squarings to compute the g2
i
, and we do k multiplications

to finally compute ga, so we need to do 2k total multiplications and this algorithm is O(k).

Since k is the number of bits of input, this algorithm is a linear-time algorithm.

Example 5.20. Let’s see how this applies to our toy example 5.14. Alice wanted to compute

27 mod 29.

We first compute every 2kth power of g, so we compute

21 = 2 22 = 4 24 = 16 28 = 256 ≡ 24.

Then we write a in binary; that is, we write 7 = 1 + 2 + 22. So we have

27 ≡ 220 · 221 · 222 ≡ 2 · 4 · 16 ≡ 64 ≡ 12.

So Alice and Bob can do their work naively in about O(2k) time, or cleverly in O(k).

What about Eve?

Remember that Eve sees the numbers A ≡ ga mod p and B ≡ gb mod p. She needs a

way to find A′ = B′ ≡ gab mod p. How can she do this?

http://jaydaigle.net/teaching/courses/2019-fall-401/ 52

http://jaydaigle.net/teaching/courses/2019-fall-401/


Jay Daigle Occidental College Math 401: Cryptology

The only known way to solve this problem is to compute at least one of a or b. We

haven’t proven that there’s not a more efficient algorithm, but we don’t know of one. So in

practice, Eve wants to solve the following problem:

Discrete Logarithm Problem: Given a modulus p and a primitive root g, and a

number A, find an integer x such that gx ≡ A mod p.

Once Eve has solved this problem, she has all the information that Alice does.

There is again a naive algorithm for this. Compute g, g2, g3, . . . mod p, and stop when

you get A as an output. This algorithm will take about a multiplications. Thus the algorithm

is O(a) = O(2k), and exponential.

We do in fact know a better algorithm for solving the Discrete Logarithm problem.

Fortunately for cryptography purposes, it’s not much better.

Algorithm 5.4 (Shanks’s Babystep-Gianstep Algorithm). Suppose we have a prime number

p and a primitive root g, and an integer A, and we want to find an integer x such that gx ≡ A

mod p. Then

1. let n = 1 +
⌊√

p
⌋
. Thus n >

√
p.

2. (Baby steps) Calculate g0, g1, g2, . . . , gn mod p. Find an inverse for gn mod p.

3. (Giant steps) Calculate A,A · g−n, A · g−2n, . . . , A · g−n2
mod p.

4. Find a match between these two lists, so that we have gi ≡ hg−jn.

5. Then x = i+ jn is a solution to gx ≡ h mod p.

Remark 5.21. This algorithm is named after Daniel Shanks, and was first discovered by

Alexander Gelfond in 1962.

Proposition 5.22. Shanks’s algorithm solves the discrete logarithm problem in O(
√
p·log2 p)

time.

Proof. First we show that the algorithm is O(
√
p · log2 p). The lists in steps 2 and 3 each

involve about n computations, so we have 2n ≈ 2
√
p computations there. Each computation

will less than log2 p steps.

Step 4 requires finding matches between two lists; this is a standard computer science

task, and takes about log2 the length of the lists, and thus is O(log2 p). This winds up trivial

when added to the previous steps. So the whole algorithm is O(
√
p · log2 p).
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Now let’s prove the algorithm works. If x is the solution to gx ≡ A mod p, we can

write x = nq + r for 0 ≤ r < n by the division algorithm. Since a ≤ x < p, we know that

q = x−r
n
< N

n
< n since n >

√
N .

So gx ≡ A mod p is the same as gr ≡ A · g−qn mod p, restricted to 0 ≤ r < n and

0 ≤ q < n. Our list from step 2 is a list of gr, and our list from step 3 is a list of A · g−qn.

So these lists will have a common element, and finding it will give us x = r + qn.

Example 5.23. 23 is prime, and 10 is a primitive root modulo 13. Let’s solve 10x ≡ 7

mod 23.

Following Shanks’s algorithm, we see that 4 <
√

23 < 5 so we set n = 5.

We compute 1, 10, 102, 103, 104, 105:

100 101 102 103 104 105

1 10 8 11 18 19

We need an inverse of 105 ≡ 19 ≡ −4; we see that −6 will be an inverse modulo 23, so our

inverse is −6 or 17.

Now we compute 7 · 2i:

7 · (−6)0 7 · (−6)1 7 · (−6)2 7 · (−6)3 7 · (−6)4 7 · (−6)5

7 4 22 6 10 9

We find a 10 on both lists, corresponding to r = 1 and q = 4. Thus we have x = qn+r =

4 · 5 + 1 = 21. And we check that indeed, 1021 ≡ 7 mod 23.

Example 5.24. 37 is a prime number, and 5 is a primitive root modulo 73. Let’s solve

5x ≡ 13 mod 37.

Following Shanks’s algorithm, we see that 6 <
√

37 < 7 so we set n = 7.

We compute 1, 5, 52, . . . , 57: we get

50 51 52 53 54 55 56 57

1 5 25 14 33 17 11 18

We find an inverse of 57 ≡ 18. We see that 2 · 18 = 36 ≡ −1, so the inverse of 18 is −2.

Now we compute 13 · 5−in and we get

13 13 · 5−7 13 · 5−14 13 · 5−21 13 · 5−28 13 · 5−35 13 · 5−42 13 · 5−49

13 13 · −2 13 · (−2)2 13 · (−2)3 13 · (−2)4 13 · (−2)5 13 · (−2)6 13 · (−2)7

13 11 15 7 23 28 18 1

We see that there’s a matching 11 on both lists, corresponding to r = 6 and q = 1, so we

have x = 1 · 7 + 6 = 13. And we can check that 513 ≡ 13 mod 37, as desired.
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