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Asymmetric Encryption

Merkle’s Puzzles

1 Bob generates N different symmetric keys and attaches an
identification code i to each of them.

2 For each key, Bob encrypts a message of the form “This is the ith key
on my list. The key is Ki .” He uses an encryption algorithm that is
possible but computationally expensive to brute force.

3 Bob sends Alice all N of the messages generated this way. Alice
chooses one at random and brute-force decrypts it, and sends the
identifier to Bob.

4 Bob and Alice can now communicate using the symmetric key they
have agreed on.
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Discrete Logarithms

Definition

A number a ∈ Z/mZ is a unit modulo m if a has an inverse modulo m.
The set of units is Z/mZ×.
If p prime: Z/pZ× = {1, 2, . . . , p − 1}.

Definition

A number g ∈ Z/pZ is a primitive root modulo p if
{g , g2, g3, . . . , gp−1} = Z/pZ×.

Fact

If g ∈ Z/pZ× then #{g i mod p : 1 ≤ i ≤ p − 1}|p − 1.
Thus in particular, if we compute g , g2, . . . , g (p−1)/2 and we haven’t found
a number equivalent to 1, then we know g is a primitive root.
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Discrete Logarithms

Definition

Let p be prime, g a primitive root mod p, and h ∈ Z/pZ×.
If g x ≡ h mod m, then x is a discrete logarithm of h to the base g
modulo m.

Some authors will call this the index of h with respect to g , denoted
indg (h).

Fact

1 logg (1) = 0

2 logg (ab) ≡ logg (a) + logg (b) mod p − 1

3 logg (ar ) ≡ r logg (a) mod p − 1.
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Diffie-Hellman Key Exchange

Diffie-Hellman Algorithm

Alice and Bob wish to exchange a key. They follow the following steps:

1 Choose a large prime p, and a non-zero integer g ∈ Z/pZ×.

2 Alice chooses a secret integer a, and Bob chooses a secret integer b.
Neither party reveals this integer to anyone.

3 Alice computes A ≡ ga mod p and Bob computes B ≡ gb mod p,
and they (publicly) exchange these values with each other.

4 Now Alice computes A′ ≡ Ba mod p and Bob computes B ′ ≡ Ab

mod p.

5 A′ ≡ B ′ mod p, so Alice and Bob use this shared information as their
key.
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Diffie-Hellman Key Exchange

Fast Exponentiation

1 Compute g2k for 2k ≤ a. That is, compute g , g2, g4, g8, . . . , g2k . We
can do this by repeated squaring, without computing intermediate
powers.

2 Now express the exponent a in binary. That is, write
a = c0 + c1 · 2 + c2 · 22 + · · ·+ ck2k , where ci ∈ {0, 1}.

3 Now we can compute

ga = g c0+c1·2+c2·22+···+ck2
k

= g c0g c1·2g c2·22 · · · g ck2
k

= g c0(g2)c1(g22)c2 · · · (g2k )ck .

But we already know g2i for each i , and the ci are all either 0 or 1 so
don’t involve any computation. So we only have to multiply up to k
things together here.
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Diffie-Hellman Key Exchange

Shanks’s Babystep-Giantstep Algorithm

Suppose we have a prime number p and a primitive root g , and an integer
A, and we want to find an integer x such that g x ≡ A mod p. Then

1 let n = 1 +
⌊√

p
⌋
. Thus n >

√
p.

2 (Baby steps) Calculate g0, g1, g2, . . . , gn mod p. Find an inverse for
gn mod p.

3 (Giant steps) Calculate A,A · g−n,A · g−2n, . . . ,A · g−n2 mod p.

4 Find a match between these two lists, so that we have g i ≡ hg−jn.

5 Then x = i + jn is a solution to g x ≡ h mod p.
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Diffie-Hellman Key Exchange
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