
Jay Daigle Occidental College Math 401: Cryptology

8 Elliptic Curve Cryptography

8.1 Elliptic Curves over a Finite Field

For the purposes of cryptography, we want to consider an elliptic curve defined over a finite

field Fp = Z/pZ for p a prime. Given a specific curve, we can find all of the points on it by

exhaustive search.

Example 8.1. Let E : y2 = x3 + 3x + 8 be an elliptic curve over F13. (We check that

4 · 33 + 27 · 82 = 1836 ≡ 3 6≡ 0 mod 13 so this is an elliptic curve.

If we want to find all the points on this elliptic curve, we can plug in the values

0, 1, 2, . . . , 12 for x and then see if the equation y2 ≡ a mod 13 has solutions (for each

number, it will have either zero or two).

We start by making a list of all the squares mod 13. We see that

12 ≡ 1 22 ≡ 4 33 ≡ 9 43 ≡ 3 52 ≡ 12 62 ≡ 10

72 ≡ 10 82 ≡ 12 92 ≡ 3 102 ≡ 9 112 ≡ 4 122 ≡ 1

(You might notice that the second row is just the first row backwards. This is because

(−a)2 ≡ a2 mod p. Thus y2 ≡ a mod 13 has a solution if and only if a ∈ {1, 3, 4, 9, 10, 12}.
So now we check values for x. If x = 0 then we have y2 ≡ 8, which has no solutions. If

x = 1 then we have y2 ≡ 12, which has the solutions y ≡ 5 and y ≡ 8. Continuing we get

the list:

E(F13) = {O, (1, 5), (1, 8), (2, 3), (2, 10), (9, 6), (9, 7), (12, 2), (12, 11)}.

Thus we see E(F13) has nine points.

How do we do our point addition on these curves? It’s really hard to draw pictures

of these things that look reasonable, since it’s just a scatter of points (see figure 8.3 for an

example of a picture here). But we can still write down the same equations we always would.

Example 8.2. Let’s use the same elliptic curve as above, and let’s calculate (1, 5)⊕ (9, 6).

Our line has the equation

y =
6− 5

9− 1
(x− 1) + 5.

We need to figure out what 1/8 is—that is, the inverse of 8 modulo 13. A little experimen-

tation gives us the 8 · 5 = 40 ≡ 1 mod 13 so our equation becomes

y = 5(x− 1) + 5 = 5x.
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Figure 8.1: The curve E : y2 = x3 + 3x+ 8 over F13

(We check that both our points are on this line; we see that 5 ·1 = 5 ≡ 5, and 9 ·5 = 45 ≡ 6).

Plugging this into our original equation gives

(5x)2 = x3 + 3x+ 8

25x2 = x3 + 3x+ 8

0 = x3 − 25x2 + 3x+ 8

≡ x3 + x2 + 3x+ 8.

This seems like it might be painful to solve, but we have effectively three approaches. The

first is simply trial and error; there are only thirteen possibilities, so we can just try them

all. (This works well as long as p is small).

The second is polynomial long division. We already know two roots of this polynomial: 1

and 9. (We can check that both of these are roots to make sure we haven’t screwed anything

up). So we can long divide by (x− 1) and then by (x− 9); we see that

x3 + x2 + 3x+ 8 = (x− 1)(x2 + 2x+ 5) = (x− 1)(x− 9)(x− 2).

But the third approach extends this to be easier still. We know that our polynomial will

be (x− 1)(x− 9)(x− x3) for some x3. Thus in particular, we can see that −1− 9− x3 will

be the coefficient of x2. Thus we have −1− 9−x3 ≡ 1 mod 13 and so −x3 ≡ 11, so x3 ≡ 2.

Plugging x = 2 back intou our line equation gives y = 10, so the third point on the line

through (1, 5) and (9, 6) is (2, 10). (We check that this point is actually on the curve; indeed,

it is).

Our last step is to reflect this point vertically, to get (2,−10) ≡ (2, 3). Thus (1, 5) ⊕
(9, 6) = (2, 3).

We can attempt to draw a picture here, but it’s not super helpful. here’s a picture of the

line through P and Q, and then a picture of that line overlaid over E:
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Figure 8.2: The y = 5x through (1, 5) and (9, 6) over F13

Figure 8.3: The curve E : y2 = x3 + 3x+ 8 (black squares) and the line y = 5x (blue circles)

As you can see, it’s somewhat challenging to figure out what’s going on here even already

knowing the answer! This is why we turn our questions of geometry over finite fields into

questions of algebra.

Example 8.3. Let’s do another example. This time we’ll calculate (12, 2)⊕ (12, 2).

Since we’re adding a point to itself, we can’t just find the equation of the line going

through both points. Instead we need to find the tangent line. It’s not necessarily clear

exactly what this should mean in modular arithmetic—there certainly isn’t a curve in the

picture—so we’ll just fall back on what the answer “should” be from regular calculus. (I

could make this rigorous. I won’t). So we calculate

y2 ≡ x3 + 3x+ 8

2yy′ ≡ 3x2 + 3

2 · 2 · y′ ≡ 3(−1)2 + 3

4y′ ≡ 6

2y′ ≡ 3

y′ ≡ 8.

Thus our line is y ≡ 8(x − 12) + 2 or y ≡ 8x + 10. Again we can plug this into our elliptic
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curve:

(8x+ 10)2 ≡ x3 + 3x+ 8

64x2 + 160x+ 100 ≡ x3 + 3x+ 8

−x2 + 4x+ 9 ≡ x3 + 3x+ 8

0 ≡ x3 + x2 − x− 1.

As before we know that x3+x2−x−1 ≡ (x−12)(x−12)(x−x3) so we have −12−12−x3 ≡
1, or x3 ≡ 1. Plugging this into the line equation gives y ≡ 8 + 10 ≡ 5, so the third point

on this line is (1, 5) (which is in fact on E(F13)). We invert the y-coordinate, so we get

(12, 2)⊕ (12, 2) = (1, 8).

8.2 The group law by formula

Notice that while we could—and did—work though every step of ellpitic curve addition in

detail, most of the work we did is brute algebra, and can be automated into formulas.

Proposition 8.4. Let E : y2 = x3 + Ax + B be an elliptic curve over a field K, and let

P = (x1, y1) and Q = (x2, y2) be points on E(K). Then:

1. If y1 = −y2 (in K), then P ⊕Q = O.

2. If P1 = P2, then define λ =
3x2

1+A

2y1
. Set

x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1.

Then P ⊕Q = (x3, y3).

3. If P1 6= P2, then define λ = y2−y1
x2−x1

. Then as before, set

x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1.

Then P ⊕Q = (x3, y3).

Proof. This all follows from the sort of algebraic arguments we just made. We take λ to be the

slope of the line through P and Q—the formula if P = Q comes from setting 2yy′ = 3x2 +A

so that y′ = 3x2+A
2y

.

The formula from x3 comes from the observation that the coefficient of x2 in the cubic

we’re solving is always −λ2, so we have −x1 − x2 − x3 = −λ2 or x3 = λ2 − x1 − x2. The

formula for y3 comes from plugging x3 into the equation of the line and then multiplying by

−1.
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Example 8.5. Let’s do one more addition on our elliptic curve E : y2 = x3 + 3x + 8 over

F13. Let’s compute (2, 3)⊕ (2, 3). We observe that this is a repeated point, so we have

λ =
3x21 + A

2y1
=

3 · 22 + 3

2 · 3
=

15

6
=

5

2
= 9.

Then we have

x3 = λ2 − x1 − x2 = 92 − 2− 2 = 60 = 12

y3 = λ(x1 − x3)− y1 = 9(2− 12)− 3 = −93 = 11

so (2, 3)⊕ (2, 3) = (12, 11). (This is in fact a point on the curve E, which is good).

Example 8.6. In section 7.3 we worked with the elliptic curve E : y2 = x3 − 15x+ 18 over

the field Q, with Q = (1, 2), Q⊕Q = P = (7, 16), and Q⊕ P = 3Q = S = (−23/9, 170/27).

Now let’s compute Q⊕ S.

Our two points are distinct, so we have

λ =
y2 − y1
x2 − x1

=
170/27− 2

−23/9− 1
=
−29

24
.

Then we have

x3 = λ2 − x1 − x2 =
292

242
− 1− −23

9
=

193

64

y3 = λ(x1 − x3)− y1 =
−29

24

(
1− 193

64

)
− 2 =

223

512
.

Thus Q⊕ S = (193/64, 223/512).

Figure 8.4: Calculating 2Q
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Theorem 8.7 (Hasse). Let E be an elliptic curve over Fp. Then |#E(Fp)− (p+ 1)| < 2
√
p.

Thus an elliptic curve over Fp has about p+ 1 points on it.

Remark 8.8. The error term p + 1 − #E(Fp) = tp is called the trace of Frobenius, and is

the trace of a 2× 2 matrix acting on a vector space associated to E/Fp. The details of this

are technical, and completely irrelevant to our purposes, but are very important to my PhD

research on special values of L-functions (and the Birch and Swinnerton-Dyer Conjecture).

8.3 Elliptic Curve Discrete Logarithms

In order to use elliptic curves in cryptography, we need a problem that is difficult in one

direction, and easy in the other—an analogue of the discrete logarithm problem. Fortunately,

exactly such a problem exists.

Definition 8.9. Let E be an elliptic curve over the finite field Fp and let P,Q ∈ E(Fp) be

points on the curve. The elliptic curve discrete logarithm problem is the problem of finding

an integer n such that Q = nP (where the operation is the group law on the elliptic curve).

By analogy, we denote this integer by n = logP (Q) and call n the elliptic discrete loga-

rithm of Q with respect to P (on the curve E/Fp) .

Example 8.10. For E : y2 = x3 + 3x + 8, what is log(2,3)(1, 8)? That is, for what n do we

have n(2, 3) = (1, 8)?

We already saw that 2(2, 3) = (12, 11). We can then compute that

3(2, 3) = (12, 11)⊕ (2, 3) = (9, 7)

4(2, 3) = (9, 7)⊕ (2, 3) = (1, 5)

5(2, 3) = (1, 5) + (2, 3) = (1, 8)

so 5(2, 3) = (1, 8) and we have log(2,3)(1, 8) = 5.

Like the regular discrete logarithm problem, it’s somewhat time-consuming and expensive

to compute an elliptic curve discrete logarithm. But also like the regular discrete logarithm

problem, it’s fairly efficient to do the opposite.

Algorithm 8.1 (Double and Add). Suppose we want to compute nP for some point P ∈
E(Fp). Let k = log2(n). Then we can:
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1. Compute 2kP for 2k ≤ a. That is, compute g, g2, g4, g8, . . . , g2
k
. We can do this by

repeated squaring, without computing intermediate powers.

2. Now express n in binary. That is, write n = c0 + c1 · 2 + c2 · 22 + · · · + ck2k, where

ci ∈ {0, 1}.

3. Now we can compute

nP = (c0 + c1 · 2 + c2 · 22 + · · ·+ ck2k)P = c0P ⊕ c12P ⊕ c24P ⊕ · · · ⊕ ck2kP

But we already know 2iP for each i, and the ci are all either 0 or 1 so don’t involve

any computation. So we only have to do about 2k elliptic curve additions.

This should look familiar, since it’s exactly the fast exponentiation algorithm we’ve al-

ready seen.

Remark 8.11. We could actually get an additional (minor) speedup by exploiting the fact

that elliptic curve subtraction is just as easy as addition—this is not analogous to the mod-p

multiplication case.

Example 8.12. For E : y2 = x3 + 3x + 8, let’s compute 9(2, 3). We already know that

2(2, 3) = (12, 11) and 4(2, 3) = (1, 5). Then we have 8(2, 3) = (1, 5)⊕ (1, 5) = (2, 10). Thus

9(2, 3) = (2, 3)⊕ (2, 10) = O.

Remark 8.13. Could we have known that 9(2, 3) = O without doing any calculations? Yes!

We know that E had eight “normal” points on it, plus the identity, for a total of nine

elements in the additive group. Thus 9P = O for any P ∈ E(F13).

We can adapt the baby step-giant step algorithm to attack the elliptic curve discrete

logarithm problem, as we did for the regular discrete logarithm problem.

Fact 8.14. Optimal (known) fast elliptic curve multiplication takes about 3k/2+1 operations

in the worst case, and 4k/3 + 1 steps on the average, where k = log2(n). (Algorithm 8.1

takes about 2k and 3k/2 respectively, instead).

Optimal (known) discrete logarithm solving takes about
√
p steps, where p is the order of

the field that E is defined over.

8.4 Cryptographic Algorithms

We can, effectively, implement all of our discrete logarithm-based cryptographic algorithms

with elliptic curve discrete logarithms instead.
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Algorithm 8.2 (Elliptic Curve Diffie-Hellman). Alice and Bob wish to exchange a key.

They follow the following steps:

1. A public party chooses a large prime p, and an elliptic curve E over Fp, and a point

P ∈ E(Fp).

2. Alice chooses a secret integer nA, and Bob chooses a secret integer nB. Neither party

reveals this integer to anyone.

3. Alice computes QA = nAP and Bob computes QB = nBP . They (publicly) exchange

these values with each other.

4. Now Alice computes nAQB and Bob computes nBQA.

5. nAQB = nAnBP = nBnAP = nBQa, so they now have a shared key.

Algorithm 8.3 (Elliptic Curve ElGamal). First Alice generates a private key and a public

key.

1. Choose a large prime number p, an elliptic curve E over Fp, and a point P ∈ E(Fp) of

large order. This is generally done by a large trusted party.

2. Alice chooses a private key nA.

3. Alice computes and publishes a public key QA = nAP ∈ E(Fp).

Now suppose Bob wishes to send Alice a a message encoded as a point M ∈ E(Fp).

1. Bob generates a random ephemeral key k.

2. Bob computes C1 = kP ∈ E(Fp), C2 = M + kQA ∈ E(Fp). Bob transmits the pair of

points (C1, C2) to Alice.

Alice decrypts the message using her private key nA. She computes C2 − nAC1 ∈ E(Fp).

We see that this is

C2 − naC1 = M + kQA − nAkP = M + knAP − nAkP = M.

Remark 8.15. Elliptic curve cryptography introduces one layer of added inefficiency: a single

point contains about log2(p) bits of information, since an elliptic curve over Fp has about p

points. But since we need to transmit two numbers mod p to convey one point, we have to

send 2 log2(p) bits of information!
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There are various hacks to get around this problem. Most of them involve the fact

that if we know the x-coordinate of a point on E, then we know the y-coordinate up to

a change of sign. So there are schemes involving only caring about the x coordinate, or

involving transmitting the x-coordinate and a parity bit to specify which of the two possible

y-coordinates you had chosen, rather than transmitting the entire number.

Another issue with elliptic curve cryptography is the choice of curve and point. It is

computationally expensive to ensure that a curve does not have any hidden weaknesses, so

curves are generally chosen once by a respected standards body. In practice in the USA,

they are often chosen by NIST.

In 2013, the New York Times revealed that some of the standard curves chosen by NIST

were chosen due to influence by the NSA, which had introduced a secret weakness into the

chosen curves, which allowed it to crack encryption based on those curves.

However, elliptic curve cryptography has a major advantage over algorithms based on

modular arithmetic: the General Number Field Sieve. This algorithm, which we discussed

in 6.3.1, is the most efficient known algorithm for breaking RSA, and can also be adapted

to attack vanilla ElGamal and most similar cryptosystems based on modular arithmetic.

But nothing similar is known in the case of elliptic curves. Thus elliptic curve cryptography

provides substantially greater strength for the same size key.

Under current knowledge and assumptions, we have the following table, explaining what

key lengths provide equivalent levels of security for symmetric algorithms, RSA, and ECC.

Symmetric Key Size RSA Key Size ECC Key Size

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521
Thus modern RSA often uses 2048 bits. AES, which is one of the most common symmetric

algorithms, uses 128, 192, or 256 bits instead. Modern ECC uses 224 or 256 bits. Thus ECC

keys can be much shorter, and in turn computations with them can be much faster.
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