Week 8: Elliptic Curve Cryptography

Jay Daigle

Occidental College

October 17, 2019

Jay Daigle (Occidental College)

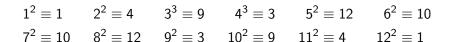
Elliptic Curves Cryptography

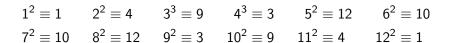
3.5 October 17, 2019 1/11

э

A ►

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの





 $E: y^2 = x^3 + 3x + 8$ over \mathbb{F}_{13}

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 17, 2019 2 / 11

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$1^2 \equiv 1$$
 $2^2 \equiv 4$ $3^3 \equiv 9$ $4^3 \equiv 3$ $5^2 \equiv 12$ $6^2 \equiv 10$
 $7^2 = 10$ $8^2 = 12$ $9^2 = 3$ $10^2 = 9$ $11^2 = 4$ $12^2 = 1$

$$E: y^2 = x^3 + 3x + 8$$
 over \mathbb{F}_{13}

 $E(\mathbb{F}_{13}) = \{\mathcal{O}, (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12,2), (12,11)\}.$

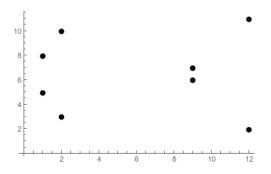
イロト イポト イヨト イヨト 三日

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 17, 2019 3 / 11

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣



 $E: y^2 = x^3 + 3x + 8$ over \mathbb{F}_{13}

3

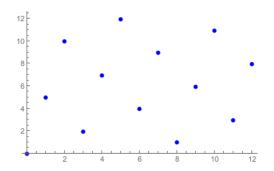
イロト イボト イヨト イヨト

Jay Daigle (Occidental College) Elli

Elliptic Curves Cryptography

October 17, 2019 4 / 11

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣



The line y = 5x over \mathbb{F}_{13}

э

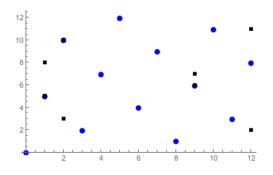
▲ 同 ▶ ▲ 国 ▶

Jay Daigle (Occidental College) Elli

Elliptic Curves Cryptography

October 17, 2019 5 / 11

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣



$$y^2 = x^3 + 3x + 8$$
 and $y = 5x$

- 2

・ロト ・四ト ・ヨト ・ヨト

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 17, 2019 6 / 11

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

3

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

1 If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.

- E - E

< A > < 3

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

- If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.
- 2 If $P_1 = P_2$, then define $\lambda = \frac{3x_1^2 + A}{2y_1}$. Set

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$.

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

- 1 If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.
- 2 If $P_1 = P_2$, then define $\lambda = \frac{3x_1^2 + A}{2y_1}$. Set

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$. If $P_1 \neq P_2$, then define $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$. Then as before, set

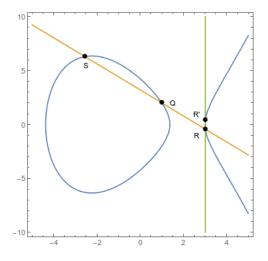
$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$.

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 17, 2019 7 / 11



- 2

3

< □ > < □ > < □ > < □ > < □ >

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP.

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP. Write $n = \log_P(Q)$ for the elliptic discrete logarithm of Q with respect to P (on the curve $E/_P$).

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP. Write $n = \log_P(Q)$ for the elliptic discrete logarithm of Q with respect to P (on the curve $E/_p$).

Double and Add

Want to compute nP for $P \in E(p)$. Let $k = \log_2(n)$. Then:

Jay Daigle (Occidental College)

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP. Write $n = \log_P(Q)$ for the elliptic discrete logarithm of Q with respect to P (on the curve $E/_P$).

Double and Add

Want to compute nP for $P \in E(p)$. Let $k = \log_2(n)$. Then:

• Compute $2^k P$ for $2^k \le a$. That is, compute $g, g^2, g^4, g^8, \ldots, g^{2^k}$.

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP. Write $n = \log_P(Q)$ for the elliptic discrete logarithm of Q with respect to P (on the curve $E/_P$).

Double and Add

Want to compute nP for $P \in E(p)$. Let $k = \log_2(n)$. Then:

- Compute $2^k P$ for $2^k \le a$. That is, compute $g, g^2, g^4, g^8, \ldots, g^{2^k}$.
- **2** Now express *n* in binary. That is, write $n = c_0 + c_1 \cdot 2 + c_2 \cdot 2^2 + \cdots + c_k 2^k$, where $c_i \in \{0, 1\}$.

Definition

The elliptic curve discrete logarithm problem: find $n \in$ such that Q = nP. Write $n = \log_P(Q)$ for the elliptic discrete logarithm of Q with respect to P (on the curve $E/_P$).

Double and Add

Want to compute nP for $P \in E(p)$. Let $k = \log_2(n)$. Then:

- Compute $2^k P$ for $2^k \le a$. That is, compute $g, g^2, g^4, g^8, \dots, g^{2^k}$.
- **2** Now express *n* in binary. That is, write $n = c_0 + c_1 \cdot 2 + c_2 \cdot 2^2 + \cdots + c_k 2^k$, where $c_i \in \{0, 1\}$.
- Ow we can compute

$$nP = (c_0 + c_1 \cdot 2 + c_2 \cdot 2^2 + \cdots + c_k 2^k)P = c_0P \oplus c_12P \oplus c_24P \oplus \cdots \oplus c_k 2^k$$

- 3

<ロト < 同ト < ヨト < ヨト

Alice and Bob wish to exchange a key. They follow the following steps:

< A >

Alice and Bob wish to exchange a key. They follow the following steps:

A public party chooses a large prime p, and an elliptic curve E over p, and a point P ∈ E(p).

Alice and Bob wish to exchange a key. They follow the following steps:

- A public party chooses a large prime p, and an elliptic curve E over p, and a point P ∈ E(p).
- 2 Alice chooses a secret integer n_A , and Bob chooses a secret integer n_B . Neither party reveals this integer to anyone.

Alice and Bob wish to exchange a key. They follow the following steps:

- A public party chooses a large prime p, and an elliptic curve E over p, and a point P ∈ E(p).
- Alice chooses a secret integer n_A, and Bob chooses a secret integer n_B. Neither party reveals this integer to anyone.
- 3 Alice computes $Q_A = n_A P$ and Bob computes $Q_B = n_B P$. They (publicly) exchange these values with each other.

くロ とくぼ とくほ とくほ とうしょ

Alice and Bob wish to exchange a key. They follow the following steps:

- A public party chooses a large prime p, and an elliptic curve E over p, and a point P ∈ E(p).
- 2 Alice chooses a secret integer n_A , and Bob chooses a secret integer n_B . Neither party reveals this integer to anyone.
- 3 Alice computes $Q_A = n_A P$ and Bob computes $Q_B = n_B P$. They (publicly) exchange these values with each other.
- Now Alice computes $n_A Q_B$ and Bob computes $n_B Q_A$.

イロト 不得 トイヨト イヨト 二日

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 17, 2019 10 / 11

3

イロト イボト イヨト イヨト

Alice generates a key:

3

イロト イボト イヨト イヨト

Alice generates a key:

Choose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.

(人間) トイヨト (日) (日)

Alice generates a key:

- Observe the second second
- 2 Alice chooses a private key n_A .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Alice generates a key:

- Ochoose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.
- 2 Alice chooses a private key n_A .
- Solution Alice computes and publishes a public key $Q_A = n_A P \in E(p)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Alice generates a key:

- Ochoose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.
- 2 Alice chooses a private key n_A .
- 3 Alice computes and publishes a public key $Q_A = n_A P \in E(p)$.

Bob sends a message $M \in E(p)$:

くロ とくぼ とくほ とくほ とうしょ

Alice generates a key:

- Ochoose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.
- 2 Alice chooses a private key n_A .
- 3 Alice computes and publishes a public key $Q_A = n_A P \in E(p)$.

Bob sends a message $M \in E(p)$:

1 Bob generates a random ephemeral key k.

くロ とくぼ とくほ とくほ とうしょ

Alice generates a key:

- Ochoose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.
- 2 Alice chooses a private key n_A .
- 3 Alice computes and publishes a public key $Q_A = n_A P \in E(p)$.

Bob sends a message $M \in E(p)$:

- **1** Bob generates a random ephemeral key k.
- ② Bob computes $C_1 = kP \in E(p)$, $C_2 = M + kQ_A \in E(p)$. Bob transmits the pair of points (C_1, C_2) to Alice.

▲口 ▶ ▲冊 ▶ ▲ 三 ▶ ▲ 三 ▶ ● の Q (>

Alice generates a key:

- Choose a large prime number p, an elliptic curve E over p, and a point $P \in E(p)$ of large order.
- 2 Alice chooses a private key n_A .
- 3 Alice computes and publishes a public key $Q_A = n_A P \in E(n)$.

Bob sends a message $M \in E(p)$:

- Bob generates a random ephemeral key k.
- Bob computes $C_1 = kP \in E(p), C_2 = M + kQ_A \in E(p)$. Bob 2 transmits the pair of points (C_1, C_2) to Alice.

Alice decrypts the message using her private key n_A :

10/11

Alice generates a key:

- Ochoose a large prime number p, an elliptic curve E over p, and a point P ∈ E(p) of large order.
- 2 Alice chooses a private key n_A .
- Solution Alice computes and publishes a public key $Q_A = n_A P \in E(p)$.

Bob sends a message $M \in E(p)$:

- **1** Bob generates a random ephemeral key k.
- Bob computes C₁ = kP ∈ E(_p), C₂ = M + kQ_A ∈ E(_p). Bob transmits the pair of points (C₁, C₂) to Alice.

Alice decrypts the message using her private key n_A :

• Alice computes
$$C_2 - n_A C_1 \in E(p)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Key lengths for equivalent security

э

< fi> < 10 × <

Key lengths for equivalent security

Symmetric Key Size	RSA Key Size	ECC Key Size
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521

э

11/11

< fi> < 10 × <