Week 7: Elliptic Curves

Jay Daigle

Occidental College
October 10, 2019

It is possible to write endlessly on elliptic curves.

It is possible to write endlessly on elliptic curves. (This is not a threat.)

Serge Lang

Groups

Groups

Definition

A group is a set G and a binary operation $\star: G \times G \rightarrow G$ with the properties that:

Groups

Definition

A group is a set G and a binary operation $\star: G \times G \rightarrow G$ with the properties that:
(1) Identity element: There is a $e \in G$ such that $e \star g=g \star e=g$ for all $g \in G$

Groups

Definition

A group is a set G and a binary operation $\star: G \times G \rightarrow G$ with the properties that:
(1) Identity element: There is a $e \in G$ such that $e \star g=g \star e=g$ for all $g \in G$
(2) Inverses: For every $g \in G$, there is an inverse element g^{-1} such that

$$
g \star g^{-1}=g^{-1} \star g=e
$$

Groups

Definition

A group is a set G and a binary operation $\star: G \times G \rightarrow G$ with the properties that:
(1) Identity element: There is a $e \in G$ such that $e \star g=g \star e=g$ for all $g \in G$
(2) Inverses: For every $g \in G$, there is an inverse element g^{-1} such that $g \star g^{-1}=g^{-1} \star g=e$
(3) Associative: for every $f, g, h \in G$ we have $(f \star g) \star h=f \star(g \star h)$.

An example of the infinite dihedral group. We can accomplish any symmetry by combining a translation of some number of units with a possible 180° rotation.

Fields

Fields

Definition

A field is a set K together with two operations + and \cdot, such that

Fields

Definition

A field is a set K together with two operations + and \cdot, such that
(1) K is an abelian group under the operation +;

Fields

Definition

A field is a set K together with two operations + and \cdot, such that
(1) K is an abelian group under the operation +;
(2) The set $K \backslash\{0\}$ of non-zero elements of K is an abelian group under •;
(3) and we have the distributive law $k(x+y)=k x+k y$.

An elliptic curve is:

An elliptic curve is:

- A smooth projective genus 1 curve with a rational point

An elliptic curve is:

- A smooth projective genus 1 curve with a rational point
- $y^{2}=x^{3}+a x+b$

An elliptic curve is:

- A smooth projective genus 1 curve with a rational point
- $y^{2}=x^{3}+a x+b$
- NOT an ellipse!

An elliptic curve is:

- A smooth projective genus 1 curve with a rational point
- $y^{2}=x^{3}+a x+b$
- NOT an ellipse!

An elliptic curve is:

- A smooth projective genus 1 curve with a rational point
- $y^{2}=x^{3}+a x+b$
- NOT an ellipse!

Key Question

How many rational points are there?

Figure: The group law on elliptic curves Emmanuel Boutet / CC-BY-SA-3.0

