
Homomorphic Encryption

Jay Daigle

Occidental College

November 7, 2019

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 1 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

1 I want to search a medical database for information about an STD
without letting anyone know I have one.

2 I want to search for politically dangerous information in an
authoritarian regime.

3 I want to store and search my data in the cloud without giving any
internet companies access to it.

4 I want to make a database of genetics information available to
researchers without allowing them to identify any specific person.

Definition

Let R, S be rings. We say a function f : R → S is a homomorphism if
f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 2 / 6



Homomorphisms and Privacy

Key generation:

1 Alice generates a random small polynomial s(x); this is the shared,
symmetric key.

Encryption:

1 Alice generates a random polynomial a(x) from the entire ring, and a
random small polynomial e(x).

2 Her message is a string of bits, which she can think about as a
polynomial m(x) with coefficients either 0 or 1.

3 Alice computes c1(x) = −a(x) and c0(x) = a(x)s(x) + 2e(x) + m(x).

4 She transmits the ciphertext (c0(x), c1(x)).

Decryption:

1 Bob receives (c0(x), c1(x)).

2 He computes c0(x) + c1(x)s(x).

3 He reduces modulo 2, and gets the message m(x).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 3 / 6



Homomorphisms and Privacy

Key generation:

1 Alice generates a random small polynomial s(x); this is the shared,
symmetric key.

Encryption:

1 Alice generates a random polynomial a(x) from the entire ring, and a
random small polynomial e(x).

2 Her message is a string of bits, which she can think about as a
polynomial m(x) with coefficients either 0 or 1.

3 Alice computes c1(x) = −a(x) and c0(x) = a(x)s(x) + 2e(x) + m(x).

4 She transmits the ciphertext (c0(x), c1(x)).

Decryption:

1 Bob receives (c0(x), c1(x)).

2 He computes c0(x) + c1(x)s(x).

3 He reduces modulo 2, and gets the message m(x).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 3 / 6



Homomorphisms and Privacy

Key generation:

1 Alice generates a random small polynomial s(x); this is the shared,
symmetric key.

Encryption:

1 Alice generates a random polynomial a(x) from the entire ring, and a
random small polynomial e(x).

2 Her message is a string of bits, which she can think about as a
polynomial m(x) with coefficients either 0 or 1.

3 Alice computes c1(x) = −a(x) and c0(x) = a(x)s(x) + 2e(x) + m(x).

4 She transmits the ciphertext (c0(x), c1(x)).

Decryption:

1 Bob receives (c0(x), c1(x)).

2 He computes c0(x) + c1(x)s(x).

3 He reduces modulo 2, and gets the message m(x).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 3 / 6



Homomorphisms and Privacy

Key generation:

1 Alice generates a random small polynomial s(x); this is the shared,
symmetric key.

Encryption:

1 Alice generates a random polynomial a(x) from the entire ring, and a
random small polynomial e(x).

2 Her message is a string of bits, which she can think about as a
polynomial m(x) with coefficients either 0 or 1.

3 Alice computes c1(x) = −a(x) and c0(x) = a(x)s(x) + 2e(x) + m(x).

4 She transmits the ciphertext (c0(x), c1(x)).

Decryption:

1 Bob receives (c0(x), c1(x)).

2 He computes c0(x) + c1(x)s(x).

3 He reduces modulo 2, and gets the message m(x).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 3 / 6



Homomorphisms and Privacy

Key generation:

1 Alice generates a random small polynomial s(x); this is the shared,
symmetric key.

Encryption:

1 Alice generates a random polynomial a(x) from the entire ring, and a
random small polynomial e(x).

2 Her message is a string of bits, which she can think about as a
polynomial m(x) with coefficients either 0 or 1.

3 Alice computes c1(x) = −a(x) and c0(x) = a(x)s(x) + 2e(x) + m(x).

4 She transmits the ciphertext (c0(x), c1(x)).

Decryption:

1 Bob receives (c0(x), c1(x)).

2 He computes c0(x) + c1(x)s(x).

3 He reduces modulo 2, and gets the message m(x).

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 3 / 6



Homomorphisms and Privacy

Keygen:

1 Alice generates a random polynomial a0 and random small
polynomials s and e0.

2 Alice computes b0 = as + 2e0. Her public key is (a0, b0).

Encryption:

1 Bob generates random small polynomials v , e1, e2.

2 He computes a1 = a0v + 2e1, b1 = b0v + 2e2.

3 He computes c0 = b1 + m and c1 = −a1.

4 The ciphertext is (c0, c1).

Decryption:

1 Alice receives (c0, c1).

2 Alice computes M = c0 + sc1.

3 Alice reduces M mod 2 and gets the message m.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 4 / 6



Homomorphisms and Privacy

Keygen:

1 Alice generates a random polynomial a0 and random small
polynomials s and e0.

2 Alice computes b0 = as + 2e0. Her public key is (a0, b0).

Encryption:

1 Bob generates random small polynomials v , e1, e2.

2 He computes a1 = a0v + 2e1, b1 = b0v + 2e2.

3 He computes c0 = b1 + m and c1 = −a1.

4 The ciphertext is (c0, c1).

Decryption:

1 Alice receives (c0, c1).

2 Alice computes M = c0 + sc1.

3 Alice reduces M mod 2 and gets the message m.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 4 / 6



Homomorphisms and Privacy

Keygen:

1 Alice generates a random polynomial a0 and random small
polynomials s and e0.

2 Alice computes b0 = as + 2e0. Her public key is (a0, b0).

Encryption:

1 Bob generates random small polynomials v , e1, e2.

2 He computes a1 = a0v + 2e1, b1 = b0v + 2e2.

3 He computes c0 = b1 + m and c1 = −a1.

4 The ciphertext is (c0, c1).

Decryption:

1 Alice receives (c0, c1).

2 Alice computes M = c0 + sc1.

3 Alice reduces M mod 2 and gets the message m.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 4 / 6



Homomorphisms and Privacy

Keygen:

1 Alice generates a random polynomial a0 and random small
polynomials s and e0.

2 Alice computes b0 = as + 2e0. Her public key is (a0, b0).

Encryption:

1 Bob generates random small polynomials v , e1, e2.

2 He computes a1 = a0v + 2e1, b1 = b0v + 2e2.

3 He computes c0 = b1 + m and c1 = −a1.

4 The ciphertext is (c0, c1).

Decryption:

1 Alice receives (c0, c1).

2 Alice computes M = c0 + sc1.

3 Alice reduces M mod 2 and gets the message m.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 4 / 6



Homomorphisms and Privacy

Keygen:

1 Alice generates a random polynomial a0 and random small
polynomials s and e0.

2 Alice computes b0 = as + 2e0. Her public key is (a0, b0).

Encryption:

1 Bob generates random small polynomials v , e1, e2.

2 He computes a1 = a0v + 2e1, b1 = b0v + 2e2.

3 He computes c0 = b1 + m and c1 = −a1.

4 The ciphertext is (c0, c1).

Decryption:

1 Alice receives (c0, c1).

2 Alice computes M = c0 + sc1.

3 Alice reduces M mod 2 and gets the message m.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 4 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Ciphertext: a sequence c = (c0, . . . , cd) ∈ Rd+1
q .

Add ciphertexts pointwise. Then we have

c + c′ = (c0, . . . , cd) + (c ′0, . . . , c
′
d) = (c0 + c ′0, . . . , cd + c ′d).

Multiplication: introduce a new variable v , and write:

c =
d∑

i=0

civ
i = c0 + c1v + · · ·+ cdv

d ∈ Rq[d ].

c× c′ = (ĉ0, . . . , ĉd+d ′)(
d∑

i=0

civ
i

)(
d ′∑
i=0

c ′i v
i

)
=

d+d ′∑
i=0

ĉiv
i .

Decryption: compute s = (1, s, . . . , sD), and

〈c, s〉 =
D∑
i=0

ci s
i .

Reduce 〈c, s〉 mod 2, and get m as output.

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 5 / 6



Homomorphisms and Privacy

Jay Daigle (Occidental College) Homomorphic Encryption November 7, 2019 6 / 6


	Homomorphisms and Privacy

