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4 Information Theory

Definition 4.1. A (symmetric) encryption system is composed of:

� A set of possible messages M

� A set of possible keys K

� A set of possible ciphertexts C

� An encryption function e : K×M→ C

� A decryption function d : K× C→M

such that the decryption function is a partial inverse to the encryption function: that is

d(k, e(k,m)) = m e(k, d(k, c)) = c.

We often write ek(m) = e(k,m) and dk(c) = d(k, c). Thus for each k ∈ K, dk = e−1
k .

This implies that each ek is one-to-one.

Of course, some encryption systems are terrible. To be good, we’d like our cryptosystem

to have the following properties:

1. Given any k ∈ K,m ∈M, it’s easy to compute e(k,m).

2. Given any k ∈ K, c ∈ C, it’s easy to compute d(k, c).

3. Given a set of ciphertexts ci ∈ C, it’s difficult to compute dk(ci) without knowing k.

4. Given a collection of pairs (mi, ci), it’s difficult to decrypt a ciphertext whose plaintext

is not already known. (“known-plaintext attack”).

The first two principles make a cryptosystem practically usable; the third and fourth

make it secure. The fourth property is by far the most difficult to achieve. You’ll notice that

all of the cryptosystems we’ve studied so far satisfy the first two properties, and several of

them do at least okay on the third, none of them achieve the fourth at all.

(Recall that we didn’t do an unknown-plaintext attack on the Hill cipher, but we did

implement a known-plaintext attack).

These principles are particularly important because they provide security even if your

adversary knows the cryptosystem you’re using, but not the key. This insight is often called

Kerckhoffs’s Principle, after the nineteenth-century Dutch military cryptographer Auguste
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Kerckhoffs, who wrote that a cryptosystem “should not require secrecy, and it should not

be a problem if it falls into enemy hands.” This was later reformulated by Claude Shannon

as Shannon’s maxim: “The enemy knows the system.”

This principle is practically important because, while it’s difficult to come up with an

entirely new cryptosystem; it’s relatively easy to generate a new key. We can change keys

on a regular basis, and abandon the use of old keys that have been compromised; it’s much

more difficult to do the same thing with an entire cryptosystem. Similarly, keys are much

smaller than entire systems, so it’s easier to communicate them and keep them secret.

So what are the requirements for a cryptosystem to be secure in this manner? When is

the key enough to provide security?

4.1 Perfect Secrecy

Definition 4.2. A cryptosystem has perfect secrecy if knowing the ciphertext conveys no

information about the plaintext, even given knowledge of the cryptosystem.

Mathematically, if M is the set of possible messages, and C is the set of possible cipher-

texts, a system has perfect secrecy if P (m|c) = P (m) for all m ∈M and c ∈ C.

Here P (m) is the probability of the m message being m, and P (m|c) is the probability

of the message being m given that you know the ciphertext is c. Thus a system has perfect

secrecy if knowing the ciphertext gives you no information about the message.

Recall that Bayes’s theorem says P (a|b)P (b) = P (b|a)P (a). Thus a message has perfect

secrecy if and only if P (c|m) = P (c) for all m ∈ M, c ∈ C. Thus we can also say a

cryptosystem has perfect secrecy if knowing the message gives no information about the

ciphertext.

Example 4.3. Suppose we have a cryptosystem with two keys k1, k2; three messages m1,m2,m3;

and three ciphertexts c1, c2, c3. Assume that P (m1) = P (m2) = 1/4 and P (m3) = 1/2. Fur-

ther, suppose we have an encryption function given by the following table:

m1 m2 m3

k1 c2 c1 c3

k2 c1 c3 c2

Let’s assume the keys are used with equal probability. Then we can compute the proba-

bility that the ciphertext is c2:

P (k1)P (m1) + P (k2)P (m3) =
1

2
· 1

4
+

1

2
· 1

2
=

3

8
.
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However, this system does not have perfect secrecy, since P (c1|m3) = 0, or alternatively,

since P (m2|c2) = 0.

Because the encryption function is one-to-one, we know that #C ≥ #M for any encryp-

tion system. (Every system we’ve studied has had #C = #M, since the plaintext is a string

of letters, and the ciphertext is an equal-length string of letters. But it’s easy enough to not

do this).

A system with perfect system has some other constraints.

Proposition 4.4. If a cryptosystem has perfect secrecy, then #K ≥ #M.

Proof. Fix some specific ciphertext c ∈ C with P (c) > 0. Recall that perfect secrecy means

that P (c|m) = P (c) for every m ∈M, so this means that P (c|m) > 0 for every m ∈M. (In

other words, if the ciphertext gives no information about the message, this means that any

possible ciphertext has to be possibly linked to any possible message).

Thus there is at least one key k such that e(k,m) = c. Further, by injectivity, this key

has to be different for each message: if e(k,m1) = c and e(k,m2) = c then m1 = m2. Thus

there is at least one key for each message, and thus #K ≥ #M.

Example 4.5. The Caesar cipher does not have perfect secrecy for messages of more than

one letter, since there are only 26 possible keys, and more than 26 possible messages.

The Vigenère and autokey ciphers do not have perfect secrecy for messages longer than

the keylength.

We’ve shown that for a cryptosystem with perfect secrecy #C ≥ #M and now #K ≥
#M. The most convenient possible world is when all three of these things are the same.

Theorem 4.6 (Shannon). Suppose a cryptosystem satisfies #K = #M = #C. Then the

system has perfect secrecy if and only if:

1. Each key k ∈ K is used with equal probability; and

2. For each m ∈M and c ∈ C there is exactly one k ∈ K with e(k,m) = c.

Proof. Suppose the cryptosystem has perfect secrecy. Let Sm,c = {k ∈ K : ek(m) = c}. To

prove (2) we just need to show that Sm,c contains exactly one element for each m and c.

By injectivity, we know that Sm1,c ∩ Sm2,c = ∅ if m1 6= m2—otherwise there would be

some key that encrypts both m1 and m2 to the same ciphertext c.

Further, Sm,c is non-empty for every pair m, c. Since the cryptosystem has perfect se-

curity, knowing the ciphertext gives no information about the plaintext—so knowing the
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ciphertext is c can’t rule out the fact that the plaintext is m. Thus every ciphertext must

be reachable by every plaintext; so for each pair m, c, there is a key k such that ek(m) = c.

Now fix some specific ciphertext c ∈ C. We know that for each m there is at least one

k ∈ Sm,c. But #M = #K by hypothesis, so there must be exactly one k for each m. Thus

Sm,c has exactly one element for each m.

Now we just want to prove (1), that each key is used with equal probability. But for any

k, c we can choose m = dk(c) and then because our encryption system has perfect secrecy,

we can compute :

P (m) = P (m|c) =
P (m, c)

P (c)
=

P (m, k)

P (c)
=

P (m)P (k)

P (c)

and canceling gives P (k) = P (c). Since this is true for every k and every c, we must have

P (k) and P (c) both constant; and in fact, P (k) = P (c) = 1
#C

.

Conversely, suppose our cryptosystem satisfies these conditions. Then given any m ∈
M, c ∈ C, there is exactly one k ∈ K with ek(m) = c.

Fix some ciphertext c. Then each plaintext corresponds to exactly one key; and each key

has the same probability; so each plaintext occurs with exactly the same probability. But

this is the definition of perfect secrecy.

Example 4.7 (The one-time pad). A one-time pad is a cryptosystem of the following form:

The message is a string of N letters. The key is a randomly generated string of N letters.

The ciphertext is obtained by adding each letter in the plaintext to the corresponding letter

of the key (mod 26). This is essentially a Vigenère cipher, with a key length equal to the

message length.

It’s clear that the one-time pad satisfied property (2) of theorem 4.6. As long as the keys

are generated uniformly at random, it also satisfies property (1), and this cryptosystem has

perfect secrecy.

Thus a properly-implemented one-time pad is mathematically perfectly secure. However,

it is rarely used becuase it is quite cumbersome, and we have many much less cumbersome

systems that are “good enough”.

Further, the proper implementation can be difficult; if your process for generating the

key is not perfectly uniformly random, then the cryptosystem is not perfectly secure, and it

is possible to break it with enough information.

Remark 4.8. The one-time pad is cumbersome, because they key has to be as large as the

message. But this is true for any cryptosystem with perfect secrecy, because we showed that
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#K ≥ #M. So any system with perfect secrecy is necessarily awkward, and we rarely use

them.

4.2 Entropy

Suppose a cipher doens’t have perfect secrecy. How much information do we actually need

to break it? Well, first we need to specify what we mean by “information”.

Definition 4.9. Let X be a random variable that takes on finitely many possible values

x1, . . . , xn with probabilities p1, . . . , pn. Then the entropy of X is given by

H(X) = H(p1, . . . , pn) = −
n∑

i=1

pi log2 pi

(adopting the convention that if p = 0 then p log2 p = 0).

Proposition 4.10 (Shannon). 1. H is continuous in each variable.

2. If Xn is a random variable uniformly distributed over n possibilities, then H(Xn) is

monotonically increasing as a function of n.

3. If X can be broken down into consecutive subchoices, then H(X) is a weighted sum of

H for the successive choices.

Further, any function with these three properties is a constant multiple of H.

Entropy measures the amount of information we get from a choice or evaluation of a

random variable.

Example 4.11. Supose X is a “random” variable that returns x1 with probability 1. Then

H(X) = −1 log2(1) = 0

because seeing the actual outcome gives no additional information over knowing the distri-

bution.

Example 4.12. Supose X is a uniform distribution over a set of size n. Then

H(X) = −
n∑

i=1

1

n
log2

1

n
=

n∑
i=1

log2(n)

n
= log2(n).

This makes sense—choosing uniformly from n things gives you about log2(n) bits of

information.

In particular, if X is a uniform distribution over the English alphabet, the entropy is

log2(26) ≈ 4.7.
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Fact 4.13. Let X be a random variable with n possible outcomes. Then

1. H(X) ≤ log2(n).

2. H(X) = log2(n) if and only if the distribution is uniform.

Thus entropy is maximized when the choice is maximally uncertain.

We said the entropy of a uniform distribution over the English alphabet is about 4.7 bits.

But in actual English, letters aren’t chosen at random! We can only really find the entropy

of written English experimentally, by testing large bodies of English.

If we simply look at the probability distribution over letters from a frequency chart, we

get H ≈ 4.132 per letter. The fact that this number is less than 4.7 reflects the fact that

not all letters are equally common.

However, English also doesn’t consist of random sequences of letters. Some bigrams

are more common that others. Taking bigram frequencies into account gives an entropy

estimate of approximately 3.56 per letter. Of course then we need to consider trigrams, and

quatragrams, and pentagrams, and in fact the entire infinite sequence; we experimentally

estimate that English has an entropy of about 1.5 bits per letter.

Thus written English is highly redundant: about 70% redundant. We can also say that

English has a redundancy of about 3.2 bits per letter. This doesn’t mean we can randomly

remove 70% of letters and still expect a readable message; it does mean that with a clever

algorithm, we can compress a message to 30% of its original bit count.

This sounds wasteful, but is a really useful property of language: if we needed to track

the difference between xkkyrosl and xkkyorsl carefully, reading would be quite difficult.

This also explains a semi-famous meme:

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr

the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer

be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it

wouthit a porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter

by istlef, but the wrod as a wlohe.

(The claim as stated isn’t quite true; it’s possible to scramble words enough to make

reading difficult, especially if you move the first and last letters. But this does show the

redundancy in written English, since we can still understand a pretty badly scrambled mes-

sage.)
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4.3 Unicity distance

So what does entropy tell us about the practical ability to decrypt a message? How can we

use this redundancy to understand the security of a cryptosystem?

We can view a cryptosystem as using the key to remove information from the plaintext

to give us the ciphertext. But the key can only remove as much information as it contains; if

the key doesn’t remove all the redundancy, there’s enough information in principle to recover

the message.

Definition 4.14. The unicity distance for a given language and cipher is the length of an

original ciphertext necessary to, on average, have enough information to break the cipher.

Example 4.15. CWU as a Caesar cipher can be “GAY” or “VPN”. Without more context

there’s no way of telling. In fact the Caesar cipher has unicity distance of 2; most messages

over 2 characters are breakable, so this is an exception.

Example 4.16. Suppose ABCDE is the ciphertext from a simple substitution cipher. It

can be any word with no repeated letters; it could be “water” or “slope” or “maths” or a

number of other things.

Example 4.17. Suppose the ciphertext is still “ABCDE”, but this time we think the text

was enciphered with a Vigenère cipher with a keyword of 5 letters. In this case the plaintext

can be literally anything.

So how do we find the unicity distance? How do we know how much ciphertext we need?

Proposition 4.18. The unicity distance of a language and encryption scheme is the number

of bits in the key devided by the redundancy of the language.

Proof Sketch. A message of length n and redundancy r bits has a total redundancy of nr

bits. Thus if a key has more than nr bits it can remove all the information, and if it has

fewer it cannot.

Example 4.19. A Caesar cipher has 25 possible keys, which is 4.64 bits. 4.64/3.2 ≈ 1.45,

so you need at least 1.45 characters to decrypt a message enciphered with a Caesar cipher.

A simple substitution cipher has 26! possible keys, which is about 288. Thus there are

88 bits worth of keys. 88/3.2 ≈ 27.5 so you need at least 28 letters to decrypt a message

enciphered with a simple substitution cipher.

A Vigenere cipher with an N -letter keyword has 26N possible keys, for log2(26N) =

N log2(26) ≈ N · 4.7 bits. Thus the unicity distance is N · 4.7/3.2 ≈ N · 1.47.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 44

http://jaydaigle.net/teaching/courses/2019-fall-401/


Jay Daigle Occidental College Math 401: Cryptology

Remark 4.20. Remember that these are average minimums. You don’t want to promise

anyone you can break a simple substitution cipher with thirty characters of ciphertext, even

though it’s more likely to be possible than not.

Example 4.21. Earlier we mentioned one-time pads. By definition, a one-time pad has a

key length equal to the message length. Suppose we have an N -letter message. Then like

the Vigenère cipher there are 26N possible keys, worth ≈ 4.7N bits. The unicity distance is

4.7N/3.2 ≈ 1.47N letters.

But since the message is of length N < 1.47N , it is below the unicity distance, and we

can’t decrypt it. This is exactly what you’d expect, since a one-time pad has perfect secrecy

and thus can’t be decrypted at all.

We can think of a one-time pad as putting n bits of information in the key, and then

using that key to transmit n bits of information. The key can completely conceal all the

information in the message, since the key contains as much information as the message. But

this means the key isn’t any easier to communicate than the message itself is.
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