
Jay Daigle Occidental College Math 401: Cryptology

10 Ring Learning with Errors Cryptography: A New

Hope

10.1 Rings of Polynomials

A ring is in essence a set in which we can do addition and multiplication, but not necessarily

division Formally:

Definition 10.1. A ring is a set R together with two operations + and ·, such that

1. R is an abelian group under the operation +, with identity 0;

2. Multiplication is commutative, and has identity element 1;

3. and we have the distributive law k(x+ y) = kx+ ky.

Example 10.2. 1. Every field is a ring.

2. The integers Z form a ring.

3. Z/mZ, the integers modulo m, form a ring for any m. (They form a field if and only

if m is prime).

4. The set of all m × n matrices does not form a ring under this definition, because I

required multiplication to be commutative.

5. The set of functions f : R → R is a ring under pointwise addition and pointwise

multiplication.

6. The set of polynomials in one variable with rational coefficients Q[x] form a ring.

7. In fact, if R is any ring, then the set of polynomials with coefficients in R forms a ring

R[x].

This last example is the one we’re most interested in. In particular we want to look at

one particular type of polynomial ring:

Definition 10.3. The ring of polynomials with integer coefficients is Z[x] = {a0 + a1x +

· · ·+ anx
n : ai ∈ Z, n ∈ N}.

The ring of polynomials with mod m coefficients is Z/mZ[x] = {a0 + a1x+ · · ·+ anx
n :

ai ∈ Z/mZ, n ∈ N}.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 91

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Example 10.4. Consider the ring Z/5Z[x]. Let f(x) = x2 + 3x + 1, g(x) = x3 + 2x2 + 4 ∈
Z/5Z[x]. Then we compute f(x) + g(x) = x3 + 3x2 + 3x and

f · g(x) = x5 + 3x4 + x3 + 2x4 + x3 + 2x2 + 4x2 + 2x+ 4

= x5 + 2x3 + x2 + 2x+ 4.

Even though our coefficients are computed mod m, this ring still has infinitely many

elements. We’d like to cut it down to finitely many elements so we can do cryptography

with it. When we cut the integers down from an infinite set to a finite set, we modded

out by an integer. To cut these polynomials down to a finite set, we need to mod out by a

polynomial.

Definition 10.5. Let R be a ring and r1, . . . , rn ∈ R. The ideal generated by ri, written

〈r1, . . . , rn〉, is the set of all linear combinations of the ri. That is,

〈r1, . . . , rn〉 = {r1s1 + r2s2 + · · ·+ rnsn : si ∈ R}.

In particular, if f ∈ Z/mZ[x] then 〈f〉 = {f(x)g(x) : g(x) ∈ Z/mZ[x]}.
If R is a ring and I is an ideal in R, and r, s ∈ R, we say r = s + I or r = s mod I

if r − s ∈ I. We write R/I for the set of equivalence classes of R modulo I. R/I is a ring

under the operations inherited from R.

Example 10.6. If R = Z and I = 〈m〉 then R/I = Z/mZ. This is the usual modular

arithmetic you’re already familiar with.

If R = Z[x] and I = 〈m〉 for m ∈ Z then R/I = Z/mZ[x].

Example 10.7. The example we’re most interested in is the case where R = Z/mZ[x] and

I = 〈xn + 1〉 for some n = 2k. (This polynomial is the 2nth cyclotomic polynomial Φ2n(x),

but we won’t need to worry about that broader context).

In R/I we have xn = −1+I, so any time we have an xn we can replace it with a −1. (And

similarly we can replace xn+1 with −x and xn+2 with −x2, and so on). Thus a complete set

of representatives for R/I = Z/mZ[x]/〈xn + 1〉 is {a0 + a1x+ · · ·+ an−1x
n−1 : ai ∈ Z/mZ}.

Note this definition is different from earlier; this n is fixed by our choice of I = 〈xn + 1〉.

Remark 10.8. We could also view this ring as Z[x]/〈m,xn + 1〉; it doesn’t matter what order

we do the modding in.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 92

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Example 10.9. Let R = Z/5Z[x]/〈x4 +1〉. Let f(x) = x2 +3x+1, g(x) = x3 +2x2 +4 ∈ R.

Then we compute f(x) + g(x) = x3 + 3x2 + 3x and

f · g(x) = x5 + 3x4 + x3 + 2x4 + x3 + 2x2 + 4x2 + 2x+ 4

= (−1)x+ 2x3 + x2 + 2x+ 4

= 2x3 + x2 + x+ 4.

10.2 Ring-LWE

Let f(x) = xn + 1 = Φ2n where n = 2k. (This guarantees among other things that f has no

rational roots). Let q be a large prime with q ≡ 1 mod 2n, and set Rq = Z/qZ[x]/〈f(x)〉 =

Z[x]/〈q, f(x)〉.
We want to be able to talk about small errors, which means we need some idea of the

“size” of a polynomial. There are a number of choices we could make here, but the simplest

is to look at the largest coefficient of the polynomial.

Definition 10.10. Let f(x) ∈ R and write f(x) = a0 + a1x + · · · + an−1x
n−1 where each

ai ∈
{
−(q−1)

2
, . . . ,−1, 0, 1, . . . , q−1

2

}
. That is, we choose each coefficient to be as close to zero

as possible.

We define the infinity norm of f to be ‖f‖∞ = max{|ai|}. Thus the norm is the magni-

tude of the largest-magnitude coefficient.

To set up a Ring Learning with Errors problem, we first need to specify a probability

distribution on polynomials that guarantees that the polynomials are “probably” “small”.

The simplest example of this is to pick some bound b, and then choose each coefficient

uniformly at random from the set {0, 1, . . . , b}. Then:

1. Let ai(x) be a set of random known polynomials in R.

2. Let ei be a set of random unknown polynomials that are small with respect to the

bound b.

3. Let s(x) be an unknown polynomial with ‖s‖∞ ≤ b.

4. Set bi(x) = (ai(x) · s(x)) + ei(x).

The Ring-LWE Decision Problem is, given a list of pairs (ai(x), bi(x)), to determine

whether the bi(x) were generated from the ai(x) by this process, or whether they were

independently randomly generated.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 93

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

The Ring-LWE Search Problem is, given a list of pairs (ai(x), bi(x)) generated by this

process, to determine s.

Theorem 10.11 (Lyubashevsky, Peikert, Regev). The Ring-LWE Search Problem is at least

as hard as the worst-case approximate shortest vector problem, even on a quantum computer.

This proof is done by turning the Ring-LWE question into a question about lattices,

much as we did to knapsack encrpytion in week 9. In fact, these polynomial rings naturally

form mod-q lattices of dimension n, generated by the elements 1, x, x2, . . . , xn−1.

The Ring-LWE problem fundamentally involves the introduction of error terms, and

thus has fundamental randomness. Thus it’s never possible to solve a problem with 100%

certainty; however, we can force the chances of error to be as low as we wish by careful choice

of parameters.

10.3 Rounding and Masking

There are a number of different variations and implementations of Ring-LWE that have been

proposed; Google has been using an algorithm called New Hope for the past year. Here we

will present an algorithm from [Singh(2015)].

We need a way to convert ring elements into binary strings (and vice versa), that is robust

to a certain amount of error. We do this with a rounding procedure.

The basic idea is this: we will divide Z/qZ up into four quadrants. We label:

I0 = Z/qZ ∩ [0, q/4)

I ′1 = Z/qZ ∩ [q/4, q/2)

I ′0 = Z/qZ ∩ [q/2, 3q/4)

I1 = Z/qZ ∩ [3q/4, q)

Every integer in Z/qZ will be in exactly one of these intervals.

Remark 10.12. These sets do not all have the same number of elements: three of them will

contain (q − 1)/4 elements each, and the remaining set will contain (q + 3)/4 elements. In

order to maintain real-world security, this bias needs to be eliminated, so some of the edge-

case numbers are moved over with 50% probability to avoid bias. We’re going to ignore this

subtlety for now.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 94

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Now given an v ∈ Z/qZ, we define the modular rounding function to be

bve2 =

{
0 v ∈ I0 ∪ I1 0 ≤ v < q/4 or 3q/4 ≤ v < 0

1 v ∈ I ′0 ∪ I ′1 q/4 ≤ v < 3q/4

Modular rounding essentially tells us whether v is closer to 0 or to q/2, mod q. We will use

this function to convert elements of Z/qZ into individual bits, and thus to convert elements

of R = Z/mZ[x]/〈xn + 1〉 into strings of n bits.

However, we expect to get our elements transmitted with some error; we need some

correction (or “reconciliation”) method to make sure that we are getting the same bit string

that our partner is.

We define the cross rounding function to be

〈v〉2 =

{
0 v ∈ I0 ∪ I ′0 0 ≤ v < q/4 or q/2 ≤ v < 3q/4

1 v ∈ I1 ∪ I ′1 q/4 ≤ v < q/2 or 3q/4 ≤ v < q

This cross rounding function allows us to correctly compute bae2 from a transmission of

w = v + e for small error e. In particular, we will assume the error is of size ≤ q/8. We set

E = [−q/8, q/8) ∩ Z, and we define

rec(w, b) =

{
0 w ∈ Ib + E mod q

1 otherwise

Proposition 10.13. If w = v + e mod q for v ∈ Z/qZ, e ∈ E, then rec(w, 〈v〉2) = bve2.

The basic idea here is that we know v with some error, and we want to correctly determine

bve2. If v is close to q/4 or 3q/4, the addition of the error term might push it to the other

side and cause bv + ee2 6= bve2. But it won’t push it too far, so we know that if it changes

the rounding value, it will also change the cross-rounding value.

So the reconciliation function tells us not to flip the value of bv + ee2 if we still have the

correct cross-rounding, and to flip the value if we do not.

Proof. Suppose w = 〈v〉2 = 0. Then v ∈ I0 ∪ I ′0 by definition, and we compute I0 + E =

[−q/8, 3q/8).

If v ∈ I0, then we have 0 ≤ v < q/4 and −q/8 ≤ e < q/8, so −q/8 ≤ v + e = w < 3q/8

and w ∈ Ib + E, so rec(w, b) = 0 = bve2. Conversely, if v ∈ I ′0 then we have q/2 ≤ v < 3q/4

so 3q/8 ≤ v + e = w < 7q/8 and rec(w, b) = 1 = bve2.
If v ∈ I1 we can confirm rec(w, b) = bve2 by the same argument.

Thus if you have access to v + e and to 〈v〉2, then you can compute bve2, even if you

don’t know v or e.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 95

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

10.4 Ring-LWE Diffie-Hellman

Algorithm 10.1. To generate a key:

A trusted party chooses parameters n = 2k, q an odd prime with q ≡ 1 mod 2n, a ∈
R = Z/qZ[x]/〈xn + 1〉, and a probability distribution over R that produces small elements.

1. Alice generates two random elements s0, s1 ∈ R. This is her private key.

2. Alice computes b = s1 · a+ s0. This is her public key.

When Bob receives Alices public key, he generates a shared secret via encapsulation.

1. Bob generates three random elements e0, e1, e2 ∈ R.

2. Bob computes u = e0 · a+ e1, v = e0 · b+ e2 ∈ R.

3. Bob computes µ = bve2 ∈ {0, 1}n. Recall each element of Z/mZ gives us one bit, so

an element of R gives us n bits. This is the shared secret key.

4. Bob computes 〈v〉2 ∈ {0, 1}n.

5. Bob transmits the ciphertext c = (u, 〈v〉2) ∈ R× {0, 1}n.

When Alice receives a ciphertext (u, v′), she recovers the shared secret via decapsulation.

1. Alice computes w = u · s1 using her private s1.

2. Then Alice computes µ = rec(w, v′).

Proposition 10.14. Alice and Bob recover the same secret bitstring in Algorithm 10.1. That

is, µ = rec(u · s1, 〈v〉2).

Proof. Alice computes w = u · s1 = e0 · a · s1 + e1 · s1, and Bob has computed

v = e0 · b+ e2 = e0(s1 · a+ s0) + e2 = e0 · a · s1 + e0 · s0 + e2.

Thus we have w = v + (e0 · s0 − e1 · s1 + e2). Since all five of these numbers are small,

proposition 10.13 tells us that rec(w, 〈v〉2) = bve2.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 96

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

What would Eve have to do in order to intercept the key? Eve gets to see bs1 ·a+ s0 and

u = e0 · a + e1, and needs to deduce something close to e0 · a · s1. (Eve has also seen 〈v〉2
but after normalizing the rounding properly this conveys exactly zero information about the

shared secret).

Thus Eve would need to be able to find s1 and e0, which would roughly involve solving

two distinct Ring-LWE problems.

Example 10.15. We choose parameters n = 4, q = 17, a = 3x3 + 7x2 + 12x.

Alice generates two random small elements s0 = x3 + x + 1 and s1 = x2 + 3x + 2. She

computes

b = s1 · a+ s0 = (x2 + 3x+ 2)(3x3 + 7x2 + 12x) + x3 + x+ 1

= 3x5 + 7x4 + 12x3 + 9x4 + 21x3 + 36x2 + 6x3 + 14x2 + 24x+ x3 + x+ 1

= −3x− 7 + 12x3 − 9 + 4x3 + 2x2 + 6x3 + 14x2 + 7x+ x3 + x+ 1

= 6x3 + 16x2 + 5x+ 2.

She transmits this b = 6x3 + 16x2 + 5x+ 2 to Bob.

When Bob receives this b, he generates e0 = x3−x−1, e1 = x2+2x−2, e2 = −x3+2x2+1.

He computes

u = e0a+ e1 = (x3 − x− 1)(3x3 + 7x2 + 12x) + x2 + 2x− 2

= 3x6 + 7x5 + 12x4 − 3x4 − 7x3 − 12x2 − 3x3 − 7x2 − 12x+ x2 + 2x− 2

= −3x2 − 7x− 12 + 3− 7x3 − 12x2 − 3x3 − 7x2 − 12x+ x2 + 2x− 2

= 7x3 − 4x2 + 0x+ 6

v = e0 · b+ e2 = (x3 − x− 1)(6x3 + 16x2 + 5x+ 2)− x3 + 2x2 + 1

= 6x6 + 16x5 + 5x4 + 2x3 − 6x4 − 16x3 − 5x2 − 2x− 6x3 − 16x2 − 5x− 2− x3 + 2x2 + 1

= −6x2 + x− 5 + 2x3 + 6 + x3 − 5x2 − 2x− 6x3 + x2 − 5x− 2− x3 + 2x2 + 1

= −4x3 − 8x2 − 6x.

To compute µ = bve2 we observe that I0 = [0, 17/4)∩Z/qZ = {0, 1, 2, 3, 4}. Similarly, we

have I ′1 = {5, 6, 7, 8}, I ′0 = {9, 10, 11, 12}, I1 = {13, 14, 15, 16}. So µ = b−4x3 − 8x2 − 6xe2 =

b13x3 + 9x2 + 11x+ 0e2 = (0, 1, 1, 0).

We also compute 〈v〉2 = 〈13x3 + 9x2 + 11x+ 0〉2 = (1, 0, 0, 0).

Finally, Bob sends Alice the message (u, 〈v〉2 = (7x3 − 4x2 + 6, (1, 0, 0, 0)). First Alice

http://jaydaigle.net/teaching/courses/2019-fall-401/ 97

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

computes

w = u · s1 = (7x3 − 4x2 + 6)(x2 + 3x+ 2)

= 7x5 + 21x4 + 14x3 − 4x4 − 12x3 − 8x2 + 6x2 + 18x+ 12

= −7x− 4− 3x3 + 4 + 5x3 + 9x2 + 6x2 + x− 5

= 2x3 + 15x2 + 11x+ 12.

Now she wants to compute rec(w, 〈v〉2) = rec(2x3 + 15x2 + 11x+ 12, (1, 0, 0, 0)). We see that

I0 + E = [−q/8, 3q/8) = [−2, 6] = [15, 16] ∪ [0, 6] and I1 + E = [5q/8, 9q/8) = [11, 19] =

[11, 16] ∪ [0, 2]. Then we have

rec(2, 1) = 0

rec(15, 0) = 0

rec(11, 0) = 1

rec(12, 0) = 1.

We find that this doesn’t work! Alice doesn’t wind up with the same secret Bob had

had. Why is this?

10.5 Algorithm Analysis

Recall that this encryption algorithm is probabilistic—it works on the assumption that the

error terms don’t get too big relative to q, and in fact stay smaller than q/8. But since we

took q = 17 we get q/8 ≈ 2, and it’s very easy for the error term to blow up larger than this.

In fact we can compute the error term e0s0+e2−e1s1 = 5−6x2−6x3 has three coefficients

that are larger than 2. In contrast, the coefficient of x is zero, so there’s no error in that

term. We can in fact see that the x coordinate of w is the same as the x coefficient of v, as

you’d expect. And the bit corresponding to the x coefficient is in fact the only one that we

got right.

You might think this probabilistic failure is a problem. And it can be; but under real-

world parameter choices it really isn’t. Suggested parameters are n = 512 and q = 25601,

which leads to a 7680-bit public key; or n = 1024, q = 40961, and a 16384-bit public key. In

the first case, the chances of a failure like this are 2−75.72, and in the latter the probability

of this failure are 2−96.11.

So what are the advantages of this setup? There are a few.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 98

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

First, even a quantum computer will find decrypting this as hard as solving the shortest-

vector problem, which is NP-complete. Thus this is as secure as we could reasonably expect

any sort of public-key cryptography to be.

Second, this algorithm is quite fast. The public keys and the transmitted messages are

quite large, but there are very few calculations involved in the key exchange: encapsulation

requires generating three random elements, doing two ring additions, two ring multiplica-

tions, and then two rounding steps. And decapsulation involves one ring multiplication and

one rounding step. This is not very many operations.

On top of this, ring multiplication is very efficient. (I realize it might not feel efficient

while you’re doing it!) There is in fact a version of the Learning with Errors cryptosystem

that doesn’t involve ring operations, but it was discarded as impractical for being too slow.

In contrast, we can scale ring multiplication very efficiently using a technique called the

Fast Fourier Transform. This is so efficient that for realistic key sizes, a quarter of the key

exchange algorithm runtime is actually taken up just by generating the random numbers—

the arithmetic is quite fast. (For n = 1024, [Singh(2015)] measured key generation at 112

microseconds, encapsulation at 183 microseconds, and decapsulation at 45 microseconds on

a 2GHz i5.)

http://jaydaigle.net/teaching/courses/2019-fall-401/ 99

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

References

[Singh(2015)] Vikram Singh. A practical key exchange for the internet using lattice cryptog-

raphy. Cryptology ePrint Archive, Report 2015/138, 2015. http://eprint.iacr.org/

2015/138.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 100

http://eprint.iacr.org/2015/138
http://eprint.iacr.org/2015/138
http://jaydaigle.net/teaching/courses/2019-fall-401/

	Ring Learning with Errors Cryptography: A New Hope
	Rings of Polynomials
	Ring-LWE
	Rounding and Masking
	Ring-LWE Diffie-Hellman
	Algorithm Analysis

