Lattice Cryptography

Jay Daigle

Occidental College

October 31, 2019

Jay Daigle (Occidental College)

Lattice Cryptography

October 31, 2019 1 / 10

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Jay Daigle (Occidental College)

Lattice Cryptography

October 31, 2019 2 / 10

Definition

A ring is a set R together with two operations + and \cdot , such that

- **Q** R is an abelian group under the operation +, with identity 0;
- **2** Multiplication is commutative, and has identity element 1;
- **3** and we have the distributive law k(x + y) = kx + ky.

Definition

A ring is a set R together with two operations + and \cdot , such that

- **Q** R is an abelian group under the operation +, with identity 0;
- 2 Multiplication is commutative, and has identity element 1;
- **3** and we have the distributive law k(x + y) = kx + ky.

Definition

The ring of polynomials with integer coefficients is $\mathbb{Z}[x] = \{a_0 + a_1x + \dots + a_nx^n : a_i \in \mathbb{Z}, n \in \mathbb{N}\}.$ The ring of polynomials with mod *m* coefficients is $\mathbb{Z}/m\mathbb{Z}[x] = \{a_0 + a_1x + \dots + a_nx^n : a_i \in \mathbb{Z}/m\mathbb{Z}, n \in \mathbb{N}\}.$

Jay Daigle (Occidental College)

・ロト ・ 一下 ・ ト ・ ト ・ ト

Ideals

Definition

Let R be a ring and $r_1, \ldots, r_n \in R$. The ideal generated by r_i , written $\langle r_1, \ldots, r_n \rangle$, is the set of all linear combinations of the r_i . That is,

$$\langle r_1,\ldots,r_n\rangle=\{r_1s_1+r_2s_2+\cdots+r_ns_n:s_i\in R\}.$$

In particular, if $f \in \mathbb{Z}/m\mathbb{Z}[x]$ then $\langle f \rangle = \{f(x)g(x) : g(x) \in \mathbb{Z}/m\mathbb{Z}[x]\}$. If R is a ring and I is an ideal in R, and $r, s \in R$, we say r = s + I or r = smod I if $r - s \in I$. We write R/I for the set of equivalence classes of Rmodulo I. R/I is a ring under the operations inherited from R.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideals

Definition

Let R be a ring and $r_1, \ldots, r_n \in R$. The ideal generated by r_i , written $\langle r_1, \ldots, r_n \rangle$, is the set of all linear combinations of the r_i . That is,

$$\langle r_1,\ldots,r_n\rangle=\{r_1s_1+r_2s_2+\cdots+r_ns_n:s_i\in R\}.$$

In particular, if $f \in \mathbb{Z}/m\mathbb{Z}[x]$ then $\langle f \rangle = \{f(x)g(x) : g(x) \in \mathbb{Z}/m\mathbb{Z}[x]\}$. If R is a ring and I is an ideal in R, and $r, s \in R$, we say r = s + I or r = smod I if $r - s \in I$. We write R/I for the set of equivalence classes of Rmodulo I. R/I is a ring under the operations inherited from R.

Example

Take
$$R = \mathbb{Z}/m\mathbb{Z}[x]$$
 and $I = \langle x^n + 1 \rangle$ for some $n = 2^k$.
(This polynomial is the 2*nth cyclotomic polynomial* $\Phi_{2n}(x)$.)

Jay Daigle (Occidental College)

э

< ロ > < 同 > < 回 > < 回 >

Ring-LWE

Jay Daigle (Occidental College)

Lattice Cryptography

October 31, 2019 4 / 10

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

Definition

Let $f(x) \in R$ and write $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$ where each $a_i \in \left\{\frac{-(q-1)}{2}, \dots, -1, 0, 1, \dots, \frac{q-1}{2}\right\}$. That is, we choose each coefficient to be as close to zero as possible.

Definition

Let $f(x) \in R$ and write $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$ where each $a_i \in \left\{\frac{-(q-1)}{2}, \dots, -1, 0, 1, \dots, \frac{q-1}{2}\right\}$. That is, we choose each coefficient to be as close to zero as possible. We define the infinity norm of f to be $||f||_{\infty} = \max\{|a_i|\}$. Thus the norm is the magnitude of the largest-magnitude coefficient.

Jay Daigle (Occidental College)

Lattice Cryptography

October 31, 2019 5 / 10

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let $a_i(x)$ be a set of random known polynomials in R.

- 3

イロト イボト イヨト イヨト

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.
- So Let s(x) be an unknown polynomial with $||s||_{\infty} \leq b$.

イロト イポト イヨト イヨト 三日

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.
- So Let s(x) be an unknown polynomial with $||s||_{\infty} \leq b$.
- Set $b_i(x) = (a_i(x) \cdot s(x)) + e_i(x)$.

イロト イポト イヨト イヨト 三日

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.
- So Let s(x) be an unknown polynomial with $||s||_{\infty} \leq b$.

• Set
$$b_i(x) = (a_i(x) \cdot s(x)) + e_i(x)$$
.

The *Ring-LWE Decision Problem*: given list $\{(a_i(x), b_i(x))\}$, determine whether the $b_i(x)$ were generated randomly, or by this process from the $a_i(x)$.

イロト 不得 トイヨト イヨト 二日

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.
- So Let s(x) be an unknown polynomial with $||s||_{\infty} \leq b$.

• Set
$$b_i(x) = (a_i(x) \cdot s(x)) + e_i(x)$$
.

The *Ring-LWE Decision Problem*: given list $\{(a_i(x), b_i(x))\}$, determine whether the $b_i(x)$ were generated randomly, or by this process from the $a_i(x)$.

The *Ring-LWE Search Problem*: given a list of pairs $(a_i(x), b_i(x))$ generated by this process, determine *s*.

イロト 不得 トイヨト イヨト 二日

- Let $a_i(x)$ be a set of random known polynomials in R.
- 2 Let e_i be a set of random unknown polynomials that are small with respect to the bound b.
- So Let s(x) be an unknown polynomial with $||s||_{\infty} \leq b$.

• Set
$$b_i(x) = (a_i(x) \cdot s(x)) + e_i(x)$$
.

The *Ring-LWE Decision Problem*: given list $\{(a_i(x), b_i(x))\}$, determine whether the $b_i(x)$ were generated randomly, or by this process from the $a_i(x)$.

The *Ring-LWE Search Problem*: given a list of pairs $(a_i(x), b_i(x))$ generated by this process, determine *s*.

Theorem (Lyubashevsky, Peikert, Regev)

The Ring-LWE Search Problem is at least as hard as the worst-case approximate shortest vector problem, even on a quantum computer.

Jay Daigle (Occidental College)

イロト 人間ト イヨト イヨト

◆□▶ ◆舂▶ ◆産▶ ◆産▶ ● 産

Jay Daigle (Occidental College)

- 2

$$egin{aligned} &I_0 = \mathbb{Z}/q\mathbb{Z} \cap [0,q/4) \ &I_1' = \mathbb{Z}/q\mathbb{Z} \cap [q/4,q/2) \ &I_0' = \mathbb{Z}/q\mathbb{Z} \cap [q/2,3q/4) \ &I_1 = \mathbb{Z}/q\mathbb{Z} \cap [3q/4,q) \end{aligned}$$

- 2

$$egin{aligned} &I_0 = \mathbb{Z}/q\mathbb{Z} \cap [0,q/4) \ &I_1' = \mathbb{Z}/q\mathbb{Z} \cap [q/4,q/2) \ &I_0' = \mathbb{Z}/q\mathbb{Z} \cap [q/2,3q/4) \ &I_1 = \mathbb{Z}/q\mathbb{Z} \cap [3q/4,q) \end{aligned}$$

$$\lfloor v \rceil_2 = \begin{cases} 0 & v \in I_0 \cup I_1 & 0 \le v < q/4 \text{ or } 3q/4 \le v < 0\\ 1 & v \in I_0' \cup I_1' & q/4 \le v < 3q/4 \end{cases}$$

Jay Daigle (Occidental College)

- 2

$$egin{aligned} &I_0 = \mathbb{Z}/q\mathbb{Z} \cap [0,q/4) \ &I_1' = \mathbb{Z}/q\mathbb{Z} \cap [q/4,q/2) \ &I_0' = \mathbb{Z}/q\mathbb{Z} \cap [q/2,3q/4) \ &I_1 = \mathbb{Z}/q\mathbb{Z} \cap [3q/4,q) \end{aligned}$$

$$\lfloor v \rceil_2 = \begin{cases} 0 & v \in I_0 \cup I_1 & 0 \le v < q/4 \text{ or } 3q/4 \le v < 0\\ 1 & v \in I'_0 \cup I'_1 & q/4 \le v < 3q/4 \end{cases}$$

$$\langle v \rangle_2 = \begin{cases} 0 & v \in I_0 \cup I'_0 & 0 \le v < q/4 \text{ or } q/2 \le v < 3q/4\\ 1 & v \in I_1 \cup I'_1 & q/4 \le v < q/2 \text{ or } 3q/4 \le v < q \end{cases}$$

Jay Daigle (Occidental College)

- 2

$$egin{aligned} &I_0 = \mathbb{Z}/q\mathbb{Z} \cap [0,q/4)\ &I_1' = \mathbb{Z}/q\mathbb{Z} \cap [q/4,q/2)\ &I_0' = \mathbb{Z}/q\mathbb{Z} \cap [q/2,3q/4)\ &I_1 = \mathbb{Z}/q\mathbb{Z} \cap [3q/4,q) \end{aligned}$$

$$\lfloor v \rceil_2 = \begin{cases} 0 & v \in I_0 \cup I_1 & 0 \le v < q/4 \text{ or } 3q/4 \le v < 0\\ 1 & v \in I'_0 \cup I'_1 & q/4 \le v < 3q/4 \end{cases}$$

$$\langle v \rangle_2 = \begin{cases} 0 & v \in I_0 \cup I'_0 & 0 \le v < q/4 \text{ or } q/2 \le v < 3q/4\\ 1 & v \in I_1 \cup I'_1 & q/4 \le v < q/2 \text{ or } 3q/4 \le v < q \end{cases}$$

$$\operatorname{rec}(w, b) = \begin{cases} 0 & w \in I_b + E \mod q \\ 1 & \text{otherwise} \end{cases}$$

Jay Daigle (Occidental College)

Key Generation: Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$, $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n + 1 \rangle$, and a probability distribution over R.

イロト イポト イヨト イヨト 三日

Key Generation: Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$, $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n + 1 \rangle$, and a probability distribution over R.

• Private key: Alice generates two random elements $s_0, s_1 \in R$.

イロト 不得 トイヨト イヨト 二日

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n+1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

イロト イポト イヨト イヨト 三日

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n+1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

1 Bob generates three random elements $e_0, e_1, e_2 \in R$.

イロト イポト イヨト イヨト 三日

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n + 1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **1** Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.

イロト 不得 トイヨト イヨト 二日

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n+1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **1** Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.
- **③** Shared secret: Bob computes $\mu = \lfloor v \rceil_2 \in \{0, 1\}^n$. This gives *n* bits.

イロト 不得 トイヨト イヨト 二日

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n + 1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **1** Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.
- **③** Shared secret: Bob computes $\mu = |v|_2 \in \{0, 1\}^n$. This gives *n* bits.
- Bob computes $\langle v \rangle_2 \in \{0,1\}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n + 1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **1** Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.
- **③** Shared secret: Bob computes $\mu = |v|_2 \in \{0, 1\}^n$. This gives *n* bits.
- Bob computes $\langle v \rangle_2 \in \{0,1\}^n$.
- **3** Bob transmits the ciphertext $c = (u, \langle v \rangle_2) \in R \times \{0, 1\}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n+1 \rangle$, and a probability distribution over R.

- **1** Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **1** Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.
- **③** Shared secret: Bob computes $\mu = \lfloor v \rfloor_2 \in \{0, 1\}^n$. This gives *n* bits.
- Bob computes $\langle v \rangle_2 \in \{0,1\}^n$.
- **5** Bob transmits the ciphertext $c = (u, \langle v \rangle_2) \in R \times \{0, 1\}^n$.

Decapsulation:

• Alice computes $w = u \cdot s_1$ using her private s_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Key Generation:

Parameters $n = 2^k$, q an odd prime with $q \equiv 1 \mod 2n$,

 $a \in R = \mathbb{Z}/q\mathbb{Z}[x]/\langle x^n+1
angle$, and a probability distribution over R.

- **(**) Private key: Alice generates two random elements $s_0, s_1 \in R$.
- **2** Public key: Alice computes $b = s_1 \cdot a + s_0$.

Encapsulation:

- **(**) Bob generates three random elements $e_0, e_1, e_2 \in R$.
- 3 Bob computes $u = e_0 \cdot a + e_1, v = e_0 \cdot b + e_2 \in R$.
- **③** Shared secret: Bob computes $\mu = \lfloor v \rfloor_2 \in \{0, 1\}^n$. This gives *n* bits.
- Bob computes $\langle v \rangle_2 \in \{0,1\}^n$.
- **5** Bob transmits the ciphertext $c = (u, \langle v \rangle_2) \in R \times \{0, 1\}^n$.

Decapsulation:

- Alice computes $w = u \cdot s_1$ using her private s_1 .
- 2 Then Alice computes $\mu = \operatorname{rec}(w, v')$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$egin{aligned} &I_0 = \mathbb{Z}/q\mathbb{Z} \cap [0,q/4) \ &I_1' = \mathbb{Z}/q\mathbb{Z} \cap [q/4,q/2) \ &I_0' = \mathbb{Z}/q\mathbb{Z} \cap [q/2,3q/4) \ &I_1 = \mathbb{Z}/q\mathbb{Z} \cap [3q/4,q) \end{aligned}$$

$$\lfloor v \rfloor_{2} = \begin{cases} 0 & v \in I_{0} \cup I_{1} & 0 \leq v < q/4 \text{ or } 3q/4 \leq v < 0\\ 1 & v \in I_{0}' \cup I_{1}' & q/4 \leq v < 3q/4 \end{cases}$$

$$\langle v \rangle_{2} = \begin{cases} 0 & v \in I_{0} \cup I_{0}' & 0 \leq v < q/4 \text{ or } q/2 \leq v < 3q/4\\ 1 & v \in I_{1} \cup I_{1}' & q/4 \leq v < q/2 \text{ or } 3q/4 \leq v < q \end{cases}$$

$$\operatorname{rec}(w, b) = \begin{cases} 0 & w \in I_{b} + E \mod q\\ 1 & \text{otherwise} \end{cases}$$

Jay Daigle (Occidental College)

October 31, 2019 9 / 10

æ

Jay Daigle (Occidental College)

Lattice Cryptography

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの October 31, 2019

10 / 10