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Rings of Polynomials

Definition

A ring is a set R together with two operations + and ·, such that

1 R is an abelian group under the operation +, with identity 0;

2 Multiplication is commutative, and has identity element 1;

3 and we have the distributive law k(x + y) = kx + ky .

Definition

The ring of polynomials with integer coefficients is
Z[x ] = {a0 + a1x + · · ·+ anx

n : ai ∈ Z, n ∈ N}.
The ring of polynomials with mod m coefficients is
Z/mZ[x ] = {a0 + a1x + · · ·+ anx

n : ai ∈ Z/mZ, n ∈ N}.
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Rings of Polynomials

Ideals

Definition

Let R be a ring and r1, . . . , rn ∈ R. The ideal generated by ri , written
〈r1, . . . , rn〉, is the set of all linear combinations of the ri . That is,

〈r1, . . . , rn〉 = {r1s1 + r2s2 + · · ·+ rnsn : si ∈ R}.

In particular, if f ∈ Z/mZ[x ] then 〈f 〉 = {f (x)g(x) : g(x) ∈ Z/mZ[x ]}.
If R is a ring and I is an ideal in R, and r , s ∈ R, we say r = s + I or r = s
mod I if r − s ∈ I . We write R/I for the set of equivalence classes of R
modulo I . R/I is a ring under the operations inherited from R.

Example

TakeR = Z/mZ[x ] and I = 〈xn + 1〉 for some n = 2k .
(This polynomial is the 2nth cyclotomic polynomial Φ2n(x).)
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Ring-LWE

Definition

Let f (x) ∈ R and write f (x) = a0 + a1x + · · ·+ an−1x
n−1 where each

ai ∈
{
−(q−1)

2 , . . . ,−1, 0, 1, . . . , q−12

}
. That is, we choose each coefficient

to be as close to zero as possible.
We define the infinity norm of f to be ‖f ‖∞ = max{|ai |}. Thus the norm
is the magnitude of the largest-magnitude coefficient.
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Ring-LWE

Ring Learning with Errors

1 Let ai (x) be a set of random known polynomials in R.

2 Let ei be a set of random unknown polynomials that are small with
respect to the bound b.

3 Let s(x) be an unknown polynomial with ‖s‖∞ ≤ b.

4 Set bi (x) = (ai (x) · s(x)) + ei (x).

The Ring-LWE Decision Problem: given list {(ai (x), bi (x))}, determine
whether the bi (x) were generated randomly, or by this process from the
ai (x).
The Ring-LWE Search Problem: given a list of pairs (ai (x), bi (x))
generated by this process, determine s.

Theorem (Lyubashevsky, Peikert, Regev)

The Ring-LWE Search Problem is at least as hard as the worst-case
approximate shortest vector problem, even on a quantum computer.
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A New Hope
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A New Hope

Rounding and Masking

I0 = Z/qZ ∩ [0, q/4)

I ′1 = Z/qZ ∩ [q/4, q/2)

I ′0 = Z/qZ ∩ [q/2, 3q/4)

I1 = Z/qZ ∩ [3q/4, q)

bve2 =

{
0 v ∈ I0 ∪ I1 0 ≤ v < q/4 or 3q/4 ≤ v < 0
1 v ∈ I ′0 ∪ I ′1 q/4 ≤ v < 3q/4

〈v〉2 =

{
0 v ∈ I0 ∪ I ′0 0 ≤ v < q/4 or q/2 ≤ v < 3q/4
1 v ∈ I1 ∪ I ′1 q/4 ≤ v < q/2 or 3q/4 ≤ v < q

rec(w , b) =

{
0 w ∈ Ib + E mod q
1 otherwise
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A New Hope

Ring-LWE Diffie-Hellman

Key Generation:
Parameters n = 2k , q an odd prime with q ≡ 1 mod 2n,
a ∈ R = Z/qZ[x ]/〈xn + 1〉, and a probability distribution over R.

1 Private key: Alice generates two random elements s0, s1 ∈ R.

2 Public key: Alice computes b = s1 · a + s0.

Encapsulation:

1 Bob generates three random elements e0, e1, e2 ∈ R.

2 Bob computes u = e0 · a + e1, v = e0 · b + e2 ∈ R.

3 Shared secret: Bob computes µ = bve2 ∈ {0, 1}n. This gives n bits.

4 Bob computes 〈v〉2 ∈ {0, 1}n.

5 Bob transmits the ciphertext c = (u, 〈v〉2) ∈ R × {0, 1}n.

Decapsulation:

1 Alice computes w = u · s1 using her private s1.

2 Then Alice computes µ = rec(w , v ′).
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2 Bob computes u = e0 · a + e1, v = e0 · b + e2 ∈ R.

3 Shared secret: Bob computes µ = bve2 ∈ {0, 1}n. This gives n bits.

4 Bob computes 〈v〉2 ∈ {0, 1}n.

5 Bob transmits the ciphertext c = (u, 〈v〉2) ∈ R × {0, 1}n.

Decapsulation:

1 Alice computes w = u · s1 using her private s1.

2 Then Alice computes µ = rec(w , v ′).
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A New Hope

Rounding and Masking

I0 = Z/qZ ∩ [0, q/4)

I ′1 = Z/qZ ∩ [q/4, q/2)

I ′0 = Z/qZ ∩ [q/2, 3q/4)

I1 = Z/qZ ∩ [3q/4, q)

bve2 =

{
0 v ∈ I0 ∪ I1 0 ≤ v < q/4 or 3q/4 ≤ v < 0
1 v ∈ I ′0 ∪ I ′1 q/4 ≤ v < 3q/4

〈v〉2 =

{
0 v ∈ I0 ∪ I ′0 0 ≤ v < q/4 or q/2 ≤ v < 3q/4
1 v ∈ I1 ∪ I ′1 q/4 ≤ v < q/2 or 3q/4 ≤ v < q

rec(w , b) =

{
0 w ∈ Ib + E mod q
1 otherwise
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