
Jay Daigle Occidental College Math 401: Cryptology

6 Public Key Cryptography

Last week in section 5 we discussed a public key-exchange algorithm, in which two parties

can securely exchange an encryption key over an insecure connection, so that they have

access to the same key but an evesdropper does not.

This week we will study an even more significant advance: the ability to do encryption

without a shared secret key at all.

A public-key cryptosystem requires the generation of two paired keys: the private key

and the public key. Alice generates a public-private key pair (kpub, kpriv) and publishes kpub.

When Bob wants to send a message to Alice, he encrypts it with kpub and transmits it; it

can only be decrypted with kpriv, which only Alice has access to.

If Alice wants to send a message to Bob, she needs him to generate his own keypair

and publish his own public key. This leads to the practice among many seriously security-

minded internet users of listing a public key on their website for authentication and encrypted

communications.

6.1 The order of an integer

We first need to recall and extend a couple of last week’s number theory results about

primitive roots and exponentiation in modular arithmetic.

Theorem 6.1 (Fermat’s Little Theorem). Let p be a prime. If gcd(a, p) = 1, then ap−1 ≡ 1

mod p.

Sometimes, we instead say that ap ≡ a mod p. These two statements are equivalent.

Remark 6.2. This theorem was first proven by Leonhard Euler.

Definition 6.3. Let m be a positive integer. We define the Euler totient function φ(m) to

be the number of integers between 0 and m that are relatively prime to m.

There is a straightforward way to compute φ(m), but it’s a bit too complicated to explain

here. We will state the limited result that if p, q are primes, then φ(p) = p− 1 and φ(pq) =

(p− 1)(q − 1), which we will need.

Theorem 6.4 (Euler’s Theorem). If a,m are natural numbers and gcd(a, n) = 1, then

aφ(m) ≡ 1 mod m.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 55

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Example 6.5. Let p = 7 and q = 11. We can see that, for instance,

36 = 33 · 33 ≡ (−1)(−1) ≡ 1 mod 7

310 = (32)5 ≡ (−2)5 ≡ −32 ≡ 1 mod 11

360 = (34)15 ≡ 415 ≡ (43)5 ≡ (−13)5 ≡ −13(132)2 ≡ −13(15)2

≡ −39 · 75 ≡ −39 · (−2) ≡ 1 mod 77

Remark 6.6. Fermat’s little theorem is a special case of Euler’s theorem, and follows from

the fact that if p is prime then φ(p) = p− 1.

Euler’s theorem implies that for any number a, there is at least one integer r such that

ar ≡ 1 mod m. This allows us to give the following definition:

Definition 6.7. Let a,m be integers, and suppose gcd(a,m) = 1. Then the order of a mod

m, written ordm(a), is the smallest positive integer r such that ar ≡ 1 mod m.

We observe that 1 ≤ ordm(a) ≤ φ(m) for any a.

Example 6.8. ord7(2) = 3 since 23 = 8 ≡ 1, and no smaller number works.

ord7(3) = 6 since that’s the smallest power of 3 that gives us 1; we have 3, 2, 6, 4, 5, 1.

ord10(3) = 4 since we compute 3, 9, 7, 1.

Remark 6.9. A number g is a primitive root mod p if and only if ordp(g) = p − 1. More

generally, g is a primitive root mod m if and only if ordm(g) = φ(m).

Fact 6.10. ar ≡ as mod m if and only if r ≡ s mod ordm(a).

In particular, if r ≡ s mod φ(m) then ar ≡ as mod m.

6.2 The El-Gamal Cryptosystem

The El-Gamal Cryptosystem is a public-key cryptosystem originally described by the Egyp-

tian mathematician Taher Elgamal in 1985. Its security relies on the difficulty of computing

a discrete logarithm, and acts in a sense as an extension of the Diffie-Hellman process we

discussed in section 5.

Algorithm 6.1 (El-Gamal Cryptosystem). First Alice generates a private key and a public

key.

1. Choose a large prime number p, and an element g ∈ Z/pZ such that ordp(g) is a large

prime number. This step is not at all trivial, and thus tends to be pre-standardized;

everyone uses the same p and g.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 56

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

2. Alice chooses a secret number a, which we call the private key. She does not share this

number with anyone.

3. Alice computes A ≡ ga mod p, and publishes it. We call this number the public key

because it is released to the public.

Now suppose Bob wishes to send Alice a number 2 < m < p.

1. Bob generates a random number k, called the ephemeral key. This key is kept secret,

and also discarded after this single message is sent.

2. Bob computes c1 ≡ gk mod p and c2 ≡ mAk mod p. He sends Alice the message

(c1, c2).

How does Alice decrypt the message? She has to use her private key a.

1. Alice computes x ≡ ca1 mod p, and then x−1 ≡ c−a1 mod p. (Alternately, she can just

compute x−1 ≡ cp−1−a
1 mod p and skip computing x at all).

2. Alice then computes c2x
−1 mod p, which is equivalent to m.

Remark 6.11. The message is a number between 2 and m, and so takes log2(m) bits to

represent. The ciphertext consists of two integers between 2 and m, and thus takes 2 log2(m)

bits to represent. This the El-Gamal cryptosystem expands messages by a factor of two.

Remark 6.12. The requirement that ordp(g) is a large prime defeats a specific attack based on

something called quadratic reciprocity, which tells us whether a number is a square modulo

p.

This requirement is generally met by taking the large prime p to be of the form 2q + 1

where q is also prime. We can check that any element either has order 1, 2, q, or 2q, and we

want one with order q. Most choices will have order either q or 2q.

If g is a primitive root mod p then ordp(g
2) = q. But the easiest way to find an appropriate

base g for the ElGamal algorithm is to simply choose a number and raise it to the q power;

if this is equivalent to 1 mod p, we have what we’re looking for.

Proposition 6.13. The decryption step of Algorithm 6.1 works. That is, c2x
−1 ≡ m mod p.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 57

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Proof.

c2x
−1 ≡ c2(c

a
1)

−1

≡ (mAk)(gak)−1

≡ (mgak)g−ak

≡ mgakg−ak ≡ m mod p.

Example 6.14. Suppose we take p = 467 and g = 4. Alice chooses a = 155 as her private

key, and computes A ≡ ga ≡ 4155 ≡ 43 mod 467. (She can do this computation using the

fast exponentiation algorithm from section 5.6). Alice publishes the number A.

Now suppose Bob wants to send the message m = 42 to Alice. Bob himself chooses an

ephemeral key k = 187. He computes:

c1 ≡ gk ≡ 4187 ≡ 456 mod 467

c2 ≡ mAk ≡ 42 · 43187 ≡ 67 mod 467.

Bob sends Alice the message (456, 67).

Alice wishes to decrypt the message. She computes:

x ≡ ca1 ≡ 456155 ≡ 413 mod 467

x−1 ≡ cp−1−a
1 ≡ 147 mod 467

m ≡ c2x
−1 ≡ 67 · 147 ≡ 9849 ≡ 42 mod 467.

Remark 6.15. Note a very important property here: Bob will send a different ciphertext

depending on his random choice of k, but Alice will decrypt it to the same message regardless

of Bob’s choice of k. This means that there are many different ciphertexts corresponding to

the same plaintext; this is why the ciphertext (which is a pair of integers) has twice as many

bits as the plaintext (which is a single integer).

6.2.1 Cryptanalysis of El-Gamal

We have no ability to prove that the cryptanalysis of any reasonable algorithm is difficult,

because that would effectively require proving P 6= NP (and possibly more!). But we can

prove that decrypting one algorithm is “at least” as hard as decrypting another. We can

prove that breaking an El-Gamal cipher is at least as hard as breaking a Diffie-Hellman key

exchange.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 58

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

In particular, suppose Alice and Bob are doing a Diffie-Hellman key exchange, and are

overheard by Eve. But Eve has an ElGamal oracle: a machine that will take in an ElGamal

public key and ciphertext, and reveal to her the corresponding plaintext. Thus this works if

Eve has any efficient way to break an ElGamal cipher—whether it involves actually finding

the private key or not.

So Eve overhears Alice’s transmission of A ≡ ga mod p and B ≡ gb mod p, and she

wants to compute gab mod p. We saw in section 5.6 that there’s no known efficient algorithm

for doing this; the best option we have is to compute a discrete logarithm.

But with her oracle, Eve chooses a random number c2. She tells her oracle that the

public key is A and the ciphertext is (B, c2). By definition, the oracle returns to her the

“plaintext”:

m = (ca1)
−1c2 ≡ (Ba)−1 · c2 ≡ (gab)−1 · c2.

Eve can then invert this number m, and compute m−1 · c2 ≡ gab the private key that Alice

and Bob have exchanged.

This doesn’t tell us that breaking ElGamal is hard, because we don’t know for sure that

breaking Diffie-Hellman is hard. But it does prove that ElGamal is at least as secure as

Diffie-Hellman, because if we can break ElGamal then we can also break Diffie-Hellman.

Also notice that if it’s possible to break ElGamal without computing an explicit discrete

logarithm, it is also possible to break Diffie-Hellman without a discrete logarithm.

6.2.2 Complexity and Implementations

Looking at the algorithm for ElGamal, we see that encrypting a message requires two ex-

ponentiations, and thus with the fast exponentiation algorithm ElGamal is O(log2(p)). De-

cryption requires one exponentiation, and so is also O(log2(p)).

However, while the second exponentiation in the encryption step isn’t important asymp-

totically, it does double the amount of computation necessary to encrypt a message—and

the number of bits that need to be transmitted, since a single k bit number is encrypted to

be a pair of k bit numbers.

In order to save on these extra computations and bit transmissions, we often use ElGamal

in a hybrid setup. The “true” message is encrypted with a symmetric cryptosystem, which

can provide the same security for less up-front computation. Then the key is encrypted with

the ElGamal cryptosystem.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 59

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

6.3 The RSA Cryptosystem

Though ElGamal is a useful cryptosystem, it is not the first public-private key cryptosystem

that was invented or published.

The RSA algorithm was published by Rivest, Shamir, and Adleman in 1978. It was first

discovered by Clifford Cocks in 1973 (in conjunction with James Ellis), but this fact was not

declassified by the British government until 1997.

Algorithm 6.2 (RSA Cryptosystem). Suppose Alice wants to send a message to Bob.

First Bob must create and publish a public key, and compute a private key for himself.

1. Bob chooses two primes p, q and computes N = pq. He also computes M = (p−1)(q−
1).

2. Bob chooses a number e such that gcd(e,M) = 1.

3. Bob publishes the pair (N, e). This is his public key. Bob does not publish p or q or

M .

4. Bob computes the inverse of e modulo M , and calls it d. Thus d solves ed ≡ 1 mod M .

Bob’s private key is the pair (M,d).

Now Alice wishes to send Bob an integer m with 1 ≤ m < N .

1. Alice computes c ≡ me mod N . She sends c to Bob.

2. Bob computes cd mod N and receives Alice’s message m.

Proposition 6.16. The decryption step of Algorithm 6.2 works. That is, cd ≡ m mod N .

Proof. Recall that ed ≡ 1 mod (p− 1)(q − 1) = φ(N), and thus aed ≡ a1 mod N by 6.10.

cd ≡ (me)d

≡ med

≡ m1 ≡ m mod N.

Example 6.17. Bob chooses the primes p = 73 and q = 89. He computes N = pq = 6497.

He also computes M = (p− 1)(q − 1) = 72 · 88 = 6336, but does not share this with anyone

http://jaydaigle.net/teaching/courses/2019-fall-401/ 60

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

Bob chooses the exponent e = 83 and checks that gcd(83, 6336) = 1. He then computes

d ≡ e−1 ≡ 836335 ≡ 6107 mod 6336.

Bob publishes the public key (M, e) = (6497, 83). The pair (M,d) = (6336, 6107) is his

private key, which he keeps private.

Suppose Alice wishes to send Bob the message 300. Alice computes

c ≡ 30083 ≡ 4955 mod 6497.

She sends Bob the message 4955.

Bob computes

cd ≡ 49556107 ≡ 300 mod 6497

and recovers the message Alice wished to send.

Remark 6.18. These calculations are quite easy on computers with good algorithms, but are

quite tedious to do by hand, especially since they tend to involve large numbers.

You can do all of this on Wolfram Alpha, including typing in “inverse of 83 mod 6336”.

Example 6.19. Bob chooses the primes p = 199 and q = 577. He computes N = pq =

114823

6.3.1 Breaking RSA

In order to decrypt the ciphertext, Eve needs to solve a congruence of the form xe ≡ mod N .

If Eve knows the values of p and q this is straightforward, and she can decrypt the message

in exactly the same way that Bob can. As far as we know, there’s no better way of breaking

RSA than trying to factor N , but that doesn’t mean there isn’t a better way.

So how hard is factoring? It turns out to be quite difficult with current knowledge. The

obvious thing to do is to just try dividing by a lot of numbers; this algorithm is about O(N),

which we should recall is exponential in k = log2(N) and thus slow.

The next method is called Fermat factorization, and leverages the identity a2 − b2 =

(a + b)(a − b). Thus we can convert factoring problems into problems about writing N

as a difference of squares. With some clever choices, this method works in something like

O(4
√
N) time with basic optimizations—which is subexponential, but still much worse than

polynomial time.

With substantial optimization, we get the Quadratic Sieve, which runs in time

O
(
e
√

log(n) log log(n)
)
.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 61

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

The best currently-known factorization algorithm for large numbers is the General Num-

ber Field Sieve, which runs in time

O
(
e

3
√

64/9 ln(n)1/3 ln(ln(n))2/3
)
.

This is only more efficient than the quadratic sieve for numbers larger than 10100, but numbers

used for cryptography are necessarily over that threshhold.

To get realistic security against modern computer-based attacks, we use moduli with

about 1024 bits of entropy, which are 300-digit numbers when written in base 10. There

are a series of standard moduli used for RSA encryption, with names like RSA-512 for the

512-bit RSA modulus.

Modern software can factor a 128-bit number on a desktop computer in less than 2

seconds, a 256-bit number in under two minutes, and a 320-bit number in under two hours.

In 2009, Benjamin Moody successfully factored RSA-512 in 73 days on a desktop com-

puter. RSA-768 has been factored in 1500 CPU-years over two real-time years. No larger

RSA number has been known to be factored. Both of these attacks used the general number

field sieve.

In contrast, there’s no known security advantage to using a large e instead of a small

one. But it makes some people nervous, because we don’t know there isn’t an advantage.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 62

http://jaydaigle.net/teaching/courses/2019-fall-401/

Jay Daigle Occidental College Math 401: Cryptology

References

[Singh(2015)] Vikram Singh. A practical key exchange for the internet using lattice cryptog-

raphy. Cryptology ePrint Archive, Report 2015/138, 2015. http://eprint.iacr.org/

2015/138.

http://jaydaigle.net/teaching/courses/2019-fall-401/ 100

http://eprint.iacr.org/2015/138
http://eprint.iacr.org/2015/138
http://jaydaigle.net/teaching/courses/2019-fall-401/

	Public Key Cryptography
	The order of an integer
	The El-Gamal Cryptosystem
	Cryptanalysis of El-Gamal
	Complexity and Implementations

	The RSA Cryptosystem
	Breaking RSA

