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4 Linear Functions

Now that we understand vector spaces a bit more, we want to see how functions between

vector spaces work. There are of course lots of functions that that take in vectors and output

other vectors; almost any multivariable function technically qualifies. But we actually want

to care about functions that in some sense are compatible with the actual vector space

structure.

4.1 Definition and examples

Definition 4.1. Let U and V be vector spaces, and let L : U → V be a function with

domain U and codomain V . We say L is a linear transformation if:

1. Whenever u1,u2 ∈ U , then L(u1 + u2) = L(u1) + L(u2).

2. Whenever u ∈ U and r ∈ R, then L(ru) = rL(u).

Example 4.2. If A is a m×n matrix, then A gives us a linear transformation from Rn into

Rm, given by A(x) = Ax. That is, our input is a (column) vector in Rn, and our output is

the vector in Rm we get by multiplying our column vector by our matrix.

Geometrically, a linear transformation can stretch, rotate, and reflect, but it cannot bend

or shift.

Example 4.3. Consider the function from R2 to R2 given by a rotation of ninety degrees

counterclockwise. We can see by drawing pictures that the sum of two rotated vectors is the

rotation of the sum of the vectors, and that the rotation of a streched vector is the same as

the strech of a rotated vector. So this is a linear transformation.

Example 4.4. A translation is a function defined by f(x) = x + u for some fixed vector

u. (Geometrically, it corresponds to sliding or translating your input in the direction and

distance of the vector u).

This is not a linear transformation. For instance, f(rx) = rx + u 6= r(x + u) = rf(x)

unless u = 0.

Example 4.5. The function f(x) = x2 is not a linear transformation from R to R, since

f(2x) = (2x)2 = 4x2 6= 2x2 = 2f(x).
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Example 4.6. Define a function L : R3 → R2 by L(x, y, z) = (x+ y, 2z − x). We check:

L((x1, y1, z1) + (x2, y2, z2)) = L(x1 + x2, y1 + y2, z1 + z2)

= (x1 + x2 + y1 + y2, 2z1 + 2z2 − x1 − x2)

= (x1 + y1, 2z1 − x1) + (x2 + y2, 2z2 − x2)

= L(x1, y1, z1) + L(x2, y2, z2).

L(r(x, y, z)) = L(rx, ry, rz) = (rx+ ry, 2rz − rx) =

= r(x+ y, 2z − x) = rL(x, y, z).

Thus L is a linear transformation by definition.

Definition 4.7. Let L : U → V be a linear transformation. If u ∈ U is a vector, we say the

element L(u) ∈ V is the image of u.

If S ⊂ U then we define the image of S to be the set L(S) = {L(u) : u ∈ S} to be the

set of images of elements of S. We say the image of the entire set U is the image of the

function L.

The kernel of L is the set ker(L) = {u ∈ U : L(u) = 0} of elements of U whose image is

the zero vector.

Another way of thinking about linear transformations is that they send lines to lines. In

particular, the image of a subspace under a linear transformation is always a subspace—thus

the image of a line will be either a point or a line.

Proposition 4.8. Let L : U → V be a linear transformation, and let S ⊆ U be a subspace

of U . Then:

1. ker(L) is a subspace of U .

2. The image L(S) of S is a subspace of V .

Proof. 1. See homework 6.

2. We use the subspace theorem:

(a) We wish to show that 0 ∈ L(S). We claim in particular that L(0) = 0: that

is, the image of the zero vector in U must be the zero vector in V . Recall that

0 · v = 0 for any v ∈ V , so we have

L(0) = L(0 · 0) = 0L(0) = 0.

Thus since S is a subspace we have 0 ∈ S and thus 0 ∈ L(S).
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(b) Suppose v ∈ L(S) and r ∈ R. Then there is some u ∈ S with L(u) = v, and

since S is a subspace we know that ru ∈ S. Thus

rv = rL(u) = L(ru) ∈ L(S).

(c) Suppose v1,v2 ∈ L(S). Then there exist u1,u2 ∈ S such that L(u1) = v1 and

L(u2) = v2. Since S is a subspace we know that u1 + u2 ∈ S. Then

v1 + v2 = L(u1) + L(u2) = L(u1 + u2) ∈ L(S).

Corollary 4.9. If L : U → V is a linear transformation, then the image of L is a subspace

of V .

Example 4.10. In our geometric example of a ninety degree counterclockwise rotation, the

kernel is just the origin—nothing gets mapped to the origin except the origin. The image is

the entire plane.

Example 4.11. If A is a matrix, then the linear transformation of A has a kernel precisely

equal to the nullspace of A, since the nullspace is the set of x such that Ax = 0.

In section 4.3 we will see that the image of A is the span of the columns of A.

Example 4.12. Let D([a, b],R) be the space of differentiable functions from the closed

interval [a, b] to the real line. Define the derivative operator D : D([a, b],R) → D([a, b],R)

by D(f) = f ′. First we claim that D is a linear operator: we have that D(f+g) = (f+g)′ =

f ′ + g′ = D(f) +D(g), and D(rf) = (rf)′ + rf ′ = rD(f).

The kernel of D is the space of constant functions, which is a one-dimensional subspace.

The image of D is actually a little hard to see, but it’s actually the set of all continuous

functions on [a, b].

In other contexts we might write d
dx

instead of D for this linear transformation.

Example 4.13. Let C([a, b],R) be the set of all continuous functions on the closed interval

[a, b]. The (indefinite) integral isn’t quite a linear transformation, since there’s an ambiguity

in choice of constant. (This is what we mean when we say something is “not well defined”:

if I tell you to give me the integral of x2, you can’t give me a specific function back so my

question is not precise enough).

But the function I(f) =
∫ x
a
f(t) dt is a linear transformation, since

∫ x
a

(f + g)(t) dt =∫ x
a
f(t) dt +

∫ x
a
g(t) dt and

∫ x
a
rf(t) dt = r

∫ x
a
f(t) dt. In this case the choice of a as the

basepoint resolves the earlier ambiguity.
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The kernel of I is the trivial vector space containing only the zero function. The image

is again a bit hard to see, but works out to be the space of differentiable functions with the

property that F (a) = 0.

This last example shows an important principle: our derivative and integral linear trans-

formations (almost) undo each other. This is a very important property and we will look at

it on its own in 5.1.

4.2 The Matrix of a Linear Transformation

Some linear transformations are easy to represent, because they come from matrices. In this

subsection we will see that in fact all linear transformations (of finite-dimensional vector

spaces) come from matrices, and see how we can obtain these matrices.

In essence, we can represent a linear transformation L : Rn → Rm with a matrix because

we have a system of coordinates for Rn and Rm; the matrix tells us what happens to each

coordinate.

Example 4.14. Let A =

[
3 5 1

2 −1 3

]
be a matrix, and thus a linear transformation R3 →

R2. Let’s see what happens to each element of the standard basis for R3.

Ae1 =

[
3 5 1

2 −1 3

]
1

0

0

 =

[
3

2

]

Ae1 =

[
3 5 1

2 −1 3

]
0

1

0

 =

[
5

−1

]

Ae1 =

[
3 5 1

2 −1 3

]
0

0

1

 =

[
1

3

]
.

We notice that the image of the standard basis elements are just the columns of the matrix!

This isn’t a coincidence; the columns of our matrix are telling us exactly where our basis

vectors go.

Proposition 4.15. Let L : Rn → Rm be a linear transformation. Then there is an m × n
matrix A such that L(x) = Ax for every x ∈ Rn.

In particular, the jth column vector of A is given by cj = L(ej).

http://jaydaigle.net/teaching/courses/2019-spring-214/ 71

http://jaydaigle.net/teaching/courses/2019-spring-214/


Jay Daigle Occidental College Math 214: Linear Algebra

Proof. According to the theorem statement, we know that A =
[
c1 c2 . . . cn

]
. So we

just need to check that this matrix gives us the linear transformation L.

First we show that our matrix does the right things on the standard basis vectors. We

see that

Aej =
[
c1 c2 . . . cj . . . cn

]


0

0
...

1
...

0


= cj = L(ej).

Now let u ∈ Rn be any vector. Then we know we can write u =
∑n

i=1 uiei since every

element is some linear combination of basis vectors. Thus we have

Au = A

(
n∑
i=1

uiei

)
=

n∑
i=1

Auiei =
n∑
i=1

uiAei =
n∑
i=1

uiL(ei) by the previous computation

=
n∑
i=1

L(uiei) scalar multiplication

= L

(
n∑
i=1

uiei

)
additivity

= L(u).

Example 4.16. Let’s look at the linear transformation from earlier, of a 90 degree rotation

counterclockwise. This is a transformation from R2 to R2, so we can find a 2 × 2 matrix

representing it. Let’s call the map Rπ/2.

By geometry, we see that Rπ/2(e1) = (0, 1) = e2, and that Rπ/2(e2) = (−1, 0) = −e1.

Thus the matrix is

[
0 −1

1 0.

]
Let’s generalize to any rotation; let Rθ be the rotation counterclockwise by θ. To see

what happens we have to draw the unit circle; we compute that Rθ(e1) = (cos θ, sin θ),

and Rθ(e2) = (cos(θ + π/2), sin(θ + π/2) = (− sin(θ), cos(θ). Thus the matrix of Rθ is[
cos θ − sin θ

sin θ cos θ

]
.

Example 4.17. Define a linear transformation L : R2 → R3 by L(x, y) = (x+ y, x− y, 2x).

First we should check that this is in fact a linear transformation, but I won’t do that here.
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We need to check the image of e1 and e2. We see that

L(e1) = L(1, 0) = (1, 1, 2)

L(e2) = L(0, 1) = (1,−1, 0).

Thus the matrix of L is

AL =


1 1

1 −1

2 0

 .
We can check this by computing 

1 1

1 −1

2 0


[
x

y

]
=


x+ y

x− y
2x


which is exactly what we should get.

We’d like to be able to do this to any vector space, or at least any finite dimensional one.

We need some set of coordinates to let us matricize other linear transformations. Fortunately,

we developed those in section 3: a set of coordinates is a basis.

Definition 4.18. If U is a vector space and E = {e1, . . . , en} is a basis for U , and u ∈ U ,

we can write u = a1e1 + · · ·+ anen. We define the coordinate vector of u with respect to E

by

[u]E =


a1
...

an

 .
The ai are called the coordinates of u with respect to the basis E.

We here observe that every u ∈ U corresponds to exactly one coordinate vector with

respect to E, and vice versa. We will discuss this in more detail in 5.1.

Example 4.19. Let U = P3(x). Then E = {1, x, x2, x3} is a basis for U . Also, F =

{1, 1 + x, 1 + x2, 1 + x3} is a basis for U .

Let f(x) = 1 + 3x+ x2 − x3 ∈ U . Then

[f ]E =


1

3

1

−1

 [f ]F =


−2

3

1

−1

 .
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These are two different vectors of real numbers, but they represent the same element of U ,

just in different bases.

Example 4.20. Let U = R3 and let E = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}. Then if u = (1, 3, 2),

then

[u]E =


−2

1

2

 .
Remark 4.21. If B is the standard basis for Rn, then any time we write a column vector

there’s an implicit


a1
...

an


B

that we just don’t bother to write down.

Lemma 4.22. If U is a vector space and E = {e1, . . . , en} is a basis for U , then the function

[·]E : U → Rn which sends u to [u]E is a linear function.

Proof. Let u,v ∈ U and r ∈ R. We can write

u = a1e1 + · · ·+ anen

v = b1e1 + · · ·+ bnen.

Then

[ru] = [ra1e1 + · · ·+ ranen] = (ra1, . . . , ran) = r(a1, . . . , an) = r[u].

[u + v] = [(a1 + b1)e1 + · · ·+ (an + bn)en] = (a1 + b1, . . . , an + bn)

= (a1, . . . , an) + (b1, . . . , bn) = [u] + [v].

Thus by definition, [·]E is a linear transformation.

Theorem 4.23. Let U and V be finite-dimensional vector spaces, with E = {e1, . . . , en} a

basis for U and F = {f1, . . . , fm} a basis for V . Let L : U → V be a linear transformation.

Then there is a matrix A that represents L with respect to E and F , such that Lu = v if

and only if A[u]E = [v]F . The columns of A are given by cj = [L(ej)]F .

Remark 4.24. This looks really complicated, but it really just says that any linear transfor-

mation is determined entirely by what it does to the elements of some basis; if you have a

basis and you know where your transformation sends each element of that basis, you know

what it does to everything in your space.
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In particular, if we have coordintes for our vector spaces, we can use a matrix to map

one set of coordinates to the other, as if we were working in Rn.

U

[·]E
��

L // V

[·]F
��

u � L //
_

[·]E
��

L(u)
_

[·]F
��

Rn A // Rm [u]E
� A // A[u]E = [L(u)]F

Proof. We just want to show that A[u]E = [L(u)]F for any u ∈ U , where

A = [c1 . . . cn] = [[L(e1)]F . . . [L(en)]F ] .

Our proof is essentially the same as the proof of Proposition 4.15. Let u ∈ U . Since E

is a basis for U we can write u = a1e1 + · · ·+ anen. Then we have

[L(u)]F = [a1L(e1) + · · ·+ anL(en)]F = a1 [L(e1)]F + · · ·+ an [L(en)]F

= a1c1 + · · ·+ ancn;

A[u]E = A [a1e1 + · · ·+ anen]E = A(a1, . . . , an) = [c1 . . . cn] (a1, . . . , an)

= c1a1 + · · ·+ cnan.

Thus we have [L(u)]F = A [u]E, so the matrix A does in fact represent the linear operator

L.

Example 4.25. Let F = {(1, 1), (−1, 1)} be a basis for R2, and let L : R3 → R2 be given

by L(x, y, z) = (x− y− z, x+ y+ z). Find a matrix for L with respect to the standard basis

in the domain and F in the codomain.

L(1, 0, 0) = (1, 1) = f1

L(0, 1, 0) = (−1, 1) = f2

L(0, 0, 1) = (−1, 1) = f2

A =

[
1 0 0

0 1 1

]
.

Example 4.26. Let S be the subspace of C([a, b],R) spanned by {ex, xex, x2ex}, and let D

be the differentiation operator on S. Find the matrix of D with respect to {ex, xex, x2ex}.
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We compute:

D(ex) = ex = s1

D(xex) = ex + xex = s1 + s2

D(x2ex) = 2xex + x2ex = 2s2 + s3

A =


1 1 0

0 1 2

0 0 1

 .
Example 4.27. Let E = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and F = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} be

bases for R3, and define L(x, y, z) = (x+ y+ z, 2z,−x+ y+ z). We can check this is a linear

transformation.

To find the matrix of L with respect to E and the standard basis, we compute

L(1, 1, 0) = (2, 0, 0)

L(1, 0, 1) = (2, 2, 0)

L(0, 1, 1) = (2, 2, 2).

Thus the matrix with respect to E and the standard basis is

A =


2 2 2

0 2 2

0 0 2

 .
If we want to find the matrix with respect to E and F , we observe that

L(1, 1, 0) = (2, 0, 0) = 2(1, 0, 0) = 2f1

L(1, 0, 1) = (2, 2, 0) = 2(1, 1, 0) = 2f2

L(0, 1, 1) = (2, 2, 2) = 2(1, 1, 1) = 2f3.

Thus the matrix is 
2 0 0

0 2 0

0 0 2

 .
We notice that this matrix is really simple; this is a “good” choice of bases for this linear

transformation.
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In contrast, let’s look at the transformation T (x, y, z) = (x, y, z). Then we have

T (1, 1, 0) = (1, 1, 0) = (1, 1, 0) = f2

T (1, 0, 1) = (1, 0, 1) = (1, 0, 0)− (1, 1, 0) + (1, 1, 1) = f1 − f2 + f3

T (0, 1, 1) = (0, 1, 1) = −(1, 0, 0) + (1, 1, 1) = −f1 + f3.

Thus the matrix of T with respect to E and F is
0 1 −1

1 −1 0

0 1 1

 .
Thus this transformation, which is really simple with respect to the standard basis, is much

more complicated with respect to these bases.

We’ll talk a lot more about this choice of basis idea in section 5.

As a final result, we will see that linear transformations actually tell us about every

possible subspace.

Proposition 4.28. Let V be a vector space and U ⊂ V a subspace. Then U is the kernel of

some linear transformation.

Proof. We’ll prove this in the case where U and V are finite-dimensional. Let {u1, . . . , un}
be a basis for U . By basis padding, there is a basis {u1, . . . ,un,v1, . . . ,vm} for the vector

space V .

Define a linear transformation L : V → V by setting L(ui) = 0 and L(vi) = vi. That is,

for any v ∈ V , we can write

v = a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm,

so we define

L(v) = b1v1 + · · ·+ bmvm.

Then the kernel of L is the set spanned by {u1, . . . ,un}, which is just U .

4.3 Row space, column space and nullspace

Since every linear transformation is secretly a matrix, so we can understand linear transfor-

mations better by studying the way matrices work as functions. In order to do that we need

to back up and see some more facts about matrices.
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Definition 4.29. If A = (aij) is a m×n matrix, then each row can be viewed as a vector in

Rn; we call these vectors the row vectors of A. We may notate them as ri = (ai1, ai2, . . . , ain).

Similarly, we can view each column as vector in Rm, and we call these the column vectors

of A. We may notate them as cj = (a1j, a2j, . . . , amj)

Thus each matrix gives us two sets of vectors. We can look at these vectors and see which

vector spaces they span.

Definition 4.30. If A is a m × n matrix, we say that the span of the row vectors of A is

the row space of A, which we will sometimes denote row(A). It is a subspace of Rn. The

dimension of the row space is the rank of A, denoted rk(A).

The span of the column vectors of A is the column space of A, sometimes denoted col(A).

Recall that we defined the nullspace of A to be the set N(A) = ker(A) = {x ∈ Rn :

Ax = } of solutions to the associated homogeneous system of linear equations. We define

the nullity of A to be the dimension of N(A).

We want to relate these ideas to the kernel and image we discussed last section. We know

that every linear transformation is a matrix, and every matrix is a linear transformation.

It’s pretty clear that N(A) is the kernel of the associated linear transformation. By

definition, N(A) is the set of x such that Ax = 0, and this is just the definition of the kernel

of the linear transformation. Thus we sometimes call N(A) the kernel of the matrix A as

well.

The image is a bit trickier, but still has a clear answer.

Proposition 4.31. Let A be a m × n matrix and b a vector in Rm. Then the image of

the linear transformation associated to A is the columnspace of A. That is, Ax = b has a

solution if and only if b is in col(A).

Proof. The equation Ax = b is the same as the system

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm
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which we can rewrite as

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn

 =


b1

b2
...

bm


or

x1c1 + x2c2 + · · ·+ xncn = b.

Thus the equation has a solution precisely when b is in the span of the ci, which is the

column space of A by definition.

Corollary 4.32. The system Ax = b has a solution for every b ∈ Rm if and only if

col(A) = Rm, that is, the column vectors span Rm.

The system has a unique solution if and only if the column vectors are linearly indepen-

dent.

Proof. Ax = b has a solution for every b ∈ Rm if and only if every b ∈ Rm is in the column

space, that is, if the column vectors span Rm.

The column vectors are linearly independent if and only if every vector in their span can

be represented uniquely as a linear combination of the column vectors.

This is only a partial answer, though, since we don’t have a way to figure out what the

column space actually looks like. To learn about that, we shift to looking at the row space,

which is somewhat easier to understand.

Corollary 4.33. Suppose A is a m × n matrix and AR is the matrix obtained by using

Gauss-Jordan elimination to reduce it to reduced row echelon form. Then the non-zero rows

of AR form a basis for the row space of A.

Proof. The non-zero rows of AR are clearly linearly independent, since each one has a 1 in

a column where every other row has a zero. Thus the non-zero rows of AR form a basis for

the space they span, which is the rowspace of AR. But we saw in section 1.3 that AR and A

have the same rowspace, so clearly the rows of AR span the rowspace of A. Thus they form

a basis for the rowspace of A.

Example 4.34. Find a basis for the rowspace of


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1
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1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1

→


1 5 −9 11

0 1 −3 1

0 2 −3 3

0 7 −12 10

→


1 0 6 6

0 1 −3 1

0 0 3 1

0 0 9 3



→


1 0 6 6

0 1 −3 1

0 0 1 1/3

0 0 9 3

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0


So a basis for row(A) is {(1, 0, 0, 4), (0, 1, 0, 2), (0, 0, 1, 1/3)}. The matrix has rank 3.

Remark 4.35. We can use this to find a “simple” basis for any vector space we have a

spanning set for: write a matrix with our spanning set as rows, and row-reduce it until we

have a basis.

As a consequence of this approach to the rowspace, we get an extremely powerful result

relating the rank and the nullity:

Theorem 4.36 (Rank-Nullity). If A ∈Mm×n then rank of A plus nullity of A equals n.

Proof. If U is the reduced row echelon form of A, then Ax = 0 is equivalent to Ux = 0.

Since the matrix has rank r, the matrix U will have r nonzero rows and n − r zero rows;

thus it will have n− r free variables and r lead variables.

The dimension of N(A) is equal to the number of free variables, and thus to n− r.

We have managed to relate the rank and the nullity, but we still want to know about the

column space. But the column space is tied to the row space in a fundamental way.

Proposition 4.37. If A is a m× n matrix, the dimension of the row space of A equals the

dimension of the column space of A.

Proof. We will use a trick with the transpose matrix, since the rows of A are the columns of

AT and vice versa. We will prove that the dimension of the column space of a matrix is at

least as great as the dimension of the row space. But since this result will also hold for the

transpose matrix, this gives us our answer.

Suppose A has rank r, and let U be the row echelon form of A. It will have r leading 1s,

and the columns containing the leading 1s will be linearly independent. (They do not form
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a basis for the column space, since we have no reason to believe that the row operations

preserve the span of the columns).

Let UL be the matrix obtained by deleting the columns of U corresponding to free vari-

ables, leaving only the columns that contain a leading 1. Delete the same columns from A,

and call the resulting matrix AL.

The matrices UL and AL are row-equivalent, so ALx = 0 if and only if ULx = 0, and

since the columns of UL are linearly independent, this happens if and only if x = 0. Thus

we see that the columns of AL are linearly independent. We know that AL will have exactly

r columns, so the column space contains at least r linearly independent vectors, and so the

dimension of the column space is at least r. Thus dim(col(A)) ≥ dim(row(A)) = r.

Now consider the matrix AT . By the previous result, dim(col(AT )) ≥ dim(row(AT )). But

we know that col(AT ) = row(A) and row(AT ) = col(A), so this tells us that dim(row(A)) ≥
dim(col(A)), which combined with the previous result gives us that dim(row(A)) = dim(col(A)).

Now we can put this all together to understand the image and kernel of a linear trans-

formation. The image of a transformation is the column space of the associated matrix; the

kernel is the nullspace of the matrix. This theorem tells us that the dimension of the column

space is also the dimension of the row space. And then the rank-nullity theorem tells us that

the dimension of the kernel and the rank add up to the number of columns of the associated

matrix—which is the dimension of the domain of the linear transformation. All combined,

this gives us

Theorem 4.38 (Rank-Nullity for Vector Spaces). Let U, V be finite-dimensional vector

spaces, and L : U → V be a linear transformation. Then dim ker(L) + dim Im(L) = dimU .

We still need a way to actually find the image, however. Fortunately, the proof of

proposition 4.36 gives us a way.

Corollary 4.39. Let A be a m × n matrix, and let U be the reduced row echelon form of

A. Then the columns of A corresponding to columns of U that contain a leading “1” form a

basis for the columnspace of A.

Proof. We just showed that these columns are linearly independent, and there are r of them.

Thus they are a basis.

Remark 4.40. Note that the columns of U do not (usually) span the column space of A! But

looking at U tells us which columns we should take to find a basis for the column space.
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Note that we could also find a basis for the column space by simply taking AT , row

reducing it, and finding a basis for the rowspace of AT .

Example 4.41. Find a basis for the column space of


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1


We saw that the reduced row echelon form of this matrix has leading ones in the first

three columns. So the first three columns form a basis for the columnspace, and thus a basis

is {(1,−2, 3,−1), (5,−9, 17, 2), (−9, 15,−30,−3)}.

Example 4.42. Find bases for the row, column, and nullspace of


1 −2 1 1 2

−1 3 0 2 −2

0 1 1 3 4

1 2 5 13 5


We first row reduce the matrix.

1 −2 1 1 2

−1 3 0 2 −2

0 1 1 3 4

1 2 5 13 5

→


1 −2 1 1 2

0 1 1 3 0

0 1 1 3 4

0 4 4 12 3

→


1 0 3 7 2

0 1 1 3 0

0 0 0 0 4

0 0 0 0 3



→


1 0 3 7 2

0 1 1 3 0

0 0 0 0 1

0 0 0 0 3

→


1 0 3 7 0

0 1 1 3 0

0 0 0 0 1

0 0 0 0 0

 .
To find the rowspace, we just take these rows; so a basis for the rowspace is

{(1, 0, 3, 7, 0), (0, 1, 1, 3, 0), (0, 0, 0, 0, 1)}. Thus the rank of the matrix ix 3.

To find the columnspace, we look at the columns corresponding to those with leading 1s,

which are the first, second, and fifth. Thus a basis for the columnspace is

{(1,−1, 0, 1), (−2, 3, 1, 2), (2,−2, 4, 5)}.
To find the nullspace, we see there are two free variables, which we set to be parameters

x3 = α, x4 = β. Then the nullspace is

{(−3α− 7β,−α− 3β, α, β, 0)} = {(−3α,−α, α, 0, 0) + (−7β,−3β, 0, β, 0)}

= {α(−3,−1, 1, 0, 0) + β(−7,−3, 0, 1, 0)}

so a basis for the nullspace is {(−3,−1, 1, 0, 0), (−7,−3, 0, 1, 0)}. The nullity is 2, which is

what we expected from the rank-nullity theorem.
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