Math 214 Spring 2019 Linear Algebra HW 8 Due Friday, April 12

For all these problems, justify your answers; do not just write "yes" or "no".

- 1. Let *E* be the standard basis for \mathbb{R}^3 , and let $F = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\4\\4 \end{bmatrix} \right\}.$
 - (a) Find the transition matrix corresponding to the change of basis from E to F.
 - (b) For each of the following vectors (expressed in the standard basis), find the coordinates with respect to F: (3, 2, 5); (1, 1, 2); (2, 3, 2).

2. Let
$$E = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} = \left\{ \begin{bmatrix} 4\\6\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$
, and let $F = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$ be two bases for \mathbb{R}^3 .

- (a) Find the transition matrix from E to F.
- (b) If $\mathbf{x} = 2\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3$, find the coordinates of \mathbf{x} with respect to F.
- 3. Let

$$L\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}2x-y-z\\-x+2y-z\\-x-y+2z\end{bmatrix}.$$

Let A be the matrix of L with respect to the standard basis, and let B be the matrix of L with respect to the basis $F = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}.$

- (a) Calculate B, the matrix of L with respect to F directly.
- (b) Calculuate B by finding the matrix U corresponding to a change of basis from F to the standard basis, and calculating $U^{-1}AU$.
- 4. (*) Let $T: \mathcal{P}_3(x) \to \mathcal{P}_3(x)$ be defined by L(f(x)) = xf'(x) + f''(x).
 - (a) Find the matrix A representing T with respect to $E = \{1, x, x^2\}$.
 - (b) Find the matrix B representing T with respect to $F\{1, x, 1 + x^2\}$.
 - (c) Find the matrix S such that $B = S^{-1}AS$.

- (d) If $p(x) = a_0 + a_1 x + a_2(1 + x^2)$, calculate $T^n(p(x)) = T(T(\dots(T(p(x)))))$.
- 5. Let $\mathbf{u} = (2, 1, 3)$ and $\mathbf{v} = (6, 3, 9)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 6. Let $\mathbf{u} = (2, -5, 4)$ and $\mathbf{v} = (1, 2, -1)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 7. Let $\mathbf{u} = (4, 1)$ and $\mathbf{v} = (3, 2)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 8. Let $\mathbf{u} = (3, 5)$ and $\mathbf{v} = (1, 1)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.