Math 214 Spring 2019 Linear Algebra HW 8
 Due Friday, April 12

For all these problems, justify your answers; do not just write "yes" or "no".

1. Let E be the standard basis for \mathbb{R}^{3}, and let $F=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\}$.
(a) Find the transition matrix corresponding to the change of basis from E to F.
(b) For each of the following vectors (expressed in the standard basis), find the coordinates with respect to $\mathrm{F}:(3,2,5) ;(1,1,2) ;(2,3,2)$.
2. Let $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}=\left\{\left[\begin{array}{l}4 \\ 6 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$, and let $F=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ be two bases for \mathbb{R}^{3}.
(a) Find the transition matrix from E to F.
(b) If $\mathbf{x}=2 \mathbf{e}_{1}+3 \mathbf{e}_{2}-4 \mathbf{e}_{3}$, find the coordinates of \mathbf{x} with respect to F.
3. Let

$$
L\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
2 x-y-z \\
-x+2 y-z \\
-x-y+2 z
\end{array}\right] .
$$

Let A be the matrix of L with respect to the standard basis, and let B be the matrix of L with respect to the basis $F=\{(1,1,0),(1,0,1),(0,1,1)\}$.
(a) Calculate B, the matrix of L with respect to F directly.
(b) Calculuate B by finding the matrix U corresponding to a change of basis from F to the standard basis, and calculating $U^{-1} A U$.
4. (\star) Let $T: \mathcal{P}_{3}(x) \rightarrow \mathcal{P}_{3}(x)$ be defined by $L(f(x))=x f^{\prime}(x)+f^{\prime \prime}(x)$.
(a) Find the matrix A representing T with respect to $E=\left\{1, x, x^{2}\right\}$.
(b) Find the matrix B representing T with respect to $F\left\{1, x, 1+x^{2}\right\}$.
(c) Find the matrix S such that $B=S^{-1} A S$.
(d) If $p(x)=a_{0}+a_{1} x+a_{2}\left(1+x^{2}\right)$, calculate $T^{n}(p(x))=T(T(\ldots(T(p(x)))))$.
5. Let $\mathbf{u}=(2,1,3)$ and $\mathbf{v}=(6,3,9)$.
(a) Find the angle between \mathbf{u} and \mathbf{v}.
(b) Find the projection of \mathbf{u} onto \mathbf{v}.
(c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
6. Let $\mathbf{u}=(2,-5,4)$ and $\mathbf{v}=(1,2,-1)$.
(a) Find the angle between \mathbf{u} and \mathbf{v}.
(b) Find the projection of \mathbf{u} onto \mathbf{v}.
(c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
7. Let $\mathbf{u}=(4,1)$ and $\mathbf{v}=(3,2)$.
(a) Find the angle between \mathbf{u} and \mathbf{v}.
(b) Find the projection of \mathbf{u} onto \mathbf{v}.
(c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
8. Let $\mathbf{u}=(3,5)$ and $\mathbf{v}=(1,1)$.
(a) Find the angle between \mathbf{u} and \mathbf{v}.
(b) Find the projection of \mathbf{u} onto \mathbf{v}.
(c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

