Math 214 Test 1 Practice Problems

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection of practice problems. I will update you when I finalize the test format.

Solve the following systems of linear equations

1.

$$x - 4y + 2z = 2$$
$$-x + 3y + z = 4$$
$$2x - y + z = 1$$

2.

$$x + 3y + 7z = 15$$
$$2x + 9y + 23z = 45$$
$$x - z = 2$$

3.

$$x_1 + 3x_2 + x_3 + x_4 = 3$$
$$2x_1 - 2x_2 + x_3 + 2x_4 = 8$$
$$x_1 - 5x_2 + x_4 = 5$$

4.

$$-x_1 + 2x_2 - x_3 = 2$$

$$-2x_1 + 2x_2 + x_3 = 4$$

$$3x_1 + 2x_2 + 2x_3 = 5$$

$$-3x_1 + 8x_2 + 5x_3 = 17$$

5.

$$x - 2y = 3$$
$$2x + y = 1$$
$$-5x + 8y = 4$$

Do the following matrix multiplication computations.

1.

$$\begin{bmatrix} 1 & 0 & -3 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 3 & 1 \\ -1 & 2 \end{bmatrix} =$$

2.

$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 3 & 2 & 4 \end{bmatrix} =$$

3.

$$\begin{bmatrix} 5 & 2 & -1 \\ 1 & 0 & 3 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} -3 & 0 & 1 \\ 4 & -1 & 1 \\ 0 & 2 & 3 \end{bmatrix} =$$

4.

$$\begin{bmatrix} 3 & 1 & 4 \\ 2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 0 & 4 & 1 \\ 2 & 3 & 8 \end{bmatrix} =$$

For each of the following matrices, find:

- (a) The reduced row echelon form.
- (b) The nullspace

$$1. \begin{bmatrix} 3 & 1 & 2 \\ -1 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$2. \begin{bmatrix} -2 & 4 & 1 \\ -5 & 1 & 1 \\ 3 & 3 & 0 \end{bmatrix}$$

$$3. \begin{bmatrix} 6 & 2 & 3 & 1 \\ 1 & 5 & 2 & -2 \\ 4 & -4 & 1 & 3 \end{bmatrix}$$

$$4. \begin{bmatrix} -1 & 3 & 4 \\ 2 & 5 & 2 \\ 0 & 1 & 3 \\ 4 & 1 & -2 \end{bmatrix}$$

Find the inverses of the following matrices, or show they are not invertible.

$$1. \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

$$2. \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}$$

$$3. \begin{bmatrix} 1 & 0 & 4 \\ 3 & 2 & -1 \\ 1 & -4 & 3 \end{bmatrix}$$

$$4. \begin{bmatrix} 2 & 1 & 3 \\ 5 & 0 & 2 \\ 7 & 1 & 5 \end{bmatrix}$$

Which of the following are vector spaces? Prove or disprove your answer, potentially using the subspace theorem

1.
$$\{(a, b, c, d) : a - b = c - d\}$$

2.
$$\{(a, b, c, d) : a + b + c = d\}$$

3.
$$\{(a,b,c): a^2 = bc\}$$

4.
$$\{(a, b, c, d) : 5a - 3b = 2c - 2d\}$$

5.
$${a_0 + a_1x + a_2x^2 + a_3x^3 : a_2 = 2}$$

6.
$$\{f(x): f(0) = 5\}$$

7.
$$\{f(x): f(5) = 0\}$$

Write u as a linear combination of vectors in S, or prove you cannot

1.
$$\mathbf{u} = (5, 2, 1), S = \{(1, 2, 3), (3, 1, 1)\}$$

2.
$$\mathbf{u} = (2,3,2), S = \{(1,2,3), (3,4,1)\}$$

3.
$$\mathbf{u} = x^3 - x + 1$$
, $S = \{1 + x, 3 + x^2, 3x^2 + x^3\}$

4.
$$\mathbf{u} = x^3 + 4x^2 + 2x + 5$$
, $S = \{1 + x, 3 + x^2, 3x^2 + x^3\}$

Proofs

1. Suppose U, W are subspaces of some vector space V. Prove that the set $U + W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W\}$ is a subspace of V.

Bonus: what is the space U + U?

2. Let $A \in M_{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Prove that if $N(A) = \{\mathbf{0}\}$ then the equation $A\mathbf{x} = \mathbf{b}$ has at most one solution.

3

Bonus to stretch your brain

- 1. Find a subset $U \subset \mathbb{R}^2$ that is closed under scalar multiplication but is not a subspace.
- 2. Find a subset $U \subset \mathbb{R}^2$ that is closed under addition but is not a subspace.