MULTIVARIABLE CALCULUS (MATH 212) COMMON TOPIC LIST (Approved by the Occidental College Math Department on August 28, 2009)

Required Topics

- Multivariable functions
- 3-D space
 - Distance
 - Equations of Spheres
 - o Graphing
 - Planes
 - Spheres
 - Miscellaneous function graphs
 - Sections and level curves (contour diagrams)
 - Level surfaces
- Planes
 - o Equations of planes, in different forms
 - o Equation of plane from three points
 - Linear approximation and tangent planes
- Partial Derivatives
 - o Compute using the definition of partial derivative
 - Compute using differentiation rules
 - Interpret
 - o Approximate, given contour diagram, table of values, or sketch of sections
 - o Signs from real-world description
 - Compute a gradient vector
- Vectors
 - o Arithmetic on vectors, pictorially and by components
 - Dot product
 - compute using components
 - $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$
 - $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$ (for nonzero vectors)
 - Cross product
 - Direction and length
 - compute using components and determinant
- Directional derivatives
 - o estimate from contour diagram
 - \circ compute using the $\lim_{t\to 0}$ definition
 - o compute using $f_{\bar{u}} = \nabla f \cdot \bar{u}$ (\bar{u} a unit vector)
- Gradient
 - o geometry (3 facts, and understand how they follow from $f_{\vec{u}} = \nabla f \cdot \vec{u}$)
 - Gradient points in direction of fastest increase
 - Length of gradient is the directional derivative in that direction
 - Gradient is perpendicular to level set

- o given contour diagram, draw a gradient vector
- Chain rules
- Higher-order partials
 - o compute
 - o mixed partials are equal (under certain conditions)
- Optimization
 - o Locate and classify critical points in a contour diagram
 - o Find critical points given a formula for f
 - o max-min (including word problems)
 - Lagrange multipliers
 - Understand basically why setting $\nabla f = \lambda \nabla g$ finds "candidates"
 - o Extreme value theorem, including understanding what "closed" and "bounded" mean
 - o Optimization on the boundary of a region by substitution
- Integration
 - o Predict the sign of a multiple integral
 - o Compute a multiple integral
 - Sketch the region of integration
 - Choose or change the order of integration
 - o Some other coordinate system (e.g., polar, cylindrical, spherical), including the observation that this is a change of variables, similar to u-substitution from Calc 2
- Parametrized curves
 - Construct parametrizations of lines, circles, and explicitly defined curves, that move in a specified direction
 - Velocity and speed
- Vector fields
 - Sketch a vector field with a given formula
 - o Recognize a gradient (conservative) field, and find a formula for a potential function
- Line Integrals
 - o For a constant vector field \vec{F} and a straight path \vec{C} , $work = \vec{F} \cdot \vec{C}$
 - o Given a picture of a vector field, predict the sign of a line integral, or draw a path over which a line integral will have a given sign
 - $\circ \quad \text{Compute } \int_{C} \vec{F} \cdot d\vec{r} \text{ using } \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$
 - o For a gradient field, compute using the fundamental theorem of line integrals
 - o For a gradient field, compute using path independence (parametrize a simpler path with the same endpoints)
 - o For a gradient field, the line integral over a loop is zero
 - o Green's theorem

Some Optional Topics

- Boats and planes (the kind that fly) and forces and vectors
- Prove something using vectors
- Projection
- Find plane tangent to implicitly defined surface by viewing surface as level set
- Implicit differentiation

- Signs of second partials from contour diagram
- Second derivative test
- Use limits to discuss the existence of global maxes/mins
- Polar area
- Polar volume
- Cylindrical coordinates and triple integrals
- Spherical coordinates and triple integrals
- The cool trick for computing the area under a bell curve
- Intersections of a curve with a surface
- Collisions and intersections of parametrized curves
- Distances, etc., involving parametrized lines
- Find a parametrization for a complicated curve by summing parametrizations of simple component motions
- Give a plausible formula for a vector field whose sketch is given
- Stokes' Theorem
- Divergence and curl
- Divergence Theorem