


the sequence (an). Let L be the least upper bound of {cn}. Note that ck < L < bℓ for

all k, ℓ.

We claim that L is not in the sequence (an). Suppose otherwise. Then L = aℓ for

some ℓ. Choose m such that bm = ak and cm = ar with k, r > ℓ; this is possible be-

cause the b’s and c’s are always coming from deeper and deeper in the sequence (an).

By construction of the b and c sequences, for every i ≤ max{k, r}, we have ai ≤ cm or

ai ≥ bm . But from above, cm < L < bm . We have thus arrived at a contradiction and

hence the conclusion of a rather ingenious proof.

Let’s now run through Cantor’s argument not with an arbitrary sequence (an) but

with a very specific sequence. Namely, let (an) be the standard enumeration of the set

of rational numbers that are greater than 0 and less than or equal to one. That is, the

sequence (an) is obtained by writing all these rationals in lowest terms, then listing

them in order of increasing denominators, where fractions with the same denomina-

tor are listed in order of increasing numerators. The first several terms of (an) are

1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, . . .

Taking (bn) and (cn) as above, a straightforward calculation shows that the first few

terms of (bn) and (cn) are:

b1 = 1

1
c1 = 1

2

b2 = 2

3
c2 = 3

5

b3 = 5

8
c3 = 8

13

b4 = 13

21
c4 = 21

34

b5 = 34

55
c5 = 55

89
...

...

A surprising pattern has revealed itself—suddenly and without warning, our old

friends the Fibonaccis have dropped by for a visit! Our next lemma shows that this

pattern holds for all n.

Recall that the Fibonacci sequence (Fn) is defined by F1 = F2 = 1 and Fn+2 =
Fn + Fn+1.

Lemma 1. For all n, we have that bn = F2n−1/F2n and cn = F2n/F2n+1.

Proof. We proceed by induction on n. The base case b1 = F1/F2 and c1 = F2/F3

is immediate. Now assume bk = F2k−1/F2k and ck = F2k/F2k+1. We will show that

bk+1 = F2k+1/F2k+2; the proof that ck+1 = F2k+2/F2k+3 is similar. We must show two

things about F2k+1/F2k+2, namely that it lies strictly between bk and ck , and that it is

the first such term in the sequence (an).

The fact that ck < F2k+1/F2k+2 < bk admits a lovely proof without words. Consider

Figure 1. Let v1 and v2 be the vectors in R2 extending from the origin to (F2k, F2k−1)

and (F2k+1, F2k), respectively. The slope of v1 + v2 lies strictly between the slopes of

v1 and v2, as we see readily from the picture. But the slope of v1 is bk , the slope of v2

is ck , and the slope of v1 + v2 is (F2k−1 + F2k)/(F2k + F2k+1) = F2k+1/F2k+2.

We now show that F2k+1/F2k+2 is the first term of (an) which lies between bk and

ck . Again, we realize these ratios as slopes of vectors in the plane—see Figure 2.

Let

T =
{

(x, y) | F2k+1 ≤ x ≤ F2k+2 and
F2k

F2k+1

<
y

x
<

F2k−1

F2k

}

.
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F2k F2k+1 F2k+2

F2k–1

F2k

F2k+1

v1

v2

Figure 1. Ratios of consecutive Fibonacci numbers.

F2k F2k+1 F2k+2

F2k–1

F2k

F2k+1 T

Figure 2. The region T .

The boundary of the shaded region T is a trapezoid. Points on the two vertical line

segments (which lie in T ) represent fractions with denominators F2k+1 and F2k+2.

Points on the two dotted lines (which lie outside T ) represent the ratios F2k−1/F2k

and F2k/F2k+1. Lattice points in Figure 2 represent rational numbers. We claim that

T contains no lattice points other than (F2k+2, F2k+1). Any term of the sequence (an)

which lies between ck and bk in magnitude, but comes after bk and ck and before

F2k+1/F2k+2 in the sequence, would be represented by just such a lattice point, and so

proving this claim will suffice to complete the proof of Lemma 1. To do so, we invoke

the following theorem.

Theorem 2 (Pick’s theorem). Let R be a simply connected polygonal region in R2

with lattice point vertices. Let A be the area of R; let b be the number of lattice points

on the boundary of R; and let i be the number of lattice points in the interior of R.
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Then

A = i +
b

2
− 1.

Note that we cannot apply Pick’s theorem directly in our case, as the vertices of T

might not be lattice points. We can, however, cover T with the four parallelograms P1,

P2, P3, and P4, as shown in Figure 3, where P1 is the parallelogram determined by v1

and v2, and the others are translates of P1, namely P2 = P1 + v2, P3 = P1 + v1, and

P4 = P1 + 2v1. An easy induction shows that 2F2k+1 > F2k+2 and 3F2k > F2k+2, so

indeed T ⊆ P1 ∪ P2 ∪ P3 ∪ P4 = P , as depicted in Figure 3.

F2k F2k+1 F2k+2 3F2k 2F2k+1

F2k–1

F2k

F2k+1

Figure 3. Four parallelograms cover T .

The area of P1 is

∣

∣

∣

∣

det

(

F2k−1 F2k

F2k F2k+1

)∣

∣

∣

∣

= |F2k−1 F2k+1 − F2
2k| = 1,

where the last equality follows from a standard exercise in mathematical induction,

namely the fact that |Fn−1 Fn+1 − F2
n | = 1 for all integers n ≥ 2. Since P1, P2, P3,

and P4 are all congruent and intersect only along edges, it follows that P has area 4.

Consecutive Fibonacci numbers are coprime—again, an easy induction proves this.

It follows that for j ∈ {1, 2, 3, 4}, the only lattice points on the boundary of Pj are

the vertices of Pj . Hence the boundary lattice points of P are precisely the ten points

shown in Figure 3.

So by Pick’s theorem, the interior of P contains 4 − 10/2 + 1 = 0 lattice points.

Therefore T contains no lattice points other than (F2k+2, F2k+1), as desired.

Let L be the least upper bound of the sequence (ck), as above. It follows from

Lemma 1 that L = limk→∞ F2k/F2k+1. Let φ = (1 +
√

5)/2. The number φ is called

the golden ratio. It is well known that the limit L of the ratio of consecutive Fi-

bonacci numbers is φ−1. (Quick proof for the uninitiated: Let M = limn→∞ Fn+1/Fn =
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limn→∞ Fn+2/Fn+1 = limn→∞ (Fn+1 + Fn)/Fn+1 = 1 + 1/M . Solve for M to get

M = φ, and then take reciprocals.)

Cantor’s line of reasoning showed that L is not an element of {an}. But {an} contains

every rational number between 0 and 1. As 0 < φ−1 < 1, we therefore conclude that

φ−1 is not rational. Hence we have the following theorem.

Theorem 3. The golden ratio is irrational.

We remark that our discussion will immediately remind many readers of the con-

tinued fraction expansion for φ. Indeed, our proof that the two sequences produced by

Cantor’s method are given by ratios of consecutive Fibonacci numbers tracks closely

along the lines of a proof that a truncated continued fraction gives a best approximation

amongst all rationals with equal or smaller denominator.
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The Diophantine Equation x4
± y4

= iz2 in
Gaussian Integers

Filip Najman

Abstract. In this note we find all the solutions of the Diophantine equation x4 ± y4 = i z2

using elliptic curves over Q(i). Also, using the same method we give a new proof of Hilbert’s

result that the equation x4 ± y4 = z2 has only trivial solutions in Gaussian integers.

1. INTRODUCTION. The Diophantine equation x4 ± y4 = z2, where x, y, and z

are integers, was studied by Fermat, who proved that there exist no nontrivial solutions.

Fermat proved this using the infinite descent method, proving that if a solution can be

found, then there exists a smaller solution (see for example [1, Proposition 6.5.3]).
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