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5 Eigenvectors and Eigenvalues

In this section we will study a special type of basis, called an eigenbasis. For (almost) any

given operator, we get a specific basis which will make most our computations easier.

5.1 Eigenvectors

Definition 5.1. Let L : V → V be a linear transformation, and let λ be a scalar. If there

is a vector v ∈ V such that Lv = λv, then we say that λ is an eigenvalue of L, and v is an

eigenvector with eigenvalue λ.

Geometrically, an eigenvector corresponds to a direction in which our linear operator

purely stretches or shrinks vectors, without rotating or reflecting them at all. It can often

be an axis of rotation.

Example 5.2. Let A =

[
4 −2

1 1

]
. We can check that if x = (2, 1), then

Ax =

[
4 −2

1 1

][
2

1

]
=

[
6

3

]
= 3

[
2

1

]
,

so x is an eigenvector with eigenvalue 3. Similarly, we can check that if y = (1, 1), then

Ay =

[
4 −2

1 1

][
1

1

]
=

[
2

2

]
= 2

[
1

1

]
.

Thus y is an eigenvector with eigenvalue 2.

Example 5.3. Let Rπ/2 : R2 → R2 be the rotation map. We can see geometrically that this

has no non-trivial eigenvectors, since it changes the direction of any vector. Algebraically, if

(x, y) is an eigenvector, then we would have

Rπ/2(x, y) =

[
0 −1

1 0

][
x

y

]
=

[
−y
x

]
=

[
λx

λy

]
and thus weh ave λy = x, λx = −y, and the only solution here is x = y = 0.

In contrast, if we take the rotation map R : R3 → R3 that rotates around the z-axis, the

vector (0, 0, 1) will be an eigenvector with eigenvalue 1.

Example 5.4. Let V = D(R,R) be the space of differentiable real functions, and let d
dx

:

V → V be the derivative map. If f(x) = erx, then d
dx
f(x) = rerx = rf(x), so f is an

eigenvector with eigenvalue r.
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Proposition 5.5. Let V be a vector space and L : V → V a linear transformation. v is an

eigenvector with eigenvalue λ if and only if v ∈ ker(L− λI).

Proof. v is an eigenvector with eigenvalue λ if and only if Lv = λv = λIv, if and only if

0 = Lv − λIv = (L− λI)v, if and only if v ∈ ker(L− λI).

Corollary 5.6. The set of eigenvectors with eigenvalue λ is a subspace of V , called the

eigenspace corresponding to λ. We denote this space Eλ.

Corollary 5.7. A transformation L is invertible if and only if 0 is not an eigenvalue of L.

Proposition 5.8. Let L : V → V be a linear transformation. If E = {e1, . . . , en} is a set

of eigenvectors each with a distinct eigenvalue, then E is linearly independent.

Proof. Let λi be the eigenvalue corresponding to ei. Suppose ( for contradiction) that E

is linearly dependent, and let k be the smallest positive integer such that {e1, . . . , ek} is

linearly dependent; then we must have ak 6= 0, and we can compute

ek =
−a1
ak

e1 + · · ·+ −ak−1

ak
ek−1

L(ek) = L

(
−a1
ak

e1 + · · ·+ −ak−1

ak
ek−1

)
=
−a1
ak

L(e1) + · · ·+ −ak−1

ak
L(ek−1)

λkek =
−a1
ak

λ1e1 + · · ·+ −ak−1

ak
λk−1ek−1.

We can multiply the first equation by λ1 and subtract from the last equation; this gives us

0 =
−a1
ak

(λ1 − λk)e1 + · · ·+ −ak−1

ak
(λk−1 − λk)ek−1.

But we know by hypothesis that the set {e1, . . . , ek−1} is linearly independent, so all these

coefficients must be zero. Since the ai are not all zero, we must have at least some λi−λk =

0.

It’s straightforward enough to check that a vector is an eigenvector if we already have a

candidate; but how do we find them? Sometimes this is easy

Example 5.9. Let A =

[
3 0

0 2

]
. What are the eigenvalues and eigenspaces of A?

We see that

Ax =

[
3 0

0 2

][
x

y

]
=

[
3x

2y

]
.

Thus the eigenvalues are 3 and 2; the corresponding eigenspaces are spanned by (1, 0) and

(0, 1), respectively.
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When things aren’t this easy, there is still a fairly straightforward approach we can take:

Example 5.10. Let B =

[
7 2

3 8

]
. Find the eigenvalues and eigenvectors of B.

If x = (x, y) is an eigenvector with eigenvalue λ, then we have

Bx =

[
7x+ 2y

3x+ 8y

]
=

[
λx

λy

]

so we have the system of equations 7x + 2y = λx, 3x + 8y = λy. Equivalently, we have

(7− λ)x+ 2y = 0 and (3x+ (8− λ)y = 0. We row-reduce[
7− λ 2

3 8− λ

]
→

[
3 8− λ
0 2 + (8− λ)(λ− 7)/3

]

→

[
3 8− λ
0 6 + (−56 + 15λ− λ2)

]
=

[
3 8− λ
0 −λ2 + 15λ− 50

]
.

We first see that this is solveable if and only if 0 = λ2 − 15λ + 50 = (λ − 5)(λ − 10), and

thus if λ = 5 or λ = 10. Thus these are the two eigenvalues for B.

If λ = 5 then we have 3x+ 3y = 0 so y = −x. Any vector (α,−α) will be an eigenvector

with eigenvalue 5, so the eigenspace for 5 is the span of {(1,−1)}. And indeed, we compute

B(1,−1) =

[
7 2

3 8

][
1

−1

]
=

[
5

−5

]
= 5

[
1

−1

]
.

If λ = 10 then we have 3x − 2y = 0 and y = 3/2x. Thus any vector (2α, 3α) will be an

eigenvector with eigenvalue 10, and the corresponding eigenspace is spanned by {(2, 3)}. We

check:

B(2, 3) =

[
7 2

3 8

][
2

3

]
=

[
20

30

]
= 10

[
2

3

]
.

As the previous example shows, it is completely possible to find the eigenvectors and

eigenvalues with the tools we have already, but it’s pretty fiddly even for a small example.

We’d like to streamline the process, and this leads us to define the determinant.

5.2 Determinants

Definition 5.11. Let A ∈Mn×n. If A has n distinct eigenvalues, we say that the determinant

of A, written detA, is the product of the eigenvalues.

http://jaydaigle.net/teaching/courses/2020-spring-214/ 91

http://jaydaigle.net/teaching/courses/2020-spring-214/


Jay Daigle Occidental College Math 214: Linear Algebra

More generally, the determinant of A is the product of the eigenvalues “up to multi-

plicity”. Thus if the eigenspace of λ = 2 is three-dimensional, we will multiply in λ three

times.

Definition 5.12 (Formal definition we won’t really use).

detA =
∏
λ

λeλ where eλ = dim ker(A− λI)n.

The determinant is (roughly) the product of the eigenvalues, so it can tell something

about what the eigenvalues are. But this doesn’t help if we don’t have a way of finding the

determinant without already knowing the eigenvalues. Fortunately, there is a simple way to

compute it.

Example 5.13. The determinant of A =

[
3 0

0 2

]
is 3 · 2 = 6.

The determinant of B =

[
7 2

3 8

]
is 5 · 10 = 50.

Geometrically, the determinant represents the volume of the n-dimensional solid that our

matrix sends the n-dimensional unit cube to; thus it tells us how much our matrix stretches

its inputs.

5.2.1 The Laplace Formula

We first need to develop some notation.

Definition 5.14. Let A = (aij) be a n× n matrix. We define the i, jth minor matrix of A

to be the (n− 1)× (n− 1) matrix Mij obtained by deleting the row and column containing

aij—that is, deleting the ith row and jth column.

We define the i, jth minor of A to be detMij. We define the i, jth cofactor to be Aij =

(−1)i+j det(Mij).

Example 5.15. Let

A =


3 1 2

5 −2 −1

3 3 3

 .
Then we have

M1,1 =

[
−2 −1

3 3

]
M3,2 =

[
3 2

5 −1

]
.
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Fact 5.16 (Cofactor Expansion). Let A be a n× n matrix.

If A ∈M1×1 then A =
[
a11

]
and detA = a11.

Otherwise, for any k we have

det(A) =
n∑
i=1

akiAki = ak1Ak1 + ak2Ak2 + · · ·+ aknAkn

=
n∑
i=1

aikAik = a1kA1k + a2kA2k + · · ·+ ankAnk.

Thus we may compute the determinant of a matrix inductively, using cofactor expansion.

We can expand along any row or column; we should pick the one that makes our job easiest.

Remark 5.17. This is usually taken to be the definition of determinant. Feel free to think of

it that way, and the fact about eigenvectors as a theorem.

You can also think of the determinant as the unique multilinear map that satisfies certain

properties. You probably shouldn’t, at the moment. But you can.

Example 5.18. Let A =


3 2 1

0 5 1

0 0 2

. If we expand along the last row, we get

detA = 0 · (−1)3+1 det

[
2 1

5 1

]
+ 0 · (−1)3+2 det

[
3 1

0 1

]
+ 2 · (−1)3+3 det

[
3 2

0 5

]

= 2 det

[
3 2

0 5

]
= 2

(
0 · (−1)2+1 det

[
2
]

+ 5 · (−1)2+2 det
[
3
])

= 2(0 + 5 · 3) = 30.

Example 5.19. Let

A =


3 1 2

5 −2 −1

3 3 3

 .
We’d like to expand along the row or column wiht the most zeros, but we don’t have any.

I’m going to expand along the bottom row because at least everything is the same.

detA = 3(−1)3+1 det

[
1 2

−2 −1

]
+ 3(−1)3+2 det

[
3 2

5 −1

]
+ 3(−1)3+3

[
3 1

5 −2

]
= 3

(
1(−1)1+1(−1) + 2(−1)1+2(−2)

)
− 3

(
3(−1)1+1(−1) + 2(−1)1+25

)
+ 3

(
3(−1)1+1(−2) + 1(−1)1+2(5)

)
= 3(−1 + 4)− 3(−3− 10) + 3(−6− 5) = 9 + 39− 33 = 15.
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Using this method, we can compute the determinant of any size of matrix. But for small

matrices we can work out quick formulas that encode all this information.

Proposition 5.20.

det

[
a b

c d

]
= ad− bc det


a b c

d e f

g h i

 = aei+ bfg + cdh− gec− hfa− idb.

5.2.2 Properties of Determinants

We’d like to do things to make computing determinants easier, in addition to the formulas

I just gave. We can start by proving some simple results.

Proposition 5.21. If A is a n×n triangular matrix, then detA is the product of the diagonal

entries of A.

Proof. We use cofactor expansion; at each step, we have a row or column with only one

non-zero entry, on the diagonal. At the end of the cofactor expansion we have simply taken

the product of the diagonal entries.

Proposition 5.22. If A has a row or column of all zeroes, then detA = 0.

Proof. Do cofactor expansion along the row of all zeros.

Proposition 5.23. detAT = detA.

Proof. Do a cofactor expansion along the column of AT that corresponds to the row you

expanded along in A, or vice versa.

Fact 5.24 (Row Operations). � Interchanging two rows multiplies the determinant by

−1.

� Multiplying a row by a scalar multiplies the determinant by that scalar.

� Adding a multiple of one row to another row does not change the determinant.

�

det



r1
...

ai
...

rn


+ det



r1
...

bi
...

rn


= det



r1
...

ai + bi
...

rn


.
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Proof. The proof is really tedious and just involves a bunch of inductions on cofactor expan-

sions.

Example 5.25.

det


1 1 1

0 1 0

1 1 2

 = 1 det


3 3 3

0 1 0

1 1 2

 = 3

det


0 1 0

1 0 0

0 0 1

 = −1 det


4 4 4

0 1 0

1 1 2

 = 3 + 1 = 4.

Corollary 5.26. detA = 0 if and only if the rows of A are linearly dependent.

Proposition 5.27. A matrix A is invertible if and only if detA 6= 0.

Proof. We can view this proof in two different ways.

From the eigenvalue perspective: detA is the product of the eigenvalues. Thus detA = 0

if and only if 0 is an eigenvalue of A. But 0 is an eigenvalue of A if and only if A has

non-trivial kernel, and A is invertible if and only if ker(A) is trivial.

From the cofactor perspective: if A is invertible it is row-equivalent to the identity matrix,

which has determinant 1. None of the row operations can change a determinant from zero

to non-zero or vice versa, so detA is nonzero.

Conversely, if A is not invertible, it is row-equivalent to a matrix with a row of all zeros,

which has determinant zero. Since row operations cannot change a determinant from non-

zero to zero, detA = 0 as well.

Fact 5.28. If A,B are n× n matrices, then det(AB) = det(A) det(B).

Corollary 5.29. If A is a nonsingular matrix, then det(A−1) = 1
detA

.

Remark 5.30. This is why the inverse of a matrix so often has the same denominator ap-

pearing in most of the entries; it’s the reciprocal of the determinant.

Example 5.31. If A =

[
a b

c d

]
then A−1 = 1

detA

[
d −b
−c a

]
= 1

ad−bc

[
d −b
−c a

]
.

We check this by multiplying the two of them:[
a b

c d

]
1

ad− bc

[
d −b
−c a

]
=

1

ad− bc

[
ad− bc −ab+ ba

cd− dc −bc+ ad

]
=

[
1 0

0 1

]
.
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5.3 Characteristic Polynomials

Definition 5.32. We say that χA(λ) = det(A − λI) is the characteristic polynomial of A.

This is a polynomial in one variable, λ. We call the equation χA(λ) = 0 the characteristic

equation of A.

Proposition 5.33. The real number λ is an eigenvalue of A if and only if it is a root of the

characteristic polynomial of A. That is, the roots of χA(λ) is the set of eigenvalues of A.

Proof. Recall that v is an eigenvector with eigenvalue λ if and only if v ∈ ker(A−λI). Thus

λ is an eigenvalue if and only if ker(A− λI) has nontrivial kernel, which occurs if and only

if det(A− λI) = 0.

Example 5.34. Find the eigenvalues and corresponding eigenspaces of A =

[
3 2

3 −2

]
.

The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣3− λ 2

3 −2− λ

∣∣∣∣∣
= (3− λ)(−2− λ)− 2 · 3 = −6− 3λ+ 2λ+ λ2 − 6

= λ2 − λ− 12 = (λ− 4)(λ+ 3)

so the eigenvalues are 4 and −3. We compute

A− 4I =

[
−1 2

3 −6

]
→

[
1 −2

0 0

]
so ker(A − 4I) = {α(2, 1)}. Thus the eigenspace corresponding to 4 is E4 = span{(2, 1)}.
Similarly,

A+ 3I =

[
6 2

3 1

]
→

[
3 1

0 0

]
so ker(A+ 3I) = {α(−1, 3)}. Thus the eigenspace E−3 = span{(−1, 3)}.

Example 5.35. Find the eigenvalues and corresponding eigenspaces of A =

[
5 1

3 3

]
.

The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣
(

5− λ 1

3 3− λ

)∣∣∣∣∣
= (3− λ)(5− λ)− 1 · 3 = 15− 8λ+ λ2 − 3

= λ2 − 8λ+ 12 = (λ− 6)(λ− 2)
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so the eigenvalues are 6 and 2.

A− 6I =

[
−1 1

3 −3

]
→

[
−1 1

0 0

]

has kernel {α(1, 1)}, so the eigenspace E6 = span{(1, 1)}.

A− 2I =

[
3 1

3 0

]
→

[
3 1

0 0

]

has kernel {α(−1, 3)}, so the eigenspace E2 = span{(−1, 3)}.

Example 5.36. Find the eigenvalues and corresponding eigenspaces of A =


2 −3 1

1 −2 1

1 −3 2

.

The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣∣∣∣


2− λ −3 1

1 −2− λ 1

1 −3 2− λ


∣∣∣∣∣∣∣∣

= (2− λ)(−2− λ)(2− λ)− 3− 3− ((−2− λ)− 3(2− λ)− 3(2− λ))

= −λ3 + 2λ2 + 4λ− 8− 6 + 2 + λ+ 12− 6λ

= −λ3 + 2λ2 − λ = −λ(λ− 1)2

so the eigenvalues are 0 and 1 (twice). We have

A− 0I =


2 −3 1

1 −2 1

1 −3 2

→


1 0 −1

0 1 −1

0 0 0


so ker(A) = {α(1, 1, 1)}, and E0 = span{(1, 1, 1)}. We also have

A− I =


1 −3 1

1 −3 1

1 −3 1

→


1 −3 1

0 0 0

0 0 0


so ker(A− I) = {α(3, 1, 0) + β(−1, 0, 1)}, and E1 = span{(3, 1, 0), (−1, 0, 1)}.

Proposition 5.37. If A is a n× n matrix and n is odd, then A has at least one eigenvalue.

Proof. Recall that a degree n polynomial always has at least one real root if n is odd. Thus

if A ∈Mn×n, χA(λ) is degree n, and has a real root, which is an eigenvalue of A.
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Example 5.38. Find the eigenvalues and corresponding eigenspaces of B =


2 0 0

0 4 0

1 0 2

.

Since this matrix is triangluar, we know the eigenvalues are 2, 4, 2. We solve

A− 2I =


0 0 0

0 2 0

1 0 0

→


1 0 0

0 1 0

0 0 0


and ker(A− 2I) = {α(0, 0, 1)}, so E2 = span{(0, 0, 1)}. Similarly,

A− 4I =


−2 0 0

0 0 0

1 0 −2

→


1 0 0

0 0 1

0 0 0


so ker(A− 4I) = {α(0, 1, 0)} so E4 = span{(0, 1, 0)}.

Notice that in this case, the span of the eigenvectors is only 2-dimensional; the eigenvec-

tors don’t span the whole domain.
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