Math 214 Spring 2020 Linear Algebra HW 10 Due Tuesday, April 28

For all these problems, justify your answers; do not just write "yes" or "no" or give a single number.

1. Compute e^A and e^B , where

$$A = \begin{bmatrix} -2 & -1 \\ 6 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}.$$

- 2. The employees at a certain company can choose to sign up for a health benefit or not each year. Past data indicates that 80% of those who are enrolled one year will stay enrolled the next year, and 40% of those who are not enrolled will choose to enroll the next year.
 - (a) Write down a matrix for this Markov process.
 - (b) If 50% of the company is enrolled this year, how many employees will be enrolled next year? The year after that?
 - (c) In the long run, what percentage of employees do you expect to be enrolled in the health benefit?
- 3. (*) Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ be the matrix of a Markov process.
 - (a) Is there a steady state vector? That is, can you find a vector \mathbf{v} such that $A\mathbf{v} = \mathbf{v}$, and the entries of \mathbf{v} sum to one? What is it?
 - (b) Suppose you start with the distribution vector $\mathbf{w} = \begin{bmatrix} .7 \\ .3 \end{bmatrix}$. What distribution do you get after five steps? Ten? Fifteen?
 - (c) Is this Markov process guaranteed to converge to a steady state? Why or why not?
- 4. Let $\mathbf{u} = (2, 1, 3)$ and $\mathbf{v} = (6, 3, 9)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .

- (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 5. Let $\mathbf{u} = (2, -5, 4)$ and $\mathbf{v} = (1, 2, -1)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 6. Let $\mathbf{u} = (4, 1)$ and $\mathbf{v} = (3, 2)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 7. Let $\mathbf{u} = (3, 5)$ and $\mathbf{v} = (1, 1)$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (c) Verify that $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is orthogonal to $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 8. Let $V = \mathcal{P}_n(x)$ and fix real numbers x_0, x_1, \ldots, x_n be distinct real numbers. For $f, g \in V$, define

$$\langle f, g \rangle = \sum_{i=0}^{n} f(x_i)g(x_i)$$

Prove this is an inner product on V.

(Hint: See partial proof from class)

9. Let w_1, \ldots, w_n be positive real numbers. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i w_i$$

Prove that this is an inner product on \mathbb{R}^n . (The w_i are called the *weights* of the inner product).

- 10. Let $V = \mathcal{C}([1,3],\mathbb{R})$, with the usual inner product $\langle f,g \rangle = \int_1^3 f(t)g(t) dt$. Find ||1|| and ||x||. Find the projection of 1 + x onto 1 and x.
- 11. Prove the Pythagorean law: if \mathbf{u}, \mathbf{v} are orthogonal, then $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- 12. Let \mathbf{u}, \mathbf{v} be vectors in an inner product space V, with $\mathbf{v} \neq 0$. Let $\mathbf{p} = \operatorname{proj}_{\mathbf{v}} \mathbf{u}$. (Hint: compare the end of section 6.1).

Prove that $\langle \mathbf{u} - \mathbf{p}, \mathbf{p} \rangle = 0$.