## Math 214 Spring 2020 Linear Algebra HW 2 Solutions Due Friday, Thursday, February 6

For all these problems, justify your answers.

1. Suppose A is a matrix such that  $A^{-1} = \begin{bmatrix} 3 & 1 & 5 \\ 2 & -1 & 5 \\ 1 & 4 & -3 \end{bmatrix}$ . Find all solutions to  $A\mathbf{x} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$ . (Do not try to actually compute the matrix A.) Solution:

$$\mathbf{x} = A^{-1} \begin{bmatrix} 2\\5\\1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 5\\2 & -1 & 5\\1 & 4 & -3 \end{bmatrix} \begin{bmatrix} 2\\5\\1 \end{bmatrix} = \begin{bmatrix} 16\\4\\19 \end{bmatrix}$$

2. Find the inverse of  $\begin{bmatrix} 0 & -1 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & -2 & 3 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix}$  or prove it is not invertible.

Solution:

Thus we have

$$A^{-1} = \begin{bmatrix} -13/3 & -1/3 & 5/3 & -2/3 \\ 4/3 & 1/3 & -2/3 & 2/3 \\ 7/3 & 1/3 & -2/3 & 2/3 \\ 11/3 & 2/3 & -4/3 & 1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -13 & -1 & 5 & -2 \\ 4 & 1 & -2 & 2 \\ 7 & 1 & -2 & 2 \\ 11 & 2 & -4 & 1 \end{bmatrix}.$$

3. Find the inverse of  $\begin{bmatrix} 3 & 2 & 1 & 5 \\ 2 & 4 & 3 & 8 \\ -1 & 2 & 5 & 4 \\ 4 & 8 & 9 & 17 \end{bmatrix}$  or prove it is not invertible.

Solution:

We get a row of all zeroes on the left-hand block, so the matrix is not invertible.

4. Find the nullspace  $\begin{bmatrix} 3 & -2 & 2 & -5 \\ 1 & 0 & -2 & -2 \\ -4 & 2 & -4 & 3 \end{bmatrix}$ . (Express your answer as a set).

Solution:

| 3                    | -2 | 2  | -5 |               | [1 | 0  | -2  | -2 |               | [1 | 0 | -2 | -2 |               | [1 | 0 | 0 | 0 |
|----------------------|----|----|----|---------------|----|----|-----|----|---------------|----|---|----|----|---------------|----|---|---|---|
| 1                    | 0  | -2 | -2 | $\rightarrow$ | 0  | -2 | 8   | 1  | $\rightarrow$ | 0  | 2 | -8 | -1 | $\rightarrow$ | 0  | 2 | 0 | 7 |
| $\lfloor -4 \rfloor$ | 2  | -4 | 3  |               | 0  | 2  | -12 | -5 |               | 0  | 0 | -4 | -4 |               | 0  | 0 | 1 | 1 |

Thus the nullspace is the set  $\{(0, 7/2\alpha, -\alpha, \alpha)\}$ . Alternatively, you could write  $N(A) = \{(0, 7\alpha, -2\alpha, 2\alpha)\}$ .

5. (a) Draw a graph of the Cartesian plane with  $\begin{bmatrix} 2\\3 \end{bmatrix}$  and  $\begin{bmatrix} -1\\4 \end{bmatrix}$  in standard position. Solution:



(b) Draw a graph of the Cartesian plane with the vector  $\begin{bmatrix} 3\\ -1 \end{bmatrix}$  with its tail at the point (1, 2), and the vector  $\begin{bmatrix} 2\\ -4 \end{bmatrix}$  with its tail at (-1, 3).

Solution:



6. Use the picture below to:

(a) Write the vector  $\overrightarrow{AB}$  in standard vector notation.

Solution:  $\overrightarrow{AB} = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$ .

- (b) Write the vector  $\mathbf{v}$  in standard vector notation.
  - Solution:  $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ .
- (c) Find the vector  $\mathbf{u} + \mathbf{w}$  and write it in standard vector notation. Solution:  $\mathbf{u} + \mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ .
- 7. (a) If A = (2, 1) and B = (-2, 2), write the vector  $\overrightarrow{AB}$  in standard vector notation. Solution:  $\overrightarrow{AB} = \begin{bmatrix} -4\\ 1 \end{bmatrix}$ .
  - (b) If C = (1, -1, 0) and D = (0, 1, 2), write the vector  $\overrightarrow{CD}$  in standard vector notation. Solution:  $\overrightarrow{CD} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ .
- 8. Compute the following:

(a)

$$\begin{bmatrix} 1\\ -3/2\\ 4 \end{bmatrix} + \begin{bmatrix} -7\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} -6\\ 1/2\\ 5 \end{bmatrix} \qquad \begin{bmatrix} 1\\ 5\\ 3\\ 7\\ 2 \end{bmatrix} + \begin{bmatrix} -5\\ -3\\ 1\\ \pi\\ 2 \end{bmatrix} = \begin{bmatrix} -4\\ 2\\ 4\\ 7+\pi\\ 4 \end{bmatrix}$$

9. Compute the following:

$$e \cdot \begin{bmatrix} 2\\1\\-2\\-3 \end{bmatrix} = \begin{bmatrix} 2e\\e\\-2e\\-3e \end{bmatrix} \qquad -3 \cdot \begin{bmatrix} -7\\3\\1 \end{bmatrix} = \begin{bmatrix} 21\\-9\\-3 \end{bmatrix}$$

10. Let 
$$\mathbf{u} = \begin{bmatrix} -1\\0\\3 \end{bmatrix}$$
, let  $\mathbf{v} = \begin{bmatrix} 4\\-2\\7 \end{bmatrix}$ , and let  $\mathbf{w} = \begin{bmatrix} 0\\5\\-3 \end{bmatrix}$ 

(a) Compute  $2\mathbf{v} + 3\mathbf{u}$ Solution:

$$2\mathbf{v} + 3\mathbf{u} = \begin{bmatrix} 8\\ -4\\ 14 \end{bmatrix} + \begin{bmatrix} -3\\ 0\\ 9 \end{bmatrix} = \begin{bmatrix} 5\\ -4\\ 23 \end{bmatrix}$$

(b) Compute  $5\mathbf{u} + 2\mathbf{w}$ . Solution:

$$5\mathbf{u} + 2\mathbf{w} = \begin{bmatrix} -5\\0\\15 \end{bmatrix} + \begin{bmatrix} 0\\10\\-6 \end{bmatrix} = \begin{bmatrix} -5\\10\\9 \end{bmatrix}.$$