Math 214 Spring 2020 Linear Algebra HW 3 Solutions Due Thursday, February 13

1. (*) Let $\mathcal{P}(x) = \{a_0 + a_1x + \cdots + a_nx^n : n \in \mathbb{N}, a_i \in \mathbb{R}\}$ be the set of polynomials with real coefficients. Define addition by

$$(a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_nx^n) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

and define scalar multiplication by

$$r(a_0 + a_1x + \dots + a_nx^n) = ra_0 + ra_1x + \dots + ra_nx^n.$$

Prove that $\mathcal{P}(x)$ is a vector space.

Solution:

Let $r, s \in \mathbb{R}$ be scalars, and $f(x) = a_0 + \cdots + a_n x^n$, $g(x) = b_0 + \cdots + b_n x^n$, $h(x) = c_0 + \cdots + c_n x^n$ be elements of $\mathcal{P}(x)$. Then

(a)

$$f(x)+g(x) = (a_0 + \dots + a_n x^n) + (b_0 + \dots + b_n x^n) = (a_0 + b_0) + \dots + (a_n + b_n) x^n \in \mathcal{P}(x).$$

(b)

$$f(x) + g(x) = (a_0 + \dots + a_n x^n) + (b_0 + \dots + b_n x^n) = (a_0 + b_0) + \dots + (a_n + b_n) x^n$$

= $(b_0 + \dots + b_n x^n) + (a_0 + \dots + a_n x^n) = g(x) + f(x).$

(c)

$$(f(x) + g(x)) + h(x) \quad ((a_0 + \dots + a_n x^n) + (b_0 + \dots + b_n x^n)) + (c_0 + \dots + c_n x^n)$$

= $((a_0 + b_0) + \dots + (a_n + b_n)x^n) + (c_0 + \dots + c_n x^n)$
= $((a_0 + b_0 + c_0) + \dots + (a_n + b_n + c_0)x^n)$
= $(a_0 + \dots + a_n x^n) + ((b_0 + c_0) + \dots + (b_n + c_n)x^n)$
= $(a_0 + \dots + a_n x^n) + ((b_0 + \dots + b_n x^n) + (c_0 + \dots + c_n x^n))$
= $f(x) + (g(x) + h(x)).$

(d) We set $\mathbf{0} = 0$ the zero polynomial. Then we see that

$$0 + f(x) = 0 + (a_0 + \dots + a_n x^n) = (a_0 + 0) + \dots + a_n x^n = a_0 + \dots + a_n x^n = f(x)$$

so we have an additive identity.

(e) Set
$$-f(x) = (-a_0) + \dots + (-a_n)x^n$$
. Then
 $f(x) + (-f(x)) = (a_0 + (-a_0)) + \dots + (a_n + (-a_n))x^n = 0 + \dots + 0x^n = 0.$

(f)

$$rf(x) = r(a_0 + \dots + a_n x^n) = ra_0 + \dots + (ra_n)x^n \in \mathcal{P}(x)$$

(g)

$$r(f(x) + g(x)) = r((a_0 + b_0) + \dots + (a_n + b_n)x^n)$$

= $(r(a_0 + b_0)) + \dots + (r(a_n + b_n))x^n$
= $(ra_0 + rb_0) + \dots + (ra_n + rb_n)x^n$
= $(ra_0 + \dots + ra_nx^n) + (rb_0 + \dots + rb_nx^n)$
= $rf(x) + rg(x).$

(h)

$$(r+s)f(x) = (r+s)a_0 + \dots + ((r+s)a_n)x^n$$

= $ra_0 + sa_0 + \dots + (ra_n + sa_n)x^n$
= $(ra_0 + \dots + ra_nx^n) + (sa_0 + \dots + sa_nx^n)$
= $r(a_0 + \dots + a_nx^n) + s(a_0 + \dots + a_nx^n) = rf(x) + sf(x).$

(i)

$$(rs)f(x) = rsa_0 + \dots + (rsa_n)x^n = r(sa_0) + \dots + (r(sa_n))x^n$$

= $r(sa_0 + \dots + (sa_n)x^n) = r(sf(x)).$

(j)

$$1f(x) = 1(a_0 + \dots + a_n x^n) = 1a_0 + \dots + (1a_n)x^n = a_0 + \dots + a_n x^n = f(x).$$

2. Prove that if $r\mathbf{u} = \mathbf{0}$, then either r = 0 or $\mathbf{u} = \mathbf{0}$.

Solution: Suppose $r\mathbf{u} = \mathbf{0}$ and $r \neq 0$. Then 1/r is a real number, and we can compute

	$\frac{1}{r}(r\mathbf{u}) = \frac{1}{r}0$
multiplicative associativity	$\left(rac{1}{r} ight)\cdot r)\mathbf{u}rac{1}{r}0$
arithmetic	$1 \cdot \mathbf{u} = \frac{1}{r} 0$
multiplicative identity	$\mathbf{u} = \frac{1}{r} 0$
proposition from class.	$\mathbf{u} = 0$

Thus if $r \neq 0$ then $\mathbf{u} = \mathbf{0}$.

3. (*) Show that the zero vector is unique. That is, if \mathbf{v} is a vector with the property that $\mathbf{v} + \mathbf{u} = \mathbf{u}$ for every vector $\mathbf{u} \in V$, then $\mathbf{v} = \mathbf{0}$.

Solution: Here are two different proofs:

First, we can simply suppose $\mathbf{v} + \mathbf{u} = \mathbf{u}$ for some $\mathbf{v}, \mathbf{u} \in V$. Then

$\mathbf{v} + \mathbf{u} = \mathbf{u} + 0$	additive identity
$\mathbf{v}=0$	cancellation.

Possibly slightly better is to observe that if 0 is not unique, then there is some $\hat{0}$ with the same property. Then we have

additive identity	$0+\hat{0}=\hat{0}$
given property	$0+\mathbf{\hat{0}}=0$
transitive property.	$0=\mathbf{\hat{0}}$

- 4. (a) Show that the set $\{(x, x, y, y) | x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^4 .
 - (b) Show that the set $\{(x, y, 0) | x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 . What does this subspace look like geometrically?
 - (c) Show that the set $\{(x, 2x, 3x) | x \in \mathbb{R}\}\$ is a subspace of \mathbb{R}^3 . What does this subspace look like geometrically?

Solution:

- (a) We need to check the three subspace properties.
 - i. The zero vector (0, 0, 0, 0) is in this set, corresponding to x = y = 0.
 - ii. If $(x_1, x_1, y_1, y_1), (x_2, x_2, y_2, y_2)$ are in the set, then

 $(x_1, x_1, y_1, y_1) + (x_2, x_2, y_2, y_2) = (x_1 + x_2, x_1 + x_2, y_1 + y_2, y_1 + y_2)$

is also in the set (corresponding to $x = x_1 + x_2, y = y_1 + y_2$). iii. If $r \in \mathbb{R}$ and (x_1, x_1, y_1, y_1) is in the set, then

$$r(x_1, x_1, y_1, y_1) = (rx_1, rx_1, ry_1, ry_1)$$

is in the set (corresponding to $x = rx_1, y = ry_1$).

Thus it is a subspace by the subspace proposition.

- (b) We check the three subspace properties.
 - i. The zero vector (0, 0, 0) is in this set, corresponding to x = y = 0.
 - ii. If $(x_1, y_1, 0)$ and $(x_2, y_2, 0)$ are in the set, then

$$(x_1, y_1, 0) + (x_2, y_2, 0) = (x_1 + x_2, y_1 + y_2, 0)$$

is in the set, corresponding to $x = x_1 + x_2, y = y_1 + y_2$. iii. If $r \in \mathbb{R}$ and $(x_1, y_1, 0)$ is a vector in the set, then

$$r(x_1, y_1, 0) = (rx_1, ry_1, 0)$$

is in the set, corresponding to $x = rx_1, y = ry_1$.

This is the xy plane through the origin.

- (c) We need to check the three subspace properties.
 - i. The zero vector (0, 0, 0) is in the set.
 - ii. If (x, 2x, 3x) and (y, 2y, 3y) are in the set, then

(x, 2x, 3x) + (y, 2y, 3y) = (x + y, 2(x + y), 3(x + y))

is also in the set.

iii. If $r \in \mathbb{R}$ and (x, 2x, 3x) is a vector in the set, then

$$r(x, 2x, 3x) = (rx, 2(rx), 3(rx))$$

is also a vector in the set.

Thus it is a subspace by the subspace proposition. The set is a line through the origin (angling up).

- 5. (a) Show that the set $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0\}$ is a vector space. (Hint: Show it is a subspace of something we know is a vector space).
 - (b) Show that the set $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 1\}$ is not a vector space.

Solution:

- (a) This is a set of functions, so it is a subset of $\mathcal{F}(\mathbb{R},\mathbb{R})$. So we just need to check the three subspace properties.
 - i. If **0** is the zero function given by $\mathbf{0}(x) = 0$, then $\mathbf{0}(0) = 0$ and thus **0** is in the set.
 - ii. Suppose f, g are functions with f(x) = 0 = g(x). Then (f+g)(x) = f(x) + g(x) = 0 + 0 = 0, so f + g is in the set.
 - iii. Suppose f is a function with f(x) = 0 and $r \in \mathbb{R}$. Then (rf)(0) = rf(0) = r0 = 0 so rf is in the set.

Thus the set is a subspace of $\mathcal{F}(\mathbb{R},\mathbb{R})$ by the subspace proposition.

- (b) We just need to show that one of the three subspace properties fails. In this case, we see that $\mathbf{0}(0) = 0 \neq 1$, so the zero vector is not contained in this set. Thus it is not a vector space.
- 6. (a) Show that if n is a positive integer, then the set $\mathcal{P}_n(x)$ of polynomials of degree at most n is a vector space.
 - (b) Show that the set C(ℝ, ℝ) the set of continuous functions of one real variable is a vector space.

Solution:

- (a) We know that $\mathcal{P}_n(x) \subseteq \mathcal{P}(x)$ the space of all polynomials, so we just have to check the three subspace properties.
 - i. The zero vector is the zero polynomial $0 = 0 + 0x + \cdots + 0x^n \in \mathcal{P}_n(x)$.
 - ii. If $a_0 + a_1x + \cdots + a_nx^n$, $b_0 + b_1x + \cdots + b_nx^n \in \mathcal{P}_n(x)$, then

 $a_0 + a_1 x + \dots + a_n x^n + b_0 + b_1 x + \dots + b_n x^n \in \mathcal{P}_n(x) = (a_0 + b_0) + (a_1 + b_1) x + \dots + (a_n + b_n) x^n \in \mathcal{P}_n(x)$

iii. If $a_0 + a_1 x + \dots + a_n x^n \in \mathcal{P}_n(x)$ then

$$r(a_0 + a_1x + \dots + a_nx^n) = (ra_0) + (ra_1)x + \dots + (ra_n)x^n \in \mathcal{P}_n(x).$$

Thus $\mathcal{P}_n(x)$ is a subspace of $\mathcal{P}(x)$ by the subspace proposition.

- (b) We know that $\mathcal{C}(\mathbb{R},\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R},R)$, so we just need to check the three subspace properties.
 - i. The zero function f(x) = 0 is continuous, so $\mathbf{0} \in \mathcal{C}(\mathbb{R}, \mathbb{R})$.
 - ii. If $f, g \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ then f, g are continuous functions, so f + g is a continuous function (from calculus 1) and thus $f + g \in \mathcal{C}(\mathbb{R}, \mathbb{R})$.
 - iii. If $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ and $r \in \mathbb{R}$ then f is a continuous function, and thus rf is a continuous function and thus in $\mathcal{C}(\mathbb{R}, \mathbb{R})$.

Thus $\mathcal{C}(\mathbb{R},\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R},\mathbb{R})$.

- 7. Which of the following are vector spaces? You don't need to justify your answers.
 - (a) $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0 \text{ and } f(1) = 0\}$
 - (b) $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0 \text{ or } f(1) = 0\}$
 - (c) $\{f : \mathbb{R} \to \mathbb{R} | f \text{ is constant}\}$
 - (d) $\mathcal{C}([a, b], \mathbb{R})$ the space of continuous functions from [a, b] to \mathbb{R} .

Solution:

- (a) yes
- (b) no
- (c) yes
- (d) yes
- 8. Which of the following are vector spaces? You don't need to justify your answers.
 - (a) $\{(a,b) \in \mathbb{R}^2 | a+b=0\}$
 - (b) $\{(a,b) \in \mathbb{R}^2 | a+b=3\}$
 - (c) $\{a_0 + a_1x + a_2x^2 \in \mathcal{P}_2(x) | a_1 = 1\}.$
 - (d) $\{a_0 + a_2x^2 + a_3x^3 + a_5x^5 \in \mathcal{P}_5(x)\}.$

Solution:

- (a) yes
- (b) no
- (c) no
- (d) yes