
Math 214 Final Exam

Practice Problem Solutions

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection
of practice problems. I will update you when I finalize the test format.

Proofs

1. Let Q be the subspace of P(x) consisting of polynomials with zero constant term. Prove that the
function D : Q→ P(x) given by the derivative is an isomorphism.

Solution: We know that D is linear, so we just need to prove that it is one-to-one and onto.
Suppose D(a1x + · · · + anx

n) = 0. then we have 0 = a1 + 2a2x + 3a3x
2 + · · · + nanx

n−1 and thus
a1 = 2a2 = · · · = nan = 0 so a1 = a2 = · · · = an = 0. Thus D(f) = 0 implies f = 0, so ker(D) = {0}
and thus D is one-to-one.

Conversely, let f(x) = a0 + a1x+ · · ·+ anx
n ∈ P(x). Then let g(x) = a0x+ a1

2 x
2 + · · ·+ an

n+1x
n+1 ∈ Q,

and we see that D(g) = f . Thus D is onto.

Consequently we see that D is one-to-one and onto, thus it is an isomorphism by definition.

2. Let U = span{x, sin(x), cos(x), x5, 1}. Find an isomorphism between U and R5.

Solution: Define L by

L(a1x+ a2 sin(x) + a3 cos(x) + a4x
5 + a5) =


a1
a2
a3
a4
a5

 .
Then L takes a basis to a basis, and thus is an isomorphism.

3. Suppose V is a vector space and L : V → R5 is surjective and dim ker(L) = 2. What can you say
about V ?

Solution: By the rank-nullity theorem, dimV = dim ker(L) + dimL(V ). We know that L(V ) = R5

so dimL(V ) = 5, and dim ker(L) = 2. Thus dimV = 7.

4. Suppose T : R5 → P4(x) and dim ker(T ) = 1. What can you say about T (R5)?

Solution: By the Rank-Nullity Theorem, we know that dimR5 = dim ker(T ) + dimT (R5), and
thus 5 = 1 + dimT (R5), so dimT (R5) is four-dimensional. Thus T is not surjective since P4(x) is
five-dimensional.

5. If λ is an eigenvalue of A then prove that λ−1 is an eigenvalue of A−1.

Solution: Let v ∈ Eλ be an eigenvector with eigenvalue λ. Then Av = λv, which implies that
A−1(λv)A−1Av = v. Dividing both sides by λ, we have A−1v = λ−1v. Thus v is an eigenvector of
A−1 with eigenvalue λ−1.
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Things to Ponder

1. Find a 4×4 matrix with no real eigenvalues. Is it possible to find a 3×3 matrix with no real eigenvalues?

Solution: We want to find a matrix whose characteristic polynomial has no real roots. The simplest
and most obvious such polynomial is (x2 + 1)2, so we want to build one of these. The simplest way to
do that is to find a 2× 2 matrix with characteristic polynomial x2 + 1 and repeat it twice.

We’ve actaully seen this matrix before; it’s the matrix

[
0 1
−1 0

]
, which has characteristic polynomial

χ(λ) = det

[
−λ 1
−1 −λ

]
= (−λ)2 − (−1 · 1) = λ2 + 1.

To get a 4× 4 matrix we can glue two copies of this together. We set

A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


which you can see has characteristic polynomial χA(λ) = (λ2 + 1)(λ2 + 1). This has no real roots, so
the matrix has no real eigenvalues.

For a 3 × 3 matrix, we would be looking for a degree 3 polynomial with no real roots. No such
polynomial exists, so every 3× 3 matrix has a real eigenvalue.

(For similar reasons, it is a theorem that every matrix has a complex eigenvalue).

2. Find matrices A,B ∈Mn×n such that Tr(A) Tr(B) 6= Tr(AB).

Find a matrix A such that Tr(A2) < 0.

Solution:

Solving the second will also solve the first.

Let A =

[
0 1
−1 0

]
. Then Tr(A) = 0. But

A2 =

[
−1 0
0 −1

]
Tr(A2) = −2 6= 02.

Secretly what’s going on here is that A2 has the eigenvalues ±i, so A2 has the eigenvalues (±i)2, both
of which are −1.

3. What happens if you use the Gram-Schmidt process on a set of vectors that isn’t linearly independent?

Solution: When you get to the vector that is a linear combination of the previous vectors, it will
equal the sum of its projections onto them. So one of your vectors will be transformed into zero.

That is, if e3 ∈ span{e1, e2}, then f3 = e3 − proje1
e3 − proje2

e3 = 0.

Thus the Gram-Schmidt process can be used to turn a spanning set into a basis, by throwing out the
vectors that become zero.

Find the transition matrices between the following bases

1. The standard basis and

F =


5

2
1

 ,
2

3
4

 ,
1

6
3


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Solution: The transition matrix from F to the standard basis is

A =

5 2 1
2 3 6
1 4 3

 .
The transition matrix from the standard basis to F is

A−1 =

 3/14 1/35 −9/70
0 −1/5 2/5

−1/14 9/35 −11/70

 .
2. The standard basis and

F =


1

1
1

 ,
 1
−1
0

 ,
1

1
0


Solution: The transition matrix from F to the standard basis is

A =

1 1 1
1 −1 1
1 0 0

 .
The transition matrix from the standard basis to F is

A−1 =

 0 0 1
1/2 −1/2 0
1/2 1/2 −1

 .
3.

E =


1

2
1

 ,
1

1
1

 ,
1

1
2

 and F =


1

0
1

 ,
1

1
0

 ,
0

1
1


Solution:

The transition matrix from E to the standard basis is

A =

1 1 1
2 1 1
1 1 2

 .
The transition matrix from F to the standard basis is

B =

1 1 0
0 1 1
1 0 1


and the transition matrix from the standard basis to F is

B−1 =

 1/2 −1/2 1/2
1/2 1/2 −1/2
−1/2 1/2 1/2

 .
So the transition matrix from E to F is

B−1A =

 1/2 −1/2 1/2
1/2 1/2 −1/2
−1/2 1/2 1/2

1 1 1
2 1 1
1 1 2

 =

0 1/2 1
1 1/2 0
1 1/2 1


and the transition matrix from F to E is

(B−1A)−1 =

−1 0 1
2 2 −2
0 −1 1

 .
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4.

E =


3

0
1

 ,
−1

3
2

 ,
0

1
1

 and F =


1

0
0

 ,
1

1
0

 ,
1

1
1


Solution: The transition matrix from E to the standard basis is

A =

3 −1 0
0 3 1
1 2 1


and the transition matrix from F to the standard basis is

B =

1 1 1
0 1 1
0 0 1

 .
The transition matrix from the standard basis to F is then

B−1 =

1 −1 0
0 1 −1
0 0 1

 .
Thus the transition matrix from E to F is

B−1A =

1 −1 0
0 1 −1
0 0 1

3 −1 0
0 3 1
1 2 1

 =

 3 −4 −1
−1 1 0
1 2 1


and the transition matrix from F to E is

(B−1A)−1 =

 1/2 1 1/2
1/2 2 1/2
−3/2 −5 −1/2

 .
Write the given element in the given basis

1. Write (3, 1, 4) in the basis F =


1

0
0

 ,
1

1
0

 ,
1

1
1

 .

Solution: The transition matrix from F to the standard basis is

A =

1 1 1
0 1 1
0 0 1


so the transition matrix from the standard basis to F is the inverse inverse

A−1 =

1 −1 0
0 1 −1
0 0 1

 .
Thus

[(3, 1, 4)]F =

1 −1 0
0 1 −1
0 0 1

3
1
4

 =

 2
−3
4

 .
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2. Write (2, 7, 1) in the basis F =


1

0
1

 ,
1

1
0

 ,
0

1
1

 .

Solution: The transition matrix from F to the standard basis is

A =

1 1 0
0 1 1
1 0 1


so the transition matrix from the standard basis to F is

A−1 =
1

2

 1 −1 1
1 1 −1
−1 1 1


so

[(2, 7, 1)]F =
1

2

 1 −1 1
1 1 −1
−1 1 1

2
7
1

 =

−2
4
3

 .

3. Write (1,−1, 0) in the basis F =


3

5
2

 ,
7

1
4

 ,
1

1
1

 .

Solution: The transition matrix from F to the standard matrix is

A =

3 7 1
5 1 1
2 4 1


so the transition matrix from the standard basis to F is

A−1 =
1

12

 3 3 −6
3 −1 −2
−18 −2 24


and

[(1,−1, 0)]F =
1

12

 3 3 −6
3 −1 −2
−18 −2 24

 1
−1
0

 =

 0
1/3
−4/3

 .

4. Write (2, 3, 4) in the basis F =


0

1
0

 ,
1

0
1

 ,
 1

0
−1

 .

Solution:

The transition matrix from F to the standard basis is

A =

0 1 1
1 0 0
0 1 −3


so the transition matrix from the standard basis to F is

A−1 =

 0 1 0
1/2 0 1/2
1/2 0 −1/2


and

[(2, 3, 4)]F =

 0 1 0
1/2 0 1/2
1/2 0 −1/2

2
3
4

 =

 3
3
−1

 .
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Find the matrix of the operator with respect to the given basis

1. Give the matrix of L(x, y, z) = (3x+y+z, 5x−2y+z, y+z) with respect to F =


1

1
0

 ,
1

0
1

 ,
 1

0
−1

 .

Solution:

The matrix of L with respect to the standard basis is

A =

3 1 1
5 −2 1
0 1 1

 .
The transition matrix from F to the standard basis is

S =

1 1 1
1 0 0
0 1 −1


with inverse

S−1 =

 0 1 0
1/2 −1/2 1/2
1/2 −1/2 −1/2

 .
Thus the matrix of L with respect to F is

S−1AS =

3 6 4
1 −1/2 −3/2
0 −3/2 −1/2

 .

2. Give the matrix of L(x, y, z) = (2x+3y−z, 4x−y+3z, 2x+z) with respect to F =


0

1
0

 ,
1

2
1

 ,
 1

1
−1

 .

Solution:

The matrix of L with respect to the standard basis is

A =

2 3 −1
4 −1 3
2 0 1


and the transition matrix from F to the standard basis is

S =

0 1 1
1 2 1
0 1 −1


with

S−1 =

−3/2 1 −1/2
1/2 0 1/2
1/2 0 −1/2

 .
Thus the matrix of L with respect to F is

S−1AS =

−11/2 −7 −19/2
3/2 5 7/2
3/2 2 5/2

 .
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3. Give the matrix of L(x, y, z) = (−x+4y+2z, 3x−5y+2, 3x+2y) with respect to F =


1

1
1

 ,
1

0
1

 ,
1

0
0

 .

Solution: The matrix of L with respect to the standard basis is

A =

−1 4 2
3 −5 2
3 2 0


and the transition matrix from F to the standard basis is

S =

1 1 1
1 0 0
1 1 0


with inverse

S−1 =

0 1 0
0 −1 1
1 0 −1

 .
Thus the matrix of L with respect to F is

S−1AS =

0 5 3
5 −2 0
0 −2 −4

 .

4. Give the matrix of L(x, y, z) = (2x−y, 3x+y+4z, x+2y+z) with respect to F =


3

2
1

 ,
1

1
1

 ,
1

0
0

 .

Solution:

The matrix of L with respect to the standard basis is

A =

2 −1 0
3 1 4
1 2 1


and the transition matrix from F to the standard basis is

S =

3 1 1
2 1 0
1 1 0


with inverse

S−1 =

0 1 −1
0 −1 2
1 −2 1

 .
Thus the matrix of L with respect to F is

S−1AS =

 7 4 2
1 0 −1
−18 −11 3

 .
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Angles and Magnitudes

1. Compute

3
1
2

 ·
 5

7
−1

 ,


4
1
3
5

 ·


2
−5
7
4

 ,
1

3
2

 ·
 4
−1
−1

 ,
7

1
5

 ·
−3

1
1

 .
Solution: 20, 44,−1,−15.

2. Find the magnitudes and corresponding unit vectors for3
1
2

 , [
5
12

]
,

 4
2
−2

 ,
 7
−1
−3

 .
Solution:

√
9 + 1 + 4 =

√
13,
√

25 + 144 = 13,
√

16 + 4 + 4 =
√

24 = 2
√

6,
√

49 + 1 + 9 =
√

59.

3. Find projv u for

(a) u = (5, 2),v = (−3, 4)

(b) u = (2, 1),v = (7, 1)

(c) u = (3, 1, 4),v = (2, 1, 1)

(d) u = (2, 1, 1),v = (−4,−1,−1)

(e) u = (5, 0, 0),v = (3, 2, 1).

Solution:

(a) −725

[
−3
4

]
(b) 15

50

[
7
1

]

(c) 11
6

2
1
1


(d) −1018

−4
−1
−1


(e) 15

14

3
2
1


Diagonalization Theory

1. In class we saw that0 0 0
0 1 0
0 0 1

 =

−1 3 −1
1 −2 1
1 −3 2

2 −3 1
1 −2 1
1 −3 2

1 3 −1
1 1 0
1 0 1

 .
Multiply out the three matrices on the right and confirm that this works.
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2. Let A =

[
1 1
0 1

]
. What are the eigenvalues of A? Is A2 = A? Why not?

Solution: χA(λ) = (1− λ)2 has roots 1, 1, so the eigenvalues are 1. We compute that

A2 =

[
1 1
0 1

] [
1 1
0 1

]
=

[
1 2
0 1

]
6= A.

In class we argued that if a diagonalizable matrix has eigenvalues all equal to 1 and 0, then An = A.
This matrix has all eigenvalues 1, but it is not in fact diagonalizable since dimE1 = 1. Thus the same
principle does not hold.

3. Show the following pairs of matrices are not similar:

A =

[
4 1
3 1

]
B =

[
1 5
1 1

]

C =

2 1 4
0 2 3
0 0 4

 D =

3 0 0
2 2 0
5 1 3


E =

3 4 1
0 8 −2
0 0 10

 F =

 4 0 0
−1 5 0
5 3 12


G =

1 0 0
0 1 0
0 0 1

 H =

1 0 1
0 1 1
0 0 1

 .
Solution: Tr(A) = 5 and Tr(B) = 2 so the matrices aren’t similar.

Tr(C) = Tr(D) = 8, but det(C) = 16 and det(D) = 18 so the matrices aren’t similar.

Tr(E) = Tr(F ) = 21 and det(E) = det(F ) = 240. But the eigenvalues of E are 3, 8, 10 and the
eigenvalues of F are 4, 5, 12, so the matrices are not similar.

G and H have the same sets of eigenvalues. But G is the identity and so is only similar to itself.

Diagonalization

For each of the following matrices, determine whether it is diagonal. If it is, diagonalize it, then computeA5.

1. A =

[
5 2
2 5

]
Solution: A has eigenvalues 7, 3 with eigenvectors (1, 1), (−1, 1). This gives us

U =

[
1 −1
1 1

]
U−1 =

1

2

[
1 1
−1 1

]
D = U−1AU =

[
7 0
0 3

]
A5 = UD5U−1 =

1

2

[
1 −1
1 1

] [
7 0
0 3

]5 [
1 1
−1 1

]
=

1

2

[
1 −1
1 1

] [
16807 0

0 243

] [
1 1
−1 1

]
=

[
8525 8282
8282 8525

]
.
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2. A =

[
−4 6
−3 5

]
Solution: The eigenvalues are 2,−1 with corresponding eigenvectors (1, 1), (2, 1). We have

U =

[
1 2
1 1

]
U−1 =

[
−1 2
1 −1

]
D = U−1AU =

[
2 0
0 −1

]
A5 = UD5U−1 = U

[
32 0
0 −1

]
U−1 =

[
−34 66
−33 65

]
.

3. A =

3 1 0
0 3 1
0 0 3


Solution: The only eigenvalue is 3, and the corresponding eigenvector is (1, 0, 0). Thus the eigenvec-
tors do not span R3 and so the matrix is not diagonalizable.

4. A =

1 0 1
0 1 1
1 1 0


Solution: The eigenvalues are 2,−1, 1 with corresponding eigenvectors (1, 1, 1), (−1,−1, 2), (−1, 1, 0).
We compute

U =

1 −1 −1
1 −1 1
1 2 0


U−1 =

1

6

 2 2 2
−1 −1 2
−3 3 0


D = U−1AU =

2 0 0
0 −1 0
0 0 1


A5 = UD5U−1 = U

32 0 0
0 −1 0
0 0 1

U−1 =

[
11 10 11 10 11 11
11 11 10

]
.

5. A =

1 0 0
2 2 1
3 0 1


Solution: The eigenvalues are 2, 1, 1 with corresponding eigenvectors (0, 1, 0) and (0,−1, 1). The
eigenvectors don’t span, so the matrix is not diagonalizable.

6. A =

2 0 1
1 1 1
1 0 2


Solution:

10



A has eigenvalues 3, 1, 1 with corresponding eigenvectors (1, 1, 1), (−1, 0, 1), (0, 1, 0). Then we have

U =

1 −1 0
1 0 1
1 1 0


U−1 =

1

2

 1 0 1
−1 0 1
−1 2 −1


D = U−1AU =

3 0 0
0 1 0
0 0 1


A5 = UD5U−1 = U

243 0 0
0 1 0
0 0 1

U−1 =

122 0 121
121 1 121
121 0 122

 .
Orthogonality and Projection

1. Suppose ‖u‖ = 3, ‖u + v‖ = 4, ‖u− v‖ = 6. Find ‖v‖.
Solution: We have

9 = 〈u,u〉
16 = 〈u + v,u + v〉 = 〈u,u〉+ 2〈u,v〉+ 〈v,v〉
36 = 〈u− v,u− v〉 = 〈u,u〉 − 2〈u,v〉+ 〈v,v〉
52 = 2〈u,u〉+ 2〈v,v〉 = 2 · 9 + 2〈v,v〉
34 = 2〈v,v〉
√

17 = ‖v‖.

2. Find the orthogonal complement (in Rn) of the following spaces:

W = {(2t,−t) : t ∈ R}
W = span{(2,−1, 3)}
W = {(t,−t, 3t) : t ∈ R}
W = span{(1,−1, 3,−2), (0, 1,−2, 1)}.

Solution:

W⊥ = span{(1, 2)}
W⊥ = span{(1, 2, 0), (3, 0,−2)}
W⊥ = span{(1, 1, 0), (−3, 0, 1)[

1 −1 3 −2
0 1 −2 1

]
→
[
1 0 1 −1
0 1 −2 1

]
W⊥ = span{(−1, 2, 1, 0), (1,−1, 0, 1)}.

3. Find the orthogonal decomposition of

(a) (7,−4) with respect to span{(1, 1)}
Solution:[

7
−4

]
U

= proj(1,1)

[
7
−4

]
=

(7,−4) · (1, 1)

(1, 1) · (1, 1)

[
7
−4

]
=

3

2

[
1
1

]
=

[
3/2
3/2

]
[

7
−4

]
U⊥

=

[
7
−4

]
−
[
3/2
3/2

]
=

[
11/2
−11/2

]
.
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(b) (1, 2, 3) with respect to span{(2,−2, 1), (−1, 1, 4)}
Solution: The basis we have is orthogonal, so we can just project onto it.

proj(2,−2,1)

1
2
3

 =
(1, 2, 3) · (2,−2, 1)

(2,−2, 1) · (2,−2, 1)

 2
−2
1

 =
1

9

 2
−2
1

 =

 2/9
−2/9
1/9


proj(−1,1,4)

1
2
3

 =
(1, 2, 3) · (−1, 1, 4)

(−1, 1, 4) · (−1, 1, 4)

−1
1
4

 =
13

18

−1
1
4

 =

−13/18
13/18
26/9


1

2
3


U

=

 2/9
−2/9
1/9

+

[
−13/18 13/18

22/9

]
=

−1/2
1/2
3


1

2
3


U⊥

=

1
2
3

−
−1/2

1/2
3

 =

3/2
3/2
0

 .
(c) (4,−2, 3) with respect to span{(1, 2, 1), (1,−1, 1)}

Solution:

proj(1,2,1)

 4
−2
3

 =
3

6

1
2
1

 =

1/2
1

1/2


proj(1,−1,1)

 4
−2
3

 =
9

3

 1
−1
1

 =

 3
−3
3


 4
−2
3


U

=

1/2
1

1/2

+

 3
−3
3

 =

7/2
−2
7/2


 4
−2
3


U⊥

=

 4
−2
3

−
7/2
−2
7/2

 =

 1/2
0
−1/2

 .
(d) (3, 2,−3, 4) with respect to span{(2, 1, 0, 1), (0,−1, 1, 1)}.

Solution:

proj(2,1,0,1)


3
2
−3
4

 =
12

6


2
1
0
1

 =


4
2
0
2



proj(0,−1,1,1)


3
2
−3
4

 =
−1

3


0
−1
1
1

 =


0

1/3
−1/3
−1/3




3
2
−3
4


U

=


4
2
0
2

+


0

1/3
−1/3
−1/3

 =


4

7/3
−1/3
5/3




3
2
−3
4


U⊥

=


3
2
−3
4

−


4
7/3
−1/3
5/3

 =


−1
−1/3
−8/3
7/3

 .
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(e) (2,−1, 5, 6) with respect to U = span{(1, 1, 1, 0), (1, 0,−1, 1)}.
Solution: We see that (1, 1, 1, 0) · (1, 0,−1, 1) = 1 − 1 = 0, so this is an orthonormal basis for
U . We compute

proj(1,1,1,0)


2
−1
5
6

 =
(2,−1, 5, 6) · (1, 1, 1, 0)

(1, 1, 1, 0) · (1, 1, 1, 0)


1
1
1
0

 =
6

3


1
1
1
0

 =


2
2
2
0



proj(1,0,−1,1)


2
−1
5
6

 =
(2,−1, 5, 6) · (1, 0,−1, 1)

(1, 0,−1, 1) · (1, 0,−1, 1)


1
0
−1
1

 =
3

3


1
0
−1
1

 =


1
0
−1
1




2
−1
5
6


U

=


2
2
2
2

+


1
0
−1
1

 =


3
2
1
1




2
−1
5
6


U⊥

=


2
−1
5
6

−


3
2
1
1

 =


−1
−3
4
5

 .
We can check that the second vector is in fact in U⊥ by taking the inner product with the two
basis vectors for U .

4. Let V = P2(x) and define 〈f, g〉 = f(−1)g(−1) + f(0)g(0) + f(1)g(1).

(a) Find the projection of 3x− 4x2 onto the vector 1 + x+ x2.

Solution:

proj1+x+x2 3x− 4x2 =
〈3x− 4x2, 1 + x+ x2〉
〈1 + x+ x2, 1 + x+ x2〉

(1 + x+ x2)

=
(−7)(1) + (0)(1) + (−1)(3)

(1)(1) + (1)(1) + (3)(3)
(1 + x+ x2)

=
10

11
(1 + x+ x2).

(b) Find the orthogonal decomposition of 2 + x with respect to the spaces W = span{5 + x} and
W⊥ = span{2− 3x2,−2 + 5x+ 2x2}. (You can assume that the space I gave you is in fact W⊥.
But you can also check yourself, for practice.)

Solution: We have to project 2 + x onto either W or W⊥. It’ll be a lot simpler to project onto
W since it’s lower dimension and we already have an orthogonal basis, so that’s what we do.

(2 + x)W = proj5+x 2 + x

=
〈2 + x, 5 + x〉
〈5 + x, 5 + x〉

(5 + x)

=
(1)(4) + (2)(5) + (3)(6)

(4)(4) + (5)(5) + (6)(6)
(5 + x)

=
32

77
(5 + x).

Then the projection into W⊥ is

(2 + x)W⊥ = 2 + x− 32

77
(5 + x) =

−6

77
+

45

77
x.
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(c) Find the orthogonal decomposition of 3 − 3x + x2 with respect to W = {3 − 5x, 4x − 3x2} and
W⊥ = {2 + 3x+ 2x2}.
Solution: In this case we almost certainly want to project onto W⊥. We have

(3− 3x+ x2)W⊥ = proj2+3x+2x2 3− 3x+ x2

=
〈3− 3x+ x2, 2 + 3x+ 2x2〉
〈2 + 3x+ 2x2, 2 + 3x+ 2x2〉

(2 + 3x+ 2x2)

=
(7)(1) + (3)(2) + (1)(7)

(1)(1) + (2)(2) + (7)(7)
(2 + 3x+ 2x2)

=
20

54
(2 + 3x+ 2x2) =

10

27
(2 + 3x+ 2x2).

Then

(3− 3x+ x2)W = 3− 3x+ x2 − 10

27
(2 + 3x+ 2x2) =

61

27
− 37

9
x+

7

27
x2.

(d) Find the orthogonal complement of W = {α0 + α2x
2 : α0, α2 ∈ R}.

Solution: We know our orthogonal complement should be one-dimensional. We want to find
all polynomials β0 + β1x+ β2x

2 that are orthogonal to every polynomial in W , which just means
we need to solve

(α0 + α2(−1)2)(β0 + β1(−1) + β2(−1)2)

+ (α0 + α2(0)2)(β0 + β1(0) + β2(0)2)

+ (α0 + α2(1)2)(β0 + β1(1) + β2(1)2)

= 0.

This simplifes to

0 = (α0 + α2)(β0 − β1 + β2) + α0β0 + (α0 + α2)(β0 + β1 + β2)

= 2(α0 + α2)(β0 + β2) + α0β0

= 3α0β0 + 2α0β2 + 2α2β0 + 2α2β2.

At this point we can do one of two things.

First, we could just solve these equations. This needs to hold for any α0, α2. So if we set
α0 = 0, α2 = 1, we get 2β0 + 2β2 = 0; and if we set α0 = 1, α2 = 0, we get 3β0 + 2β2 = 0.
Together, this implies that β0 = β2 = 0. Thus W⊥ = {β1x : β1 ∈ R}.
Second, we could notice that we eliminated β1 from our equations entirely, so β1 must be a free
parameter, and β0 and β2 can’t depend on it. Since we know our space is one-dimensional, that’s
the only free parameter, and so there must be some fixed constant β0, β2 that work. It’s easy to
check that x ∈W⊥, so we can see that W⊥ = {β1x : β1 ∈ R}.
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