Math 214 Final Exam
Practice Problem Solutions

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection
of practice problems. I will update you when I finalize the test format.

Proofs

1.

Let @ be the subspace of P(x) consisting of polynomials with zero constant term. Prove that the
function D : Q — P(z) given by the derivative is an isomorphism.

Solution: We know that D is linear, so we just need to prove that it is one-to-one and onto.
Suppose D(aix + «-+ + apz™) = 0. then we have 0 = a; + 2asz + 3asz? + -+ 4+ na,z™ ' and thus
a1 =2a3=---=na, =0s0a; =az =---=a, =0. Thus D(f) = 0 implies f =0, so ker(D) = {0}
and thus D is one-to-one.

Conversely, let f(z) = ao+ a1z +- -+ a,z™ € P(x). Then let g(z) = apz + La?+---+ :—_:110"“ € Q,
and we see that D(g) = f. Thus D is onto.

Consequently we see that D is one-to-one and onto, thus it is an isomorphism by definition.

. Let U = span{x, sin(z), cos(z),z°,1}. Find an isomorphism between U and R>.

Solution: Define L by

L(ayz + ag sin(z) + az cos(z) + asz® + as) = |as

Then L takes a basis to a basis, and thus is an isomorphism.

Suppose V is a vector space and L : V — R® is surjective and dimker(L) = 2. What can you say
about V?

Solution: By the rank-nullity theorem, dim V' = dimker(L) + dim L(V). We know that L(V) = R®
so dim L(V) = 5, and dim ker(L) = 2. Thus dimV = 7.

Suppose T : R® — P4(x) and dimker(7T) = 1. What can you say about T'(R®)?

Solution: By the Rank-Nullity Theorem, we know that dimR® = dimker(7") + dim T(R%), and
thus 5 = 1 + dim T(R%), so dimT(R®) is four-dimensional. Thus T is not surjective since P4(z) is
five-dimensional.

If \ is an eigenvalue of A then prove that A~! is an eigenvalue of A~!.

Solution: Let v € E) be an eigenvector with eigenvalue A. Then Av = Av, which implies that
A7Y(Av)A~tAv = v. Dividing both sides by A, we have A~'v = A~!v. Thus v is an eigenvector of
A~1 with eigenvalue A\ 71



Things to Ponder

1. Find a 4 x4 matrix with no real eigenvalues. Is it possible to find a 3 x 3 matrix with no real eigenvalues?

Solution: We want to find a matrix whose characteristic polynomial has no real roots. The simplest
and most obvious such polynomial is (2% + 1)2, so we want to build one of these. The simplest way to
do that is to find a 2 x 2 matrix with characteristic polynomial 22 4+ 1 and repeat it twice.

We’ve actaully seen this matrix before; it’s the matrix {_01 0} , which has characteristic polynomial

-2 1

x(A) :det[ | A} = (A2 = (=1-1) =N +1.

To get a 4 x 4 matrix we can glue two copies of this together. We set

o

OO O
o O O
o= O O

-1
which you can see has characteristic polynomial x 4(\) = (A% + 1)(\2 + 1). This has no real roots, so

the matrix has no real eigenvalues.

For a 3 x 3 matrix, we would be looking for a degree 3 polynomial with no real roots. No such
polynomial exists, so every 3 x 3 matrix has a real eigenvalue.

(For similar reasons, it is a theorem that every matrix has a complez eigenvalue).

2. Find matrices A4, B € M, x,, such that Tr(A) Tr(B) # Tr(AB).
Find a matrix A such that Tr(A?) < 0.
Solution:

Solving the second will also solve the first.

0 1

Let A= {_1 0

}. Then Tr(A) = 0. But

A% = {_01 _01] Tr(A?) = —2 # 02

Secretly what’s going on here is that A2 has the eigenvalues +i, so A2 has the eigenvalues (4)2, both
of which are —1.
3. What happens if you use the Gram-Schmidt process on a set of vectors that isn’t linearly independent?

Solution: When you get to the vector that is a linear combination of the previous vectors, it will
equal the sum of its projections onto them. So one of your vectors will be transformed into zero.

That is, if e3 € span{e;, ez}, then f3 = e3 — proj,, €3 — proj,, e3 = 0.

Thus the Gram-Schmidt process can be used to turn a spanning set into a basis, by throwing out the
vectors that become zero.

Find the transition matrices between the following bases

1. The standard basis and

51 21 [
F={12|,13],|6
1| |4] |3



Solution: The transition matrix from F to the standard basis is
5 2 1
A=12 3 6
1 4 3

The transition matrix from the standard basis to F' is
3/14  1/35 —=9/70
Al = 0 -1/5 2/5
-1/14 9/35 —11/70

. The standard basis and

1 1 1
F={|1|,]-1], |1
1l o] |o

Solution: The transition matrix from F' to the standard basis is

1 1 1
A=1|(1 -1 1
1 0 0
The transition matrix from the standard basis to F' is
0 0 1
At =1/2 —1/2 0
/2 1/2 -1
1 1 1 1 1 0
FE = 20, 11(,|1 and F = of,(1], (1
1 1 2 1 0 1
Solution:

The transition matrix from E to the standard basis is
1 1 1]
A=12 1 1].
111 2]
The transition matrix from F' to the standard basis is
1 1 0]
B=10 1 1
|1 0 1]

and the transition matrix from the standard basis to F' is
12 —-1/2 1/2
B '=1|1/2 1/2 -1/2
-1/2  1/2 1/2
So the transition matrix from E to F' is
/2 -1/2 1/2 1 1 1 0 1/2 1
B A= 1/2 /2 —-1/21 ({2 1 1{=1|1 1/2 0O
—1/2 1/2 1/2 1 1 2 1 1/2 1
and the transition matrix from F' to E is
-1 0 1
(B7'A)y =12 2 -2
0o -1 1



3 -1 0 1 1 1
FE = o,(31|,]|1 and F= O, (1], (1
1 2 1 0 0 1

Solution: The transition matrix from E to the standard basis is

3 -1 0
A=10 3 1
1 2 1

and the transition matrix from F' to the standard basis is

B =

o O =
O = =
— ==

The transition matrix from the standard basis to F' is then

1 -1 0
Bl'=10 1 -1
0 0 1

Thus the transition matrix from E to F is

1 =1 0773 =1 0 3 -4 -1
B'A=10 1 -1l]0 3 1|=[|-1 1 o0
0 0 1 1 2 1 1 2 1

and the transition matrix from F' to E is

/2 1 1/2
(B'A)t=11/2 2 1/2
-3/2 -5 —1/2

Write the given element in the given basis

1 1 1
1. Write (3,1,4) in the basis FF =< 0], [1], |1
0 0 1

Solution: The transition matrix from F to the standard basis is
1 1 1
A=1(0 1 1
0 0 1

so the transition matrix from the standard basis to F' is the inverse inverse

1 -1 0
At=10 1 -1
0 0 1
Thus
1 -1 0773 2
[(3,1,4)]p=10 1 —1f| |[1|=|-3
0 1| |4 4



1 1 0

2. Write (2,7,1) in the basis F = of, (1,1
1 0 1
Solution: The transition matrix from F to the standard basis is
1 1 0
A=10 1 1
1 0 1
so the transition matrix from the standard basis to F' is
1 -1 1
At==1 1 -1
—1 1 1
SO
1 1 =1 1772 -2
[(2,7,1)]F:§ 1 1 -1 (7| =1|4
-1 1 1]t 3
31 [7] [1
. Write (1,—1,0) in the basis F' = 5(,11], |1
2] |4 1
Solution: The transition matrix from F to the standard matrix is
3 7 1
A=1|5 1 1
2 4 1
so the transition matrix from the standard basis to F' is
1 3 3 -6
A7t = 5 3 -1 -2
—-18 -2 24
and
1 3 3 —6][1 0
[(1,-1,0)]F = T2 3 -1 =2 -1 =1|1/3
—-18 =2 24| [0 —4/3
0 1] 1
. Write (2,3,4) in the basis = ¢ [1|,|0],] 0
o] [1f [t
Solution:

The transition matrix from F' to the standard basis is

01 1
A=11 0 O
0 1 -3
so the transition matrix from the standard basis to F' is
0 1 0
At =112 0 1/2
1/2 0 -1/2
and
0 1 0 2 3
(2,3, 4)]p=[1/2 0 1/2 3l =13
1/2 0 —-1/2| |4 -1



Find the matrix of the operator with respect to the given basis

1 1 1
1. Give the matrix of L(x,y, z) = (3x+y+2, 52 —2y+z,y+z) with respect to F = 11,10(,]0
0 1 -1
Solution:
The matrix of L with respect to the standard basis is
3 1 1]
A=15 -2 1
0 1 1]
The transition matrix from F' to the standard basis is
1 1 17
S=1{1 0 0
0 1 —1]
with inverse
0 1 0
S~t=11/2 —1/2 1/2
/2 -1/2 -1/2
Thus the matrix of L with respect to F is
3 6 4
STtAS = |1 —1/2 -3/2
0 —3/2 —1/2
0 1 1
2. Give the matrix of L(z,y, z) = (224+3y—=z, do—y+3z, 2x+2) with respect to F' = 1,12},
0 1 -1

Solution:

The matrix of L with respect to the standard basis is

and the transition matrix from I to the standard basis is

01 1
S=11 2 1
01 -1
with
-3/2 1 —1/2
St=11/2 0 1/2
1/2 0 —1/2

Thus the matrix of L with respect to F is

—11/2 -7 —19/2
S~tAS=1|3/2 5 7/2
3/2 2 5/2



3. Give the matrix of L(z,y, 2) = (—x+4y+22, 3x—5y+2, 3x+2y) with respect to F' =

Solution: The matrix of L with respect to the standard basis is

-1 4 2
A=13 -5 2
3 2 0

and the transition matrix from F' to the standard basis is
1 1 1
S=11 0 0
1 1 0

with inverse

Thus the matrix of L with respect to F is

0 5 3
STlAS=1|5 -2 0
0 -2 —4

4. Give the matrix of L(z,y, 2) = (2x —y,3x +y+4z, x +2y+ z) with respect to F' =

Solution:
The matrix of L with respect to the standard basis is
2 -1 0

A=13 1 4

1 2 1

and the transition matrix from F' to the standard basis is

3 1 1
S=12 1 0
1 1 0
with inverse
0o 1 -1
St=10 -1 2
1 -2 1

Thus the matrix of L with respect to F is

7 4 2
STlAS =] 1 0 -1
-18 —11 3



Angles and Magnitudes

1. Compute
3 5 le _25 1 4 7 -3
1 71, sl 7| 3 -11, 1 1
2 -1 5 4 2 -1 5 1

Solution: 20,44,—1, —15.
2. Find the magnitudes and corresponding unit vectors for
4 7

3
1 ) |:152:| ) 2 ) -1
2 -2 -3

Solution: 9+ 1+4=+13,v/25+ 144 =13,V/16 + 4+ 4 = /24 = 21/6,/49 + 1 + 9 = /59.

3. Find proj, u for

(a) u=(5,2),v=(-3,4)

(b) u=(2,1),v=(7,1)

(c) u=(3,1,4),v=(2,1,1)

(d) u=(2,1,1),v=(-4,-1,-1)
(e) u=(5,0,0),v =(3,2,1).
Solution:

@ |7

o) %1

|

—4
-1

—
o
N
—_
o

— =N

3
(e) 13 |2
1
Diagonalization Theory
1. In class we saw that
0 0 O -1 3 1112 -3 1] |1 3
01 0]=(1 -2 1 1 -2 111 1 0
0 0 1 1 -3 2 1 -3 2] 1|1 O

Multiply out the three matrices on the right and confirm that this works.



1 1

2. Let A= {0 1

} . What are the eigenvalues of A? Is A2 = A? Why not?

Solution: x4(A) = (1 — \)? has roots 1,1, so the eigenvalues are 1. We compute that
o 11t 1] 1 o2
A= {O 1110 1| |0 1 74

In class we argued that if a diagonalizable matrix has eigenvalues all equal to 1 and 0, then A™ = A.
This matrix has all eigenvalues 1, but it is not in fact diagonalizable since dim £, = 1. Thus the same
principle does not hold.

3. Show the following pairs of matrices are not similar:

—_

A:

w
—_

=
Il
corcow cow

OO Ok O~
|
N
0|
Il
|
—
ot
o

Solution: Tr(A) =5 and Tr(B) = 2 so the matrices aren’t similar.
Tr(C) = Tr(D) = 8, but det(C) = 16 and det(D) = 18 so the matrices aren’t similar.

Tr(E) = Tr(F) = 21 and det(E) = det(F) = 240. But the eigenvalues of E are 3,8,10 and the
eigenvalues of F' are 4,5,12, so the matrices are not similar.

G and H have the same sets of eigenvalues. But G is the identity and so is only similar to itself.

Diagonalization

For each of the following matrices, determine whether it is diagonal. If it is, diagonalize it, then computeA®.
1. A= {g g]
Solution: A has eigenvalues 7,3 with eigenvectors (1,1),(—1,1). This gives us
o= ]
UTt= % [—11 ﬂ

D=U1AU = [7 0]

0 3

; 1M1 —11[7 0o°[1 1
5 S5rr—1 _ —
AT=UDU _2{1 1“0 3} {—1 1}

_1j1 —-1|([16807 O 1 1|  |8525 8282
21 1 0 243| |1 1|  |8282 8525|°



2 4= |75 f

-3 5
Solution: The eigenvalues are 2, —1 with corresponding eigenvectors (1,1),(2,1). We have
1 2
7=l

4 [-1 2
=

R 12 0
povar- [t 0]

5 rrmsr—1 (32 0 |34 66
A5 = UDU _U[O SHt= T el

310
3. A=1[0 3 1
0 0 3

Solution: The only eigenvalue is 3, and the corresponding eigenvector is (1,0,0). Thus the eigenvec-
tors do not span R3 and so the matrix is not diagonalizable.

1 01
4. A=10 1 1
1 1 0

Solution: The eigenvalues are 2, —1, 1 with corresponding eigenvectors (1,1,1), (—1,—1,2),(—1,1,0).
We compute

1 -1 -1
U=|1 -1 1
1 2 0
1 [2 2 2
U*lz6 -1 -1 2
-3 3 0
2 0 0
D=Ut'4AU=10 -1 0
0 0 1
32 0 0
0 0 1
1 0 0
5. A=12 2 1
30 1

Solution: The eigenvalues are 2,1,1 with corresponding eigenvectors (0,1,0) and (0,—1,1). The
eigenvectors don’t span, so the matrix is not diagonalizable.

2 01

6. A=11 1 1

1 0 2
Solution:

10



A has eigenvalues 3, 1,1 with corresponding eigenvectors (1,1, 1), (—=1,0,1),(0,1,0). Then we have

1 -1 0
U=1[1 0 1
1 1 0
N
U't==]-1 0 1
20190 2 1

243 0 0 122 0 121
AA=upUu'=uU|0 1 olU'=]121 1 121
0 0 1 121 0 122

Orthogonality and Projection
1. Suppose |u]| =3, [[lu+v|| =4, ||lu—v| = 6. Find ||v|.

Solution: We have

9 = (u,u)

16 = (u+v,u+v) = (u,u) +2(u,v) + (v,v)
36=(u—v,u—v)=(uu) —2(u,v)+(v,v)
52 = 2{u,u) + 2(v,v) =2-9+2(v,Vv)

34 = 2(v,v)
VT = ||

2. Find the orthogonal complement (in R™) of the following spaces:
W ={(2t,—t) : t € R}
W = span{(2, ~1,3)}
W = {(t,—t,3t) : t € R}
W= Span{(L _17 37 _2)7 (07 17 _27 1)}

Solution:
W+ = span{(1,2)}
W+ =span{(1,2,0), (3,0, -2)}
W+ = span{(1,1,0), (-3,0,1)

1 -1 3 =2 1 0 1 -1
0o 1 -2 1 01 -2 1

W+ =span{(-1,2,1,0),(1,-1,0,1)}.

3. Find the orthogonal decomposition of

(a) (7,—4) with respect to span{(1,1)}
Solution:

2, =i | = Gy [ -
=B

|- [47%)

11

al

5

2
2



(b) (1,2, 3) with respect to span{(2, —2,1),(—1,1,4)}
Solution: The basis we have is orthogonal, so we can just project onto it.

PTOJ(2,72,1)

Proj(_11.4)

w2322 |2 1|2 2/9
“eoan-eoa2n| 0| T —1%9
_ (1,2,3)-(-1,1,4) -1 13 —1] - —-13/18
T (-1,1,4) - (=1,1,4) le BET) i = 1236//198
[ 2/9 L1318 13/18] | /2]
___1%9 J{ 22/9 }— 142_
1] [-1/2] [3/2
= (2| - | /2| =|3/2|.
_3] [3] [0]

(c) (4,—2,3) with respect to span{(1,2,1),(1,-1,1)}

Solution:
[ 4] 3 1 1/2
Proja 21y [ 2| = 6 20 =11
| 3 ] |1 1/2
[ 4] 9 [1 3
Proji,—1,1) | 2| = 3 -1 =1-3
| 3 ] | 1 3
4 [1/2 3]
=2 =|1]4+|-3| =
31y, /2 3 ]
4 [ 4 7/2]
—2 =|-2| - |-2| =
31y L3 7/2]

[7/2
—2
7/2
[1/2
0
|—1/2

(d) (3,2,—3,4) with respect to span{(2,1,0,1),(0,—1,1,1)}.

Solution:
[3] 2 4]
. 2 12 |1 2
prOJ(2,1,O,1) -3 = g 0 = 0
i 4 ] 1 2_
(3] 0 0
. 2 -1 (-1 1/3
prOJ(O,flﬁl,l) -3 = ? 1 = 71/3
i 4 | 1 _—1/3
3 [4 0 4
2 |2 n 1/3 . 7/3
-3 10 -1/31 — [-1/3
4 U _2 -1/3 5/3
3 [ 3 4 -1
2 |2 _ 7/3 . -1/3
-3 -3 -1/3] — |-8/3
4 UL | 4 5/3 7/3

12



(e) (2,—1,5,6) with respect to U = span{(1,1,1,0),(1,0,—1,1)}.

Solution: We see that (1,1,1,0) - (1,0,—1,1) = 1 — 1 = 0, so this is an orthonormal basis for
U. We compute

[ 27 1 1 2
. ~-1| _ (2,-1,5,6)-(1,1,1,0) [1| 6 1] _ |2
prOJ(l,l,l,O) 5 (17 1’ 170) i (1, 1, 170) 1 - 3 1 - 2
| 6 | 0 0 0
[ 27 1 1 1
. ~-1| _ (2,-1,5,6)-(1,0,-1,1) o | 3|0 _ |0
ProJao—1y | 51 =10, -1,1)- (1,0, —1,1) |-1| ~ 3 |-1| ~ |-1
| 6 ] 1 1 1
[2 1] 3
-1 2 0 2
51 — 2] T o1l T 1
61, [2 1 |1
2 [ 2 3] [—1
-1 - 2 |3
5 15 1l | 4
6,0 L6 1] | 5

We can check that the second vector is in fact in UL by taking the inner product with the two
basis vectors for U.

4. Let V' = P(z) and define (f, ) = f(=1)g(=1) + f(0)g(0) + f(1)g(1).
(a) Find the projection of 3z — 4z? onto the vector 1 + z + 2.
Solution:
Bz —42%, 1+ x + 2?)
(14+2x+22,1+z+22)

Projy 4 g g2 3¢ — da® = (142 + %)

_ DO FOMFEDE) L s
(D)) 4 (1)(1) + (3)(3) (I+z+a7)
10 )

:ﬁ(1+x+x).

(b) Find the orthogonal decomposition of 2 + z with respect to the spaces W = span{5 + z} and
W+ = span{2 — 322, —2 + 5z + 222}. (You can assume that the space I gave you is in fact W=.
But you can also check yourself, for practice.)

Solution: We have to project 2 + 2 onto either W or W=. It’ll be a lot simpler to project onto
W since it’s lower dimension and we already have an orthogonal basis, so that’s what we do.

(2+2)w = projs 2+
24+ z,5+x)

B (5—|—x,5+x>(5+x)

_ @+ @)6)+6)(6)
(4)(4) + (5)(5) + (6)(6)

= 32(5+x).

I

(5+x)

Then the projection into W+ is

32 6 45
2 0 E(5ta) = 24 2
@t owe =242 -0 +a) =+ o

13



(c) Find the orthogonal decomposition of 3 — 3z + 22 with respect to W = {3 — bz, 4z — 322} and
Wt = {2+ 3z + 222}.
Solution: In this case we almost certainly want to project onto W-. We have

(3 =3z + 2%) 1 = Projosgyioe2 3 — 37 + 22

(3 =3z + 2% 2+ 3z + 22?) 9
- 24+ 3z +2
1807 22,2+ 30 1 oaz) C T2

_ OO+ E@ WD
S OO+ E@+mOm 2T
20 o 10 )
:a(2+3x—|—2x )—2—7(2+3x+2x ).
Then
(3—3x+x2)w:3—3x+x2—£(2+3x+2x2): %—%x—k%xz.

(d) Find the orthogonal complement of W = {ag + aoz? : ag, s € R}.
Solution: We know our orthogonal complement should be one-dimensional. We want to find
all polynomials Sy + 312 + 222 that are orthogonal to every polynomial in W, which just means
we need to solve

(a0 + a2 (—=1)%)(Bo + B1(—1) + B2(—1)?)
+ (a0 + @2(0)%)(Bo + B1(0) + B2(0)%)

+ (a0 + az(1)*)(Bo + B1(1) + B2(1)?)
=0.

This simplifes to

0= (ap + 2)(Bo — B1 + B2) + aofo + (g + a2)(Bo + b1 + 52)
= 2(ap + a2)(Bo + B2) + aofo
= 3o + 20032 + 20280 + 2002 B2.

At this point we can do one of two things.

First, we could just solve these equations. This needs to hold for any agp,as. So if we set
ag = 0,0 = 1, we get 26y + 262 = 0; and if we set ag = 1,5 = 0, we get 38y + 2682 = 0.
Together, this implies that By = 2 = 0. Thus W+ = {8,z : 3; € R}.

Second, we could notice that we eliminated (5, from our equations entirely, so 81 must be a free
parameter, and [y and B2 can’t depend on it. Since we know our space is one-dimensional, that’s

the only free parameter, and so there must be some fixed constant 5y, 82 that work. It’s easy to
check that o € W+, so we can see that W+ = {312 : B € R}.

14



