Math 214 Final Exam Practice Problem Solutions

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection of practice problems. I will update you when I finalize the test format.

Proofs

1. Let Q be the subspace of $\mathcal{P}(x)$ consisting of polynomials with zero constant term. Prove that the function $D: Q \rightarrow \mathcal{P}(x)$ given by the derivative is an isomorphism.
Solution: We know that D is linear, so we just need to prove that it is one-to-one and onto. Suppose $D\left(a_{1} x+\cdots+a_{n} x^{n}\right)=0$. then we have $0=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$ and thus $a_{1}=2 a_{2}=\cdots=n a_{n}=0$ so $a_{1}=a_{2}=\cdots=a_{n}=0$. Thus $D(f)=0$ implies $f=0$, so $\operatorname{ker}(D)=\{0\}$ and thus D is one-to-one.
Conversely, let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathcal{P}(x)$. Then let $g(x)=a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+\frac{a_{n}}{n+1} x^{n+1} \in Q$, and we see that $D(g)=f$. Thus D is onto.
Consequently we see that D is one-to-one and onto, thus it is an isomorphism by definition.
2. Let $U=\operatorname{span}\left\{x, \sin (x), \cos (x), x^{5}, 1\right\}$. Find an isomorphism between U and \mathbb{R}^{5}.

Solution: Define L by

$$
L\left(a_{1} x+a_{2} \sin (x)+a_{3} \cos (x)+a_{4} x^{5}+a_{5}\right)=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

Then L takes a basis to a basis, and thus is an isomorphism.
3. Suppose V is a vector space and $L: V \rightarrow \mathbb{R}^{5}$ is surjective and $\operatorname{dim} \operatorname{ker}(L)=2$. What can you say about V ?
Solution: By the rank-nullity theorem, $\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(L)+\operatorname{dim} L(V)$. We know that $L(V)=\mathbb{R}^{5}$ so $\operatorname{dim} L(V)=5$, and $\operatorname{dim} \operatorname{ker}(L)=2$. Thus $\operatorname{dim} V=7$.
4. Suppose $T: \mathbb{R}^{5} \rightarrow \mathcal{P}_{4}(x)$ and $\operatorname{dim} \operatorname{ker}(T)=1$. What can you say about $T\left(\mathbb{R}^{5}\right)$?

Solution: By the Rank-Nullity Theorem, we know that $\operatorname{dim} \mathbb{R}^{5}=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} T\left(\mathbb{R}^{5}\right)$, and thus $5=1+\operatorname{dim} T\left(\mathbb{R}^{5}\right)$, so $\operatorname{dim} T\left(\mathbb{R}^{5}\right)$ is four-dimensional. Thus T is not surjective since $\mathcal{P}_{4}(x)$ is five-dimensional.
5. If λ is an eigenvalue of A then prove that λ^{-1} is an eigenvalue of A^{-1}.

Solution: Let $\mathbf{v} \in E_{\lambda}$ be an eigenvector with eigenvalue λ. Then $A \mathbf{v}=\lambda \mathbf{v}$, which implies that $A^{-1}(\lambda \mathbf{v}) A^{-1} A \mathbf{v}=\mathbf{v}$. Dividing both sides by λ, we have $A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$. Thus \mathbf{v} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.

Things to Ponder

1. Find a 4×4 matrix with no real eigenvalues. Is it possible to find a 3×3 matrix with no real eigenvalues?

Solution: We want to find a matrix whose characteristic polynomial has no real roots. The simplest and most obvious such polynomial is $\left(x^{2}+1\right)^{2}$, so we want to build one of these. The simplest way to do that is to find a 2×2 matrix with characteristic polynomial $x^{2}+1$ and repeat it twice.
We've actaully seen this matrix before; it's the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, which has characteristic polynomial

$$
\chi(\lambda)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]=(-\lambda)^{2}-(-1 \cdot 1)=\lambda^{2}+1
$$

To get a 4×4 matrix we can glue two copies of this together. We set

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

which you can see has characteristic polynomial $\chi_{A}(\lambda)=\left(\lambda^{2}+1\right)\left(\lambda^{2}+1\right)$. This has no real roots, so the matrix has no real eigenvalues.
For a 3×3 matrix, we would be looking for a degree 3 polynomial with no real roots. No such polynomial exists, so every 3×3 matrix has a real eigenvalue.
(For similar reasons, it is a theorem that every matrix has a complex eigenvalue).
2. Find matrices $A, B \in M_{n \times n}$ such that $\operatorname{Tr}(A) \operatorname{Tr}(B) \neq \operatorname{Tr}(A B)$.

Find a matrix A such that $\operatorname{Tr}\left(A^{2}\right)<0$.

Solution:

Solving the second will also solve the first.
Let $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Then $\operatorname{Tr}(A)=0$. But

$$
A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad \operatorname{Tr}\left(A^{2}\right)=-2 \neq 0^{2}
$$

Secretly what's going on here is that A^{2} has the eigenvalues $\pm i$, so A^{2} has the eigenvalues $(\pm i)^{2}$, both of which are -1 .
3. What happens if you use the Gram-Schmidt process on a set of vectors that isn't linearly independent?

Solution: When you get to the vector that is a linear combination of the previous vectors, it will equal the sum of its projections onto them. So one of your vectors will be transformed into zero.
That is, if $\mathbf{e}_{3} \in \operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, then $\mathbf{f}_{3}=\mathbf{e}_{3}-\operatorname{proj}_{\mathbf{e}_{1}} \mathbf{e}_{3}-\operatorname{proj}_{\mathbf{e}_{2}} \mathbf{e}_{3}=0$.
Thus the Gram-Schmidt process can be used to turn a spanning set into a basis, by throwing out the vectors that become zero.

Find the transition matrices between the following bases

1. The standard basis and

$$
F=\left\{\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
6 \\
3
\end{array}\right]\right\}
$$

Solution: The transition matrix from F to the standard basis is

$$
A=\left[\begin{array}{lll}
5 & 2 & 1 \\
2 & 3 & 6 \\
1 & 4 & 3
\end{array}\right]
$$

The transition matrix from the standard basis to F is

$$
A^{-1}=\left[\begin{array}{ccc}
3 / 14 & 1 / 35 & -9 / 70 \\
0 & -1 / 5 & 2 / 5 \\
-1 / 14 & 9 / 35 & -11 / 70
\end{array}\right]
$$

2. The standard basis and

$$
F=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

Solution: The transition matrix from F to the standard basis is

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

The transition matrix from the standard basis to F is

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 / 2 & -1 / 2 & 0 \\
1 / 2 & 1 / 2 & -1
\end{array}\right]
$$

3.

$$
E=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right\} \quad \text { and } \quad F=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Solution:

The transition matrix from E to the standard basis is

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

The transition matrix from F to the standard basis is

$$
B=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

and the transition matrix from the standard basis to F is

$$
B^{-1}=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]
$$

So the transition matrix from E to F is

$$
B^{-1} A=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 / 2 & 1 \\
1 & 1 / 2 & 0 \\
1 & 1 / 2 & 1
\end{array}\right]
$$

and the transition matrix from F to E is

$$
\left(B^{-1} A\right)^{-1}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 2 & -2 \\
0 & -1 & 1
\end{array}\right]
$$

4.

$$
E=\left\{\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \quad \text { and } \quad F=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Solution: The transition matrix from E to the standard basis is

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 3 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

and the transition matrix from F to the standard basis is

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

The transition matrix from the standard basis to F is then

$$
B^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Thus the transition matrix from E to F is

$$
B^{-1} A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 3 & 1 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -4 & -1 \\
-1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

and the transition matrix from F to E is

$$
\left(B^{-1} A\right)^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 & 1 / 2 \\
1 / 2 & 2 & 1 / 2 \\
-3 / 2 & -5 & -1 / 2
\end{array}\right]
$$

Write the given element in the given basis

1. Write $(3,1,4)$ in the basis $F=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.

Solution: The transition matrix from F to the standard basis is

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

so the transition matrix from the standard basis to F is the inverse inverse

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Thus

$$
[(3,1,4)]_{F}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right]
$$

2. Write $(2,7,1)$ in the basis $F=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.

Solution: The transition matrix from F to the standard basis is

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

so the transition matrix from the standard basis to F is

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]
$$

so

$$
[(2,7,1)]_{F}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
7 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4 \\
3
\end{array}\right]
$$

3. Write $(1,-1,0)$ in the basis $F=\left\{\left[\begin{array}{l}3 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{l}7 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.

Solution: The transition matrix from F to the standard matrix is

$$
A=\left[\begin{array}{lll}
3 & 7 & 1 \\
5 & 1 & 1 \\
2 & 4 & 1
\end{array}\right]
$$

so the transition matrix from the standard basis to F is

$$
A^{-1}=\frac{1}{12}\left[\begin{array}{ccc}
3 & 3 & -6 \\
3 & -1 & -2 \\
-18 & -2 & 24
\end{array}\right]
$$

and

$$
[(1,-1,0)]_{F}=\frac{1}{12}\left[\begin{array}{ccc}
3 & 3 & -6 \\
3 & -1 & -2 \\
-18 & -2 & 24
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 3 \\
-4 / 3
\end{array}\right] .
$$

4. Write $(2,3,4)$ in the basis $F=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.

Solution:

The transition matrix from F to the standard basis is

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & -3
\end{array}\right]
$$

so the transition matrix from the standard basis to F is

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & -1 / 2
\end{array}\right]
$$

and

$$
[(2,3,4)]_{F}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \\
3 \\
-1
\end{array}\right] .
$$

Find the matrix of the operator with respect to the given basis

1. Give the matrix of $L(x, y, z)=(3 x+y+z, 5 x-2 y+z, y+z)$ with respect to $F=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.

Solution:

The matrix of L with respect to the standard basis is

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
5 & -2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

The transition matrix from F to the standard basis is

$$
S=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

with inverse

$$
S^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right]
$$

Thus the matrix of L with respect to F is

$$
S^{-1} A S=\left[\begin{array}{ccc}
3 & 6 & 4 \\
1 & -1 / 2 & -3 / 2 \\
0 & -3 / 2 & -1 / 2
\end{array}\right]
$$

2. Give the matrix of $L(x, y, z)=(2 x+3 y-z, 4 x-y+3 z, 2 x+z)$ with respect to $F=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$.

Solution:

The matrix of L with respect to the standard basis is

$$
A=\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -1 & 3 \\
2 & 0 & 1
\end{array}\right]
$$

and the transition matrix from F to the standard basis is

$$
S=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

with

$$
S^{-1}=\left[\begin{array}{ccc}
-3 / 2 & 1 & -1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & -1 / 2
\end{array}\right]
$$

Thus the matrix of L with respect to F is

$$
S^{-1} A S=\left[\begin{array}{ccc}
-11 / 2 & -7 & -19 / 2 \\
3 / 2 & 5 & 7 / 2 \\
3 / 2 & 2 & 5 / 2
\end{array}\right]
$$

3. Give the matrix of $L(x, y, z)=(-x+4 y+2 z, 3 x-5 y+2,3 x+2 y)$ with respect to $F=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.

Solution: The matrix of L with respect to the standard basis is

$$
A=\left[\begin{array}{ccc}
-1 & 4 & 2 \\
3 & -5 & 2 \\
3 & 2 & 0
\end{array}\right]
$$

and the transition matrix from F to the standard basis is

$$
S=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

with inverse

$$
S^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Thus the matrix of L with respect to F is

$$
S^{-1} A S=\left[\begin{array}{ccc}
0 & 5 & 3 \\
5 & -2 & 0 \\
0 & -2 & -4
\end{array}\right]
$$

4. Give the matrix of $L(x, y, z)=(2 x-y, 3 x+y+4 z, x+2 y+z)$ with respect to $F=\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.

Solution:

The matrix of L with respect to the standard basis is

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
3 & 1 & 4 \\
1 & 2 & 1
\end{array}\right]
$$

and the transition matrix from F to the standard basis is

$$
S=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

with inverse

$$
S^{-1}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 2 \\
1 & -2 & 1
\end{array}\right]
$$

Thus the matrix of L with respect to F is

$$
S^{-1} A S=\left[\begin{array}{ccc}
7 & 4 & 2 \\
1 & 0 & -1 \\
-18 & -11 & 3
\end{array}\right]
$$

Angles and Magnitudes

1. Compute

$$
\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
7 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
4 \\
1 \\
3 \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-5 \\
7 \\
4
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-1 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
7 \\
1 \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right] .
$$

Solution: 20, 44, -1, -15 .
2. Find the magnitudes and corresponding unit vectors for

$$
\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
5 \\
12
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right], \quad\left[\begin{array}{c}
7 \\
-1 \\
-3
\end{array}\right] .
$$

Solution: $\sqrt{9+1+4}=\sqrt{13}, \sqrt{25+144}=13, \sqrt{16+4+4}=\sqrt{24}=2 \sqrt{6}, \sqrt{49+1+9}=\sqrt{59}$.
3. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ for
(a) $\mathbf{u}=(5,2), \mathbf{v}=(-3,4)$
(b) $\mathbf{u}=(2,1), \mathbf{v}=(7,1)$
(c) $\mathbf{u}=(3,1,4), \mathbf{v}=(2,1,1)$
(d) $\mathbf{u}=(2,1,1), \mathbf{v}=(-4,-1,-1)$
(e) $\mathbf{u}=(5,0,0), \mathbf{v}=(3,2,1)$.

Solution:
(a) $\frac{-7}{25}\left[\begin{array}{c}-3 \\ 4\end{array}\right]$
(b) $\frac{15}{50}\left[\begin{array}{l}7 \\ 1\end{array}\right]$
(c) $\frac{11}{6}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
(d) $\frac{-10}{18}\left[\begin{array}{l}-4 \\ -1 \\ -1\end{array}\right]$
(e) $\frac{15}{14}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$

Diagonalization Theory

1. In class we saw that

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 3 & -1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & -3 & 1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] .
$$

Multiply out the three matrices on the right and confirm that this works.
2. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. What are the eigenvalues of A ? Is $A^{2}=A$? Why not?

Solution: $\quad \chi_{A}(\lambda)=(1-\lambda)^{2}$ has roots 1,1 , so the eigenvalues are 1 . We compute that

$$
A^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \neq A
$$

In class we argued that if a diagonalizable matrix has eigenvalues all equal to 1 and 0 , then $A^{n}=A$. This matrix has all eigenvalues 1 , but it is not in fact diagonalizable since $\operatorname{dim} E_{1}=1$. Thus the same principle does not hold.
3. Show the following pairs of matrices are not similar:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right] & B & =\left[\begin{array}{ll}
1 & 5 \\
1 & 1
\end{array}\right] \\
C & =\left[\begin{array}{lll}
2 & 1 & 4 \\
0 & 2 & 3 \\
0 & 0 & 4
\end{array}\right] & D & =\left[\begin{array}{lll}
3 & 0 & 0 \\
2 & 2 & 0 \\
5 & 1 & 3
\end{array}\right] \\
E & =\left[\begin{array}{lll}
3 & 4 & 1 \\
0 & 8 & -2 \\
0 & 0 & 10
\end{array}\right] & F & =\left[\begin{array}{ccc}
4 & 0 & 0 \\
-1 & 5 & 0 \\
5 & 3 & 12
\end{array}\right] \\
G & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & H & =\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Solution: $\operatorname{Tr}(A)=5$ and $\operatorname{Tr}(B)=2$ so the matrices aren't similar.
$\operatorname{Tr}(C)=\operatorname{Tr}(D)=8$, but $\operatorname{det}(C)=16$ and $\operatorname{det}(D)=18$ so the matrices aren't similar.
$\operatorname{Tr}(E)=\operatorname{Tr}(F)=21$ and $\operatorname{det}(E)=\operatorname{det}(F)=240$. But the eigenvalues of E are $3,8,10$ and the eigenvalues of F are $4,5,12$, so the matrices are not similar.
G and H have the same sets of eigenvalues. But G is the identity and so is only similar to itself.

Diagonalization

For each of the following matrices, determine whether it is diagonal. If it is, diagonalize it, then compute A^{5}.

1. $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 5\end{array}\right]$

Solution: A has eigenvalues 7,3 with eigenvectors $(1,1),(-1,1)$. This gives us

$$
\begin{aligned}
U & =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
U^{-1} & =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \\
D & =U^{-1} A U=\left[\begin{array}{ll}
7 & 0 \\
0 & 3
\end{array}\right] \\
A^{5} & =U D^{5} U^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
7 & 0 \\
0 & 3
\end{array}\right]^{5}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
16807 & 0 \\
0 & 243
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
8525 & 8282 \\
8282 & 8525
\end{array}\right] .
\end{aligned}
$$

2. $A=\left[\begin{array}{ll}-4 & 6 \\ -3 & 5\end{array}\right]$

Solution: The eigenvalues are $2,-1$ with corresponding eigenvectors $(1,1),(2,1)$. We have

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
U^{-1} & =\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right] \\
D & =U^{-1} A U=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \\
A^{5} & =U D^{5} U^{-1}=U\left[\begin{array}{cc}
32 & 0 \\
0 & -1
\end{array}\right] U^{-1}=\left[\begin{array}{cc}
-34 & 66 \\
-33 & 65
\end{array}\right] .
\end{aligned}
$$

3. $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$

Solution: The only eigenvalue is 3 , and the corresponding eigenvector is ($1,0,0$). Thus the eigenvectors do not span \mathbb{R}^{3} and so the matrix is not diagonalizable.
4. $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$

Solution: The eigenvalues are $2,-1,1$ with corresponding eigenvectors $(1,1,1),(-1,-1,2),(-1,1,0)$. We compute

$$
\begin{aligned}
U & =\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 2 & 0
\end{array}\right] \\
U^{-1} & =\frac{1}{6}\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & 2 \\
-3 & 3 & 0
\end{array}\right] \\
D & =U^{-1} A U=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
A^{5} & =U D^{5} U^{-1}=U\left[\begin{array}{ccc}
32 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] U^{-1}=\left[\begin{array}{cccc}
11 & 10 & 1110 & 11 \\
11 & 11 & 10 & 11
\end{array}\right] .
\end{aligned}
$$

5. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 1\end{array}\right]$

Solution: The eigenvalues are $2,1,1$ with corresponding eigenvectors $(0,1,0)$ and $(0,-1,1)$. The eigenvectors don't span, so the matrix is not diagonalizable.
6. $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2\end{array}\right]$

Solution:

A has eigenvalues $3,1,1$ with corresponding eigenvectors $(1,1,1),(-1,0,1),(0,1,0)$. Then we have

$$
\begin{aligned}
U & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
U^{-1} & =\frac{1}{2}\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 2 & -1
\end{array}\right] \\
D & =U^{-1} A U=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
A^{5} & =U D^{5} U^{-1}=U\left[\begin{array}{ccc}
243 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] U^{-1}=\left[\begin{array}{lll}
122 & 0 & 121 \\
121 & 1 & 121 \\
121 & 0 & 122
\end{array}\right] .
\end{aligned}
$$

Orthogonality and Projection

1. Suppose $\|\mathbf{u}\|=3,\|\mathbf{u}+\mathbf{v}\|=4,\|\mathbf{u}-\mathbf{v}\|=6$. Find $\|\mathbf{v}\|$.

Solution: We have

$$
\begin{aligned}
9 & =\langle\mathbf{u}, \mathbf{u}\rangle \\
16 & =\langle\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{u}\rangle+2\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{v}\rangle \\
36 & =\langle\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{u}\rangle-2\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{v}\rangle \\
52 & =2\langle\mathbf{u}, \mathbf{u}\rangle+2\langle\mathbf{v}, \mathbf{v}\rangle=2 \cdot 9+2\langle\mathbf{v}, \mathbf{v}\rangle \\
34 & =2\langle\mathbf{v}, \mathbf{v}\rangle \\
\sqrt{17} & =\|\mathbf{v}\| .
\end{aligned}
$$

2. Find the orthogonal complement (in \mathbb{R}^{n}) of the following spaces:

$$
\begin{aligned}
& W=\{(2 t,-t): t \in \mathbb{R}\} \\
& W=\operatorname{span}\{(2,-1,3)\} \\
& W=\{(t,-t, 3 t): t \in \mathbb{R}\} \\
& W=\operatorname{span}\{(1,-1,3,-2),(0,1,-2,1)\}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
W^{\perp} & =\operatorname{span}\{(1,2)\} \\
W^{\perp} & =\operatorname{span}\{(1,2,0),(3,0,-2)\} \\
W^{\perp} & =\operatorname{span}\{(1,1,0),(-3,0,1) \\
{\left[\begin{array}{cccc}
1 & -1 & 3 & -2 \\
0 & 1 & -2 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & -2 & 1
\end{array}\right] \\
W^{\perp} & =\operatorname{span}\{(-1,2,1,0),(1,-1,0,1)\}
\end{aligned}
$$

3. Find the orthogonal decomposition of
(a) $(7,-4)$ with respect to $\operatorname{span}\{(1,1)\}$

Solution:

$$
\begin{aligned}
{\left[\begin{array}{c}
7 \\
-4
\end{array}\right]_{U} } & =\operatorname{proj}_{(1,1)}\left[\begin{array}{c}
7 \\
-4
\end{array}\right]=\frac{(7,-4) \cdot(1,1)}{(1,1) \cdot(1,1)}\left[\begin{array}{c}
7 \\
-4
\end{array}\right]=\frac{3}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 / 2 \\
3 / 2
\end{array}\right] \\
{\left[\begin{array}{c}
7 \\
-4
\end{array}\right]_{U^{\perp}} } & =\left[\begin{array}{c}
7 \\
-4
\end{array}\right]-\left[\begin{array}{l}
3 / 2 \\
3 / 2
\end{array}\right]=\left[\begin{array}{c}
11 / 2 \\
-11 / 2
\end{array}\right] .
\end{aligned}
$$

(b) $(1,2,3)$ with respect to $\operatorname{span}\{(2,-2,1),(-1,1,4)\}$

Solution: The basis we have is orthogonal, so we can just project onto it.

$$
\begin{aligned}
\operatorname{proj}_{(2,-2,1)}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] & =\frac{(1,2,3) \cdot(2,-2,1)}{(2,-2,1) \cdot(2,-2,1)}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 / 9 \\
-2 / 9 \\
1 / 9
\end{array}\right] \\
\operatorname{proj}_{(-1,1,4)}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] & =\frac{(1,2,3) \cdot(-1,1,4)}{(-1,1,4) \cdot(-1,1,4)}\left[\begin{array}{c}
-1 \\
1 \\
4
\end{array}\right]=\frac{13}{18}\left[\begin{array}{c}
-1 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
-13 / 18 \\
13 / 18 \\
26 / 9
\end{array}\right] \\
{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]_{U} } & =\left[\begin{array}{c}
2 / 9 \\
-2 / 9 \\
1 / 9
\end{array}\right]+\left[\begin{array}{c}
-13 / 1813 / 18 \\
22 / 9
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
3
\end{array}\right] \\
{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]_{U^{\perp}} } & =\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
3 / 2 \\
0
\end{array}\right] .
\end{aligned}
$$

(c) $(4,-2,3)$ with respect to $\operatorname{span}\{(1,2,1),(1,-1,1)\}$

Solution:

$$
\begin{aligned}
\operatorname{proj}_{(1,2,1)}\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right] & =\frac{3}{6}\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right] \\
\operatorname{proj}_{(1,-1,1)}\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right] & =\frac{9}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3 \\
3
\end{array}\right] \\
{\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right]_{U} } & =\left[\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right]+\left[\begin{array}{c}
3 \\
-3 \\
3
\end{array}\right]=\left[\begin{array}{c}
7 / 2 \\
-2 \\
7 / 2
\end{array}\right] \\
{\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right]_{U \perp} } & =\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right]-\left[\begin{array}{c}
7 / 2 \\
-2 \\
7 / 2
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right] .
\end{aligned}
$$

(d) $(3,2,-3,4)$ with respect to $\operatorname{span}\{(2,1,0,1),(0,-1,1,1)\}$.

Solution:

$$
\begin{aligned}
\operatorname{proj}_{(2,1,0,1)}\left[\begin{array}{c}
3 \\
2 \\
-3 \\
4
\end{array}\right] & =\frac{12}{6}\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
0 \\
2
\end{array}\right] \\
\operatorname{proj}_{(0,-1,1,1)}\left[\begin{array}{c}
3 \\
2 \\
-3 \\
4
\end{array}\right] & =\frac{-1}{3}\left[\begin{array}{c}
0 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right] \\
{\left[\begin{array}{c}
3 \\
2 \\
-3 \\
4
\end{array}\right]_{U} } & =\left[\begin{array}{l}
4 \\
2 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]=\left[\begin{array}{c}
4 \\
7 / 3 \\
-1 / 3 \\
5 / 3
\end{array}\right] \\
{\left[\begin{array}{c}
3 \\
2 \\
-3 \\
4
\end{array}\right]_{U \perp} } & =\left[\begin{array}{c}
3 \\
2 \\
-3 \\
4
\end{array}\right]-\left[\begin{array}{c}
4 \\
7 / 3 \\
-1 / 3 \\
5 / 3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 / 3 \\
-8 / 3 \\
7 / 3
\end{array}\right] .
\end{aligned}
$$

(e) $(2,-1,5,6)$ with respect to $U=\operatorname{span}\{(1,1,1,0),(1,0,-1,1)\}$.

Solution: We see that $(1,1,1,0) \cdot(1,0,-1,1)=1-1=0$, so this is an orthonormal basis for U. We compute

$$
\begin{aligned}
\operatorname{proj}_{(1,1,1,0)}\left[\begin{array}{c}
2 \\
-1 \\
5 \\
6
\end{array}\right] & =\frac{(2,-1,5,6) \cdot(1,1,1,0)}{(1,1,1,0) \cdot(1,1,1,0)}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]=\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right] \\
\operatorname{proj}_{(1,0,-1,1)}\left[\begin{array}{c}
2 \\
-1 \\
5 \\
6
\end{array}\right] & =\frac{(2,-1,5,6) \cdot(1,0,-1,1)}{(1,0,-1,1) \cdot(1,0,-1,1)}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]=\frac{3}{3}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
2 \\
-1 \\
5 \\
6
\end{array}\right]_{U} } & =\left[\begin{array}{c}
2 \\
2 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
2 \\
-1 \\
5 \\
6
\end{array}\right]_{U \perp}^{\perp} } & =\left[\begin{array}{c}
2 \\
-1 \\
5 \\
6
\end{array}\right]-\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-3 \\
4 \\
5
\end{array}\right] .
\end{aligned}
$$

We can check that the second vector is in fact in U^{\perp} by taking the inner product with the two basis vectors for U.
4. Let $V=\mathcal{P}_{2}(x)$ and define $\langle f, g\rangle=f(-1) g(-1)+f(0) g(0)+f(1) g(1)$.
(a) Find the projection of $3 x-4 x^{2}$ onto the vector $1+x+x^{2}$.

Solution:

$$
\begin{aligned}
\operatorname{proj}_{1+x+x^{2}} 3 x-4 x^{2} & =\frac{\left\langle 3 x-4 x^{2}, 1+x+x^{2}\right\rangle}{\left\langle 1+x+x^{2}, 1+x+x^{2}\right\rangle}\left(1+x+x^{2}\right) \\
& =\frac{(-7)(1)+(0)(1)+(-1)(3)}{(1)(1)+(1)(1)+(3)(3)}\left(1+x+x^{2}\right) \\
& =\frac{10}{11}\left(1+x+x^{2}\right)
\end{aligned}
$$

(b) Find the orthogonal decomposition of $2+x$ with respect to the spaces $W=\operatorname{span}\{5+x\}$ and $W^{\perp}=\operatorname{span}\left\{2-3 x^{2},-2+5 x+2 x^{2}\right\}$. (You can assume that the space I gave you is in fact W^{\perp}. But you can also check yourself, for practice.)
Solution: We have to project $2+x$ onto either W or W^{\perp}. It'll be a lot simpler to project onto W since it's lower dimension and we already have an orthogonal basis, so that's what we do.

$$
\begin{aligned}
(2+x)_{W} & =\operatorname{proj}_{5+x} 2+x \\
& =\frac{\langle 2+x, 5+x\rangle}{\langle 5+x, 5+x\rangle}(5+x) \\
& =\frac{(1)(4)+(2)(5)+(3)(6)}{(4)(4)+(5)(5)+(6)(6)}(5+x) \\
& =\frac{32}{77}(5+x) .
\end{aligned}
$$

Then the projection into W^{\perp} is

$$
(2+x)_{W^{\perp}}=2+x-\frac{32}{77}(5+x)=\frac{-6}{77}+\frac{45}{77} x .
$$

(c) Find the orthogonal decomposition of $3-3 x+x^{2}$ with respect to $W=\left\{3-5 x, 4 x-3 x^{2}\right\}$ and $W^{\perp}=\left\{2+3 x+2 x^{2}\right\}$.
Solution: In this case we almost certainly want to project onto W^{\perp}. We have

$$
\begin{aligned}
\left(3-3 x+x^{2}\right)_{W^{\perp}} & =\operatorname{proj}_{2+3 x+2 x^{2}} 3-3 x+x^{2} \\
& =\frac{\left\langle 3-3 x+x^{2}, 2+3 x+2 x^{2}\right\rangle}{\left\langle 2+3 x+2 x^{2}, 2+3 x+2 x^{2}\right\rangle}\left(2+3 x+2 x^{2}\right) \\
& =\frac{(7)(1)+(3)(2)+(1)(7)}{(1)(1)+(2)(2)+(7)(7)}\left(2+3 x+2 x^{2}\right) \\
& =\frac{20}{54}\left(2+3 x+2 x^{2}\right)=\frac{10}{27}\left(2+3 x+2 x^{2}\right)
\end{aligned}
$$

Then

$$
\left(3-3 x+x^{2}\right)_{W}=3-3 x+x^{2}-\frac{10}{27}\left(2+3 x+2 x^{2}\right)=\frac{61}{27}-\frac{37}{9} x+\frac{7}{27} x^{2}
$$

(d) Find the orthogonal complement of $W=\left\{\alpha_{0}+\alpha_{2} x^{2}: \alpha_{0}, \alpha_{2} \in \mathbb{R}\right\}$.

Solution: We know our orthogonal complement should be one-dimensional. We want to find all polynomials $\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ that are orthogonal to every polynomial in W, which just means we need to solve

$$
\begin{aligned}
& \left(\alpha_{0}+\alpha_{2}(-1)^{2}\right)\left(\beta_{0}+\beta_{1}(-1)+\beta_{2}(-1)^{2}\right) \\
& \quad+\left(\alpha_{0}+\alpha_{2}(0)^{2}\right)\left(\beta_{0}+\beta_{1}(0)+\beta_{2}(0)^{2}\right) \\
& \quad+\left(\alpha_{0}+\alpha_{2}(1)^{2}\right)\left(\beta_{0}+\beta_{1}(1)+\beta_{2}(1)^{2}\right) \\
& \quad=0
\end{aligned}
$$

This simplifes to

$$
\begin{aligned}
0 & =\left(\alpha_{0}+\alpha_{2}\right)\left(\beta_{0}-\beta_{1}+\beta_{2}\right)+\alpha_{0} \beta_{0}+\left(\alpha_{0}+\alpha_{2}\right)\left(\beta_{0}+\beta_{1}+\beta_{2}\right) \\
& =2\left(\alpha_{0}+\alpha_{2}\right)\left(\beta_{0}+\beta_{2}\right)+\alpha_{0} \beta_{0} \\
& =3 \alpha_{0} \beta_{0}+2 \alpha_{0} \beta_{2}+2 \alpha_{2} \beta_{0}+2 \alpha_{2} \beta_{2}
\end{aligned}
$$

At this point we can do one of two things.
First, we could just solve these equations. This needs to hold for any α_{0}, α_{2}. So if we set $\alpha_{0}=0, \alpha_{2}=1$, we get $2 \beta_{0}+2 \beta_{2}=0$; and if we set $\alpha_{0}=1, \alpha_{2}=0$, we get $3 \beta_{0}+2 \beta_{2}=0$. Together, this implies that $\beta_{0}=\beta_{2}=0$. Thus $W^{\perp}=\left\{\beta_{1} x: \beta_{1} \in \mathbb{R}\right\}$.
Second, we could notice that we eliminated β_{1} from our equations entirely, so β_{1} must be a free parameter, and β_{0} and β_{2} can't depend on it. Since we know our space is one-dimensional, that's the only free parameter, and so there must be some fixed constant β_{0}, β_{2} that work. It's easy to check that $x \in W^{\perp}$, so we can see that $W^{\perp}=\left\{\beta_{1} x: \beta_{1} \in \mathbb{R}\right\}$.

