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2 The Lebesgue Measure on Rn

2.1 Defining the Lebesgue Measure

2.1.0 The empty set

Define λ(∅) = 0.

2.1.1 Special rectangles

We can take a closed interval [a, b] ⊂ R, and then we can take a rectangle or box as

I = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then we define

λ(I) = (b1 − a1) . . . (bn − an) =
n∏
i=1

(bi − ai).

Exercise 2.1. Let I ⊂ Rn be a special rectangle. Prove that the following conditions are

equivalent:

1. λ(I) = 0

2. I◦ = ∅

3. I is contained in an affine subspace of Rn having dimension smaller than n. (An affine

subspace is a set {x0 + x : x ∈ E} where E is a subspace and x0 is a fixed point.)

We will call these “rectangles” even if they are one-dimensional, or one-hundred-dimensional.

This is mostly because the pictures we’re going to draw are all two-dimensional, and that’s

mostly because those are easy to draw.

2.1.2 Special Polygons

A special polygon is a finite union of special rectangles, each of which has nonzero measure.

All of the sides or edges must be perpendicular to a coordinate axis.

We can define the measure of a special polygon straightforwardly. If I1, . . . , IN are spe-

cial rectangles with disjoint interiors, and P =
⋃N
k=1 Ik is a special polygon, then λ(P ) =∑N

k=1 λ(Ik).

This is really the only reasonable definition: if we chop our special polygon into pieces,

we want the measure of the pieces to add up to the measure of the polygon.
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There are two compatibility conditions we should need to check, but they’re tedious and

boring and straightforward to check so we’ll just state them here.

Fact 2.2. � Every special polygon can be expressed as the union of finitely many special

rectangles with disjoint interiors.

� If P is a special polygon, and P =
⋃n
k=1 Ik =

⋃m
`=1 J` are two different ways of writing

P as a union of special rectangles with disjoint interiors, then
∑n

k=1 λ(Ik) =
∑m

`=1 J`.

Proposition 2.3. � If P1 ⊆ P2 then λ(P1) ≤ λ(P2).

� If P1 and P2 have disjoint interiors, then λ(P1 ∪ P2) = λ(P1) + λ(P2).

2.1.3 Open Sets

Here we want to define the measure of any open set. We will follow this by defining the

measure of compact sets, and then extend to arbitrary sets by squeezing them between open

and compact sets.

Definition 2.4. If ∅ 6= G ⊆ Rn is an open set, we define

λ(G) = sup {λ(P ) : P ⊆ G,P is a special polygon} .

We know the set we’re taking the supremum over is non-empty, since G has some interior

and thus contains some rectangle. If the set of polygon measures is bounded then λ(G) is a

real number; if the set is unbounded, then we write λ(G) =∞.

Proposition 2.5. If G is open and P is a special polygon with P ⊂ G, then there is another

special polygon P ′ with P ⊂ P ′ ⊂ G and λ(P ) < λ(P ′).

Proof. Since P is closed and G is open, we have G∩PC open. Let x ∈ G∩PC ; then there is

an r such that x ∈ Br(x) ⊂ G∩PC , and we can let I be a closed special rectangle contained

in Br(x). Then set P ′ = P ∪ I; P ′ is a special rectangle, and clearly P ⊂ P ′ ⊂ G.

Exercise 2.6. If G is a bounded open set, prove that λ(G) <∞.

Proposition 2.7. Let G ⊆ Rn be an open set. Then

1. 0 ≤ λ(G) ≤ ∞

2. λ(G) = 0 if and only if G = ∅.
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3. λ(Rn) =∞.

4. If G1 ⊂ G2 are open sets, then λ(G1) ≤ λ(G2).

5. If Gk is open for k ∈ N, then

λ

(
∞⋃
k=1

Gk

)
≤

∞∑
k=1

λ(Gk).

6. If Gk are disjoint open sets, then

λ

(
∞⊔
k=1

Gk

)
=
∞∑
k=1

λ(Gk).

7. If P is a special polygon, then λ(P ) = λ(P ◦).

Proof. 1. By definition.

2. If G 6= ∅ then G contains some nontrivial special polygon P . Then λ(G) ≥ λ(P ) > 0.

3. Exercise.

4. This is basically a property of suprema. If G1 ⊂ G2, then any special polygon contained

in G1 is also contained in G2. Thus

{P ⊂ G1} ⊂ {P ⊂ G2}

{λ(P ) : P ⊂ G1} ⊂ {λ(P ) : P ⊂ G2}

sup{λ(P ) : P ⊂ G1} ⊂ sup{λ(P ) : P ⊂ G2}

since any upper bound for the larger set is also an upper bound for the smaller set.

5. This one is trickier than it looks. First note that the union is in fact an open set.

Let P be a special polygon such that P ⊂
⋃∞
k=1Gk. Since P is compact, we know there

is a Lebesgue number ε > 0 such that, for every x ∈ P , there is a k with Bε(x) ⊂ Gk.

(See lemma 1.27).

We know P is a union of non-overlapping rectangles; we can always further subdivide

those rectangles, and thus we can assume that P =
⋃n
j=1 Ij with each Ij a special

rectangle of diameter less than 2ε. If we let xj be the center of the rectangle Ij, then

we have Ij ⊂ Bε(xj) ⊂ Gk for some k.
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Now we can divide our rectangles up according to their open sets. For each k, define Pk

to be the union of all Ij such that Ij ⊂ Gk and IJ 6⊂ Gi for i < k. (This second condition

is just to make sure we don’t double-count any rectangle). But every rectangle is

contained in at least one of these open sets, so P =
⋃∞
k=1 Pk.

Most of these Pk are empty, since there are only finitely many special rectangles running

around. But each non-empty Pk is a special polygon, with Pk ⊂ Gk. And we know the

Pk have disjoint interiors. Thus we know that

λ(P ) =
N∑
k=1

λ(Pk) ≤
N∑
k=1

λ(Gk) ≤
∞∑
k=1

λ(Gk).

But we’ve shown that for any special polygon P ⊂
⋃
Gk, we have λ(P ) ≤

∑
λ(Gk).

Thus we have

λ

(
∞⋃
k=1

Gk

)
= sup

{
λ(P ) : P ⊂

⋃
Gk

}
≤

∞∑
k=1

λ(Gk).

6. We already know that λ
⊔
Gk ≤

∑
λ(Gk) by property 5. So we just need to show the

reverse, that
∑
λ(Gk) ≤ λ

⊔
Gk.

For each k, let Pk be a special polygon with Pk ⊂ Gk. Then the Pk are disjoint, and

for any n ∈ N we have

n∑
k=1

λ(Pk) = λ

(
n⋃
k=1

Pk

)
≤ λ

(
∞⊔
k=1

Gk

)

Since this is true for any special polygons Pk ⊂ Gk, we know that the union is an upper

bound for any polygons; thus it’s an upper bound for the supremum, and we get

n∑
k=1

λ(Gk) ≤ λ

(
∞⊔
k=1

Gk

)
.

Then this statement is true for any finite sum on the left, so it must still be true in

the limit; so we have
∞∑
k=1

λ(Gk) ≤ λ

(
∞⊔
k=1

Gk

)
.

And this is what we needed to show.

http://jaydaigle.net/teaching/courses/2020-spring-395/ 16

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

7. It’s easy to see that λ(P ◦) ≤ λ(P ) (though not completely trivial). If Q is a special

polygon with Q ⊂ P ◦, then Q ⊂ P and thus λ(Q) ≤ λ(P ). This is true for any Q, and

thus we have

λ(P ◦) = sup
Q⊂P ◦

λ(Q) ≤ λ(P ).

Now we need to prove the other direction. We’ll start by proving it for special rectan-

gles. If I is a special rectangle, then for any ε > 0 we can find a rectangle I ′ ⊂ I◦ such

that λ(I ′) > λ(I)− ε (by simply shrinking each dimension by n
√
ε/2 or something like

that).

This tells us that λ(I◦) > λ(I) − ε. But this is true for any ε > 0, so we have

λ(I◦) ≥ λ(I).

Now if P is a special polygon written as a union of non-overlapping special rectangles

Ik, then
⋃n
k=1 I

◦
k is a disjoint union contained in P ◦. Thus

λ(P ) =
n∑
k=1

λ(Ik) ≤
n∑
k=1

λ(I◦k) ≤ λ(P )◦.

Exercise 2.8. Prove that every nonempty open subset of R can be written as a countable

disjoint union of open intervals G =
⋃
k(ak, bk), and this expression is unique.

Then conclude that λ(G) =
∑

k(bk − ak).

Remark 2.9. In R we can use this as our construction, but it doesn’t really generalize to Rn

easily. You can make that work, but it’s even more painful.

2.1.4 Compact Sets

If K ⊂ Rn is compact, then define

λ(K) = inf{λ(G) : K ⊂ G,G open}.

There’s something we immediately have to check: if K is a compact special polygon,

does this new definition match the old one?

This is a little hard to talk about, so we’ll introduce some very temporary notation.

We’ll use α for the definition of measure we gave in 2.1.2 that applies specifically to special

polygons. And we’ll use β for the definition that applies to any compact set. We’ll prove

they’re both the same, and then we can go back to calling both of them λ instead.
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It’s any to see that α(P ) ≤ β(P ) for any special polygon P . Whenever P ⊂ G, then

α(P ) ≤ λ(G). Therefore, α(P ) ≤ inf{λ(G)} = β(P ).

Conversely, we want to show that β(P ) ≤ α(P ). Suppose P =
⋃n
k=1 Ik is a union of

non-overlapping rectangles. For any ε > 0 we can pick special rectangles I ′k ⊂ I◦k such that

λ(I ′k) < λ(Ik) + ε/n.

Then if we set G =
⋃n
k=1 I

′◦
k we have P ⊂ G, and thus

β(P ) ≤ λ(G) ≤
n∑
k=1

λ(I ′◦k )

<

n∑
k=1

λ(Ik) + ε = α(P ) + ε.

Since this is true for any ε > 0, we have β(P ) ≤ α(P ).

We want to prove several properties of the measure of these compact sets. But mostly

we can leverage the results we already proved about open sets.

Proposition 2.10. 1. 0 ≤ λ(K) <∞

2. If K1 ⊂ K2 then λ(K1) ≤ λ(K2).

Proof. Exercise

3. λ(K1 ∪K2) ≤ λ(K1) + λ(K2).

Proof. If K1 ⊂ G1 and K2 ⊂ G2 then K1 ∪K2 ⊂ G1 ∪G2, and thus

λ(K1 ∪K2) ≤ λ(G1 ∪G2) ≤ λ(G1) + λ(G2).

Thus

λ(K1 ∪K2) ≤ inf λ(G1) + λ(G2) = λ(K1) + λ(K2).

4. If K1 and K2 are disjoint, then λ(K1 ∪K2) = λ(K1) + λ(K2).

Proof. Wince K1 and K2 are compact, there is a ε > 0 such that for every x ∈ K1, y ∈
K2, then d(x, y) ≥ ε. (This is the Lebesgue number again, with the open sets being

KC
1 and KC

2 .) Then if we let G be an open set containing K1 ∪K2, we can write

G1 = G ∩
⋃
x∈K1

Bε/2(x)

G2 = G ∩
⋃
x∈K2

Bε/2(x).
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Then we have Ki ⊂ Gi and G1 ∩G2 = ∅. So we have

λ(K1) + λ(K1) ≤ λ(G1) + λ(G2) = λ(G1 ∪G2) ≤ λ(G).

Since this holds for any G ⊃ K1 ∪K2, we have λ(K1) + λ(K2) ≤ λ(K1 ∪K2). Since

the opposte inequality follows from part (3), that proves equality.

Remark 2.11. We didn’t try to prove any results about infinite unions of compact sets. Why

not?

Here we should mention one very important example: the Cantor set. (It is sometimes

known as the ternary Cantor set to distinguish from some generalizations.)

Definition 2.12. We first define a family of open intervals contained in [0, 1]. We define

G1 = (1
3
, 2
3
); then [0, 1]\G1 is two closed intervals of length one third. We remove the middle

third of each of these: we define G2 = (1
9
, 2
9
)∪ (7

9
, 8
9
). Then [0, 1] \ (G1 ∪G2) = is four closed

intervals of length 1/9. We can iterate this construction to get an infinite sequence of disjoint

open sets G1, G2, . . . .

We define the (ternary) Cantor set to be the set

C = [0, 1] \
∞⋃
k=1

Gk.

Fact 2.13. The Cantor set C is uncountable.

Exercise 2.14. Prove that C is compact. Then prove that λ(C) = 0.

2.1.5 Inner and Outer Measure

We would like to extend our definition of measure to cover any set. We don’t quite have the

ability to do that yet, but we can define two quanties that do apply to any set.

Definition 2.15. Let A ⊆ Rn. Then we define

� The outer measure of A

λ∗(A) = inf{λ(G) : A ⊂ G open}

� The inner measure of A

λ∗(A) = sup{λ(K) : A ⊃ K compact}.
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Notice that these are basically concepts we’ve seen before; outer measure is how we

defined the measure of a compact set, and inner measure is basically how we defined the

measure of an open set. So this entire set of definitions has a sort of push-pull quality.

Proposition 2.16. 1. λ∗(A) ≤ λ∗(A).

Proof. If K ⊂ A ⊂ G, then K ⊂ G, and thus λ(K) ≤ λ(G).

2. If A ⊆ B then λ∗(A) ≤ λ∗(B) and λ∗(A) ≤ λ∗(B).

3. λ∗ (
⋃∞
k=1Ak) ≤

∑∞
k=1 λ

∗(Ak).

Proof. We basically want to cover each Ak with an open set. If ε > 0, then for each k

we can find a Gk ⊇ Ak such that λ(Gk) < λ∗(Ak) + ε2−k. Then we have

λ∗

(
∞⋃
k=1

Ak

)
≤ λ

(
∞⋃
k=1

Gk

)
≤

∞∑
k=1

λ(Gk)

<
∞∑
k=1

(λ∗(Ak) + ε2−k) =
∞∑
k=1

λ∗(Ak) + ε.

Since this holds for any ε > 0, we’re done.

4. If the Ak are disjoint, then

λ∗

(
∞⋃
k=1

Ak

)
≥

∞∑
k=1

λ∗(Ak).

Proof. Exercise.

5. If A is open or compact, then λ∗(A) = λ∗(A) = λ(A).

Proof. If A is open, then clearly λ∗(A) = λ(A). If P is any special polygon with P ⊂ A,

then P is compact, so λ(P ) ≤ λ∗(A); and thus λ(A) ≤ λ∗(A).

But then λ(A) ≤ λ∗(A) ≤ λ∗(A) = λ(A), so all the numbers are equal.

Now suppose A is compact. Then λ∗(A) = λ(A) clearly, and λ(A) = λ∗(A) because

that’s the definition of λ(A).
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2.1.6 Sets with Finite Outer Measure

Recall we want to assign a measure to every possible set. In the last subsubsection 2.1.5 we

defined two “measure-like” numbers that apply to any set. But which one should we use?

It turns out that very strange things can happen in general, which we will see later. But

all of those strangenesses are avoided if our two measures are in fact the same.

Definition 2.17. Let A ⊆ Rn be a set with finite outer measure. We say that A is measurable

and belongs to L0 if λ∗(A) = λ∗(A), and in that case we define the measure of A to be

λ(A) = λ∗(A) = λ∗(A).

Proposition 2.18. The family L0 contains all open sets with finite measure and all compact

sets. Our new definition of measure belongs to every previous definition of measure we’ve

given.

Lemma 2.19. If A,B ∈ L0 are disjoint, then A ∪B ∈ L0 and λ(A ∪B) = λ(A) + λ(B).

Proof.

λ∗(A ∪B) ≤ λ∗(A) + λ∗(B) = λ(A) + λ(B)

= λ∗(A) + λ∗(B) ≤ λ∗(A ∪B)

≤ λ∗(A ∪B).

We want to be able to tell whether a set is measurable in an easy-to-compute way. The

main tool for this is the following theorem on approximation, which says that if we can

approximate our set with open sets and compact sets that are “close together” then our set

is in L0.

Theorem 2.20 (Approximation of Measure). Let A ⊆ Rn such that λ∗(A) < ∞. Then

A ∈ L0 if and only if: for every ε > 0 there is a compact set K and an open G such that

K ⊆ A ⊆ G and λ(G \K) < ε.

Proof. If A ∈  L0, then that means that the inner measure and outer measure of A are the

same. But we can always approximate the outer measure well with an open set, and the

inner measure with a compact set. So for any ε > 0 we can find G ⊆ A,K ⊆ A such that

λ(G) < λ∗(A) + ε/2 = λ(A) + ε/2

λ(K) > λ∗(A)− ε/2 = λ(A)− ε/2.
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Since K and G \K are disjoint, we have λ(G) = λ(K) + λ(G \K). Rearranging this gives

λ(G \K) = λ(G)− λ(K)

< λ(A) + ε/2− λ(A) + ε/2 = ε.

Conversely, suppose that for any ε > 0 there exist K ⊆ A ⊆ G with λ(G \K) < ε. Fix

an epsilon, and then choose such sets G and K. We have that

λ∗(A) ≤ λ(G) = λ(K) + λ(G \K)

< λ(K) + ε ≤ λ∗(A) + ε.

Since this holds for any ε > 0, we conclude that λ∗(A) ≤ λ∗(A) ≤ λ∗(A). Thus the outer

and inner measures are equal, and A ∈ L0 by definition.

We want to figure out how we can combine L0 sets to get other L0 sets. We start by

looking at our binary operations, and then we’ll figure out how to work with countably many

sets at once.

Proposition 2.21. If A,B ∈ L0 then A ∪B,A ∩B,A \B ∈ L0 as well.

Proof. We’ll start with the set difference, using the theorem on approximation.

Fix ε > 0, and then we can write K1 ⊆ A ⊆ G1, K2 ⊆ B ⊆ G2 with λ(Gi \Ki) < ε/2.

Then set K = K1 \G2 and G = G1 \K2.

G is clearly open, and K is closed and thus compact. Further, we have K ⊆ A \B ⊆ G,

and G \K ⊆ (G1 \K1) ∪ (G2 \K2). Thus λ(G \K) < ε, and thus A \B ∈ L0.

Given this fact, we can prove the other two claims with minimal work. A∩B = A\(A\B)

is a difference of differences of L0 sets, and thus is in L0. And A ∪ B = (A \ B) ∪ B is a

disjoint union of L0 sets, and thus is L0 by lemma 2.19.

Theorem 2.22 (Countable additivity). Let Ak ∈ L0, and set A =
⋃∞
k=1Ak. Assume

λ∗(A) <∞. Then A ∈ L0, and

λ(A) ≤
∞∑
k=1

λ(Ak).

Further, if the Ak are disjoint, then

λ(A) =
∞∑
k=1

λ(Ak).
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Proof. If the Ak are disjoint, this is easy. We know that

λ∗(A) ≤
∞∑
k=1

λ∗(Ak)

=
∞∑
k=1

λ∗(Ak) ≤ λ∗(A) ≤ λ∗(A).

If the Ak are not disjoint, we can’t do anything this simple. The first inequality holds,

but we don’t actually have an inequality on the inner measure. But if we can reduce this

to a question about a disjoint union, then we can use the previous result and things become

much simpler.

Define a new family of sets as follows. We take B1 = A1, and then for each k > 1 we

define

Bk = Ak \

(
k−1⋃
i=1

Ak

)
.

Then each Bk ∈ L0, and clearly the Bk are disjoint. Each Bk is a subset of the corresponding

Ak, and
⋃∞
k=1Bk =

⋃∞
k=1Ak = A. Then we can use our result on disjoint unions to see that

A ∈ L0, and

λ(A) =
∞∑
k=1

λ(Bk) ≤
∞∑
k=1

λ(Ak).

2.1.7 Measurable Sets

Definition 2.23. Let A ⊂ Rn. We say that A is (Lebesgue) measurable if, for every M ∈ L0,

then A ∩M ∈ L0. If A is measurable, we define the (Lebesgue) measure of A to be

λ(A) = sup{λ(A ∩M) : M ∈ L0}.

We denote the set of all measurable subsets of Rn with the symbol L.

We now have another (final!) definition of measure; so we need to make sure it’s the

same as our previous definitions.

Proposition 2.24. Let A ⊆ Rn with λ∗(A) <∞. Then A ∈ L0 if and only if A ∈ L. And

if A ∈ L, then our two definitions of measure coincide.

Proof. If A ∈ L0, then A ∩M ∈ L0 for any M ∈ L0, and thus A ∈ L.

Conversely, suppose A ∈ L. We know that Bk(0) ∈ L0 since it’s open, so we know that

Ak = A ∩Bk(0) ∈ L0. But A =
⋃∞
k=1Ak, and theorem 2.22 tells us that A ∈ L0.
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Now we need to prove that the measure formulas coincide; for the rest of this proof we’ll

use λ′ for our final definition of measure given in Definition 2.23.

Suppose A ∈ L0 ⊂ L. Then since for any M ∈ L0, we know that A ∩M ⊆ A, and

so λ(A ∩M) ≤ λ(A), and thus λ′(A) ≤ λ(A). But conversely, A ∈ L0, so we must have

λ(A) ≤ λ(A ∩ A) ≤ λ′(A). Thus λ′ = λ.

2.2 Basic Properties of the Lebesgue Measure

Now that we have finally given a complete definition of Lebesgue measure, we want to collect

all the properties that apply to it. Many of these are properties we’ve seen already at various

earlier stages of the construction, but we need to see they still hold at this completed stage.

Some other properties are basically new.

Proposition 2.25. 1. A ∈ L if and only if AC ∈ L.

2. If Ak ∈ L, then
⋃∞
k=1Ak ∈ L and

⋂∞
k=1Ak ∈ L .

3. If A,B ∈ L then A \B ∈ L.

Proof. 1. For any M ∈ L0, we know that Ac ∩M = M \ A = M \ (A ∩M). This is a

difference of L0 sets, and thus is in L0. Therefore AC ∈ L.

2. If Ak ∈ L and A =
⋃∞
k=1Ak, then for any M we have that A ∪M =

⋃∞
k=1Ak ∩M .

Since λ∗(A∩M) ≤ λ(M) is finite, theorem 2.22 tells us that A∩M ∈ L0. Thus A ∈ L.

The result on intersections follows from De Morgan’s Laws: we know that

∞⋂
k=1

Ak =

(
∞⋃
k=1

ACk

)C

.

Since complements and countable unions preserve measurability, this is a measurable

set.

3. A \B = A ∩BC is measurable.

Proposition 2.26. [Countable Additivity] If Ak are measurable, then

λ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

λ(Ak).

If the union is disjoint, then

λ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

λ(Ak).
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Proof. Let A =
⋃∞
k=1Ak. Then by theorem 2.22 we know that

λ(A ∪M) ≤
∞∑
k=1

λ(Ak ∩M) ≤
∞∑
k=1

λ(Ak).

Thus
∑∞

k=1 λ(Ak) is an upper bound for λ(A ∩M), and so we have λ(A) ≤
∑∞

k=1 λ(Ak).

Now suppose the sets are disjoint; we just need to prove the opposite inequality. For any

n ∈ N we can choose sets M1, . . . ,Mn ∈ L0, and define M =
⋃n
k=1Mk. Then

λ(A) ≥ λ(A ∩M) =
∞∑
k=1

λ(Ak ∩M)

≥
n∑
k=1

λ(Ak ∩M) ≥
n∑
k=1

λ(Ak ∩Mk).

Since λ(Ak ∩Mk) ≤ λ(Ak), we conclude that λ(A) ≥
∑n

k=1 λ(Ak). Since this is true for any

n ∈ N, we must have λ(A) ≥
∑∞

k=1 λ(Ak), as desired.

Proposition 2.27. Suppose A1, A2, . . . are measurable sets. Then:

1. If A1 ⊆ A2 ⊆ . . . , then

λ

(
∞⋃
k=1

Ak

)
= lim

k→∞
λ(Ak).

2. If A1 ⊇ A2 ⊇ . . . , and further if λ(A1) <∞, then

λ

(
∞⋂
k=1

Ak

)
= lim

k→∞
λ(Ak).

Proof. 1. We can write
⋃
Ak as a disjoint union; in this case this is very easy, since we

have
∞⋃
k=1

Ak = A1 ∪
∞⋃
k=2

(Ak \ Ak−1).

Then countable additivity implies that

λ

(
∞⋃
k=1

Ak

)
= λ(A1) +

∞∑
k=2

λ(Ak \ Ak−1)

= lim
n→∞

λ(A1) +
n∑
k=2

λ(Ak \ Ak−1)

= lim
n→∞

λ

(
A1 ∪

n⋃
k=2

(Ak \ Ak−1)

)
= lim

n→∞
λ(An).
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2. Exercise.

Proposition 2.28. 1. All open sets and all closed sets are measurable.

2. If λ∗(A) = 0, then A is measurable and λ(A) = 0.

Proof. 1. If G is open, then we can write G =
⋃∞
k=1(G ∩ Bk(0)) as a countable union

of bounded open sets. Each bounded open set has finite outer measure and thus is

measurable; and we know a countable union of measurable sets is measurable. Thus

G is measurable.

If F is closed, then FC is open and thus measurable. So F is measurable.

2. We know that 0 ≤ λ∗(A) = 0 ≤ λ∗(A) = 0. Thus A ∈ L0 and so A is measurable, and

λ(A) = 0.

Proposition 2.29 (Approximation). Let A ⊆ Rn. Then A is measurable if and only if: for

every ε > 0 there exist F ⊆ A ⊆ G such that λ(G \ F ) < ε.

Proof. First, suppose A has the approximation property as described. We’re going to ap-

proximate A with a clearly measurable set and then show the remainder is so small that it

must also be measurable.

For any k ∈ N we can find Fk ⊆ A ⊆ Gk, with λ(Gk \ Fk) < 1
k
. Let B =

⋃∞
k=1 Fk. Then

B is a countable union of measurable sets and thus measurable, and B ⊆ A.

Further, we know that A \B ⊆ Gk \B ⊆ Gk \Fk, and thus λ∗(A \B) ≤ λ(Gk \Fk) < 1
k
.

Since this holds for each k, we see that λ∗(A \ B) = 0, and thus A \ B is measurable. We

conclude that A = B ∪ (A \B) is a union of measurable sets and thus measurable.

Conversely, suppose A is a measurable subset of Rn. If we take any finite measure

subset, we know we can approximate it; so we’ll build a sequence of these approximations

that approximate all of A.

For each k, define Ek = Bk(0)\Bk−1(0), which you can visualize like a washer or annulus

centered at zero. Since each Ek is bounded, we know that A∩EK ∈ L0, and thus we can find

a compact set Kk and an open set Gk such that Kk ⊆ A∩Ek ⊆ Gk and λ(Gk \Kk) < ε2−k.

We define F =
⋃∞
k=1Kk and G =

⋃∞
k=1Gk. It’s clear that Gk is open. It’s less trivial to

see that F is closed, but we can check that it contains all of its limit points; if x ∈ F then

x must be a limit point of some finite union
⋃n
k=1Kk, and this is a finite union and thus

closed, so x ∈
⋃n
k=1Kk ⊆ F .
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So we have F ⊆ A ⊆ G are closed and open respectively. And we can see that

G \ F =
∞⋃
k=1

(Gk \ F ) ⊆
∞⋃
k=1

(Gk \Kk)

and so

λ(G \ F ) ≤
∞∑
k=1

λ(Gk \Kk)

<
∞∑
k=1

ε2−k = ε.

Proposition 2.30. 1. If A is measurable, then λ∗(A) = λ∗(A) = λ(A).

2. If A ⊆ B and B is measurable, then λ∗(A) + λ∗(B \ A) = λ(B).

Proof. 1. If λ∗(A) <∞, then this follows from section 2.1.6. So suppose A is measurable,

and λ∗(A) =∞.

If λ(A) < ∞, then we could find F ⊆ A ⊆ G with λ(G \ F ) < 1, and then we’d have

that

λ(G) = λ(G \ A) + λ(A) ≤ λ(G \ F ) + λ(A) < 1 + λ(A) <∞

which is a contradiction.

Now we just need to show that λ∗(A) =∞. We know that λ(A∩Bk(0)) <∞, and for

any k we have

λ(A ∩Bk(0)) = λ∗(A ∩Bk(0)) ≤ λ∗(A).

But we know that limk→∞ λ(A ∩ Bk(0)) = λ(A) = ∞ since this is a union of an

ascending chain. Thus we also must have that λ∗(A) =∞.

2. For any open G ⊇ A, we know that

λ(G) + λ∗(B \ A) ≥ λ(B ∩G) + λ∗(B \ A) ≥ λ(B ∩G) + λ∗(B \G)

= λ(B ∩G) + λ(B \G) = λ(B).

This holds for any G, so we have λ(B) ≤ λ∗(A) + λ∗(B \ A).

Conversely, for any compact K ⊆ B \ A, we can do basically the same thing:

λ∗(A) + λ(K) ≤ λ∗(B \K) + λ(K)

= λ(B \K) + λ(K) = λ(B).

http://jaydaigle.net/teaching/courses/2020-spring-395/ 27

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

Thus λ∗(A) + λ∗(B \ A) ≤ λ(B).

Proposition 2.31 (Carathéodory). A set A is measureable if and only if for every E ⊆ Rn,

we have that

λ∗(E) = λ∗(E ∩ A) + λ∗(E ∩ Ac).

Remark 2.32. This proposition provides another way to construct measure; we could have

used the outer measure only and avoided inner measure. But this presentation would have

been somewhat less concrete, and made some other steps kind of tricky.

Proof. Notice first that this equation is partly cheating. For any set A, measurable or not,

we know that

λ∗(E) ≤ λ∗(E ∩ A) + λ∗(E ∩ Ac)

by the countable subadditivity of outer measure as proven in 2.16. So in either direction

we’re really just looking at the opposite inequality.

Suppose A is measurable. If E ⊂ G open, then

λ(G) = λ(G ∩ A) + λ(G ∩ Ac) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac).

Thus

λ∗(E) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac)

by definition of outer measure.

Conversely, suppose that λ∗(E) = λ∗(E ∩A) +λ∗(E ∩Ac) for any E. Then in particular,

for any finitely measurable M ∈ L0 we have

λ(M) = λ∗(M) = λ∗(M ∩ A) + λ∗(M ∩ Ac).

But we also know that

λ(M) = λ∗(M ∩ A) + λ∗(M ∩ Ac)

from proposition 2.30, since we can take M ∩ Ac = M \ (M ∩ A).

But subtracting these equations gives that 0 = λ∗(M ∩ A) − λ∗(M ∩ A), and thus

λ∗(M ∩A) = λ∗(M ∩A); and this is precisely what it means to say that M ∩A ∈ L0. since

this holds for any measurable M , then A ∈ L by definition.
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2.3 Abstract Measure Spaces

At this point I want to take a moment and discuss which of the properties of the Lebesgue

measure generalize, and are necessary for it to be “a measure”.

We first want to talk about the properties that measurable sets have to have.

Definition 2.33. Let X be any set. We define an algebra of subsets of X to be a subset

M ⊆ 2X of the power set of X that satisfies the following properties:

� ∅ ∈M

� If A,B ∈M then A ∪B ∈M.

� If A ∈M then AC = X \ A ∈M.

It’s easy to see that an algebra of sets must be closed under any finite unions, and also

under finite intersections and under set difference.

All these statements are true of the Lebesgue measurable sets. But the measurable sets

have one extra property:

Definition 2.34. Let M ⊆ 2X be an algebra. Then it is a σ-algebra if it is also closed under

countable unions (and thus intersections): if A1, A2, . . . ,∈M then
⋃∞
k=1Ak ∈M.

Example 2.35. � The power set 2X is a σ-algebra.

� {∅, X} is a σ-algebra. In fact, this is a sub-σ-algebra of any σ-algebra.

� The measurable sets L ⊂ 2Rn
are a σ-algebra.

� Let X be any set, ane let M0 be the set of all sets A such that either A is finite or AC

is finite. Then M0 is an algebra but not a σ-algebra.

� Let X be any set, ane let M1 be the set of all sets A such that either A is countable

or AC is countable. Then M0 is an a σ-algebra.

� Any finite algebra is a σ-algebra for basically dumb reasons.

From this we want to find a way to build σ-algebras. There is one lemma which will be

very useful for this:

Exercise 2.36. Let X be a set, and Mi ⊂ 2X be a σ-algebra for each i in some index set I.

Prove that
⋂
i∈I Mi is a σ-algebra.
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Notice this is a little weird. We’re not intersecting subsets of X to get a new subset of

X; we’re intersecting collections of subsets of X to get a new collection of subsets of X.

Now suppose N ⊂ 2X is any collection of subsets—not necessarily an algebra. We can

consider the family of σ-algebras that contain N. Clearly there are some such σ-algebras,

since 2X is itself a σ-algebra. If we take the intersection of all these σ-algebras, we will get

a new σ-algebra:

M =
⋂
P⊇N

P.

Then M will contain N, and it is contained in any σ-algebra that contains N, so it is the

smallest σ-algebra containing N. We say that M is the σ-algebra generated by N.

An important note is that this is, and essentially must be, non-constructive. There are

sets in M that we can’t build by a countable chain of unions or intersections of elements

of N. In fact, a set in M can be a countable union of countable intersections of countable

unions of countable intersections of . . .

If we want to construct the σ-algebra M explicitly, we need to do some sort of transfinite

induction, which is cumbersome and we just don’t want to do it. But it’s clear (non-

constructively) that M must exist, and we’re satisfied with that.

So far this tells us that we can generate σ-algebras, but doens’t tell us what we want to

do with them, or which σ-algebras we want. But if we want to build a measure, we definitely

want to be able to measure all the “reasonable” sets.

Definition 2.37. The class of Borel sets in Rn, denoted B, is the σ-algebra generated by

the collection of open sets. Clearly B ⊆ L. We sometimes write Bn when we need to specify

the dimension.

Exercise 2.38. Prove that the class of Borel sets is also the σ-algebra generated by the

collection of special rectangles.

Thus B is the smallest σ-algebra that contains all the sets we obviously want to be able

to measure.

The Borel sets in Rn are not actually all the Lebesgue measurable sets. But they are

close.

Definition 2.39. If A ⊆ Rn is measurable with λ(A) = 0, then A is a null set. A is null if

and only if λ∗(A) = 0.

Theorem 2.40. Suppose A ⊆ Rn is measurable. Then we can write A = E ∪ N such that

E and N are disjoint, E is a Borel set, and N is a null set.
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Proof. For every k ∈ N there is a closed set Fk ⊆ A such that λ(A \ Fk) < 1
k
, by our

approximation property 2.29. Set E =
⋃∞
k=1 Fk. Then E is not necessarily closed, but it is

certainly Borel since it’s a countable union of closed, Borel sets.

Further, E ⊆ A. Then for any k, we have

λ(A \ E) ≤ λ(A \ Fk) <
1

k
.

Thus λ(A \ E) = 0 and thus A \ E is null.

In fact, we proved something much stronger than the theorem statement. The set E is

not only Borel, it is specifically a countable union of closed sets; we call such sets Fσ sets.

Dually, a countable intersection of open sets is called a Gδ set.

Exercise 2.41. Prove that if N ⊆ Rn is null, then there is a Borel null set N ′ such that

N ⊆ N ′. In particular, prove that N ′ can be chosen to be a Gδ set.

Theorem 2.42. Let E ⊆ Rn be Borel, and let f : E → Rm be continuous. If A is Borel in

Rm, then f−1(A) is Borel in Rn.

Proof. This proof has to be a little weird again, because we have to use the universal property

of Borel sets; we can’t actually study the structure of f−1(A) and see that it’s Borel—first

because we don’t know what it “should” look like, and second because we don’t know what

A looks like.

So we’ll define a class of subsets: let

M = {A : A ⊂ Rm, f−1(A) ∈ Bn}.

If we can show that Bm ⊆ M then we have proven what we want to prove. But Bm is

the smallest σ-algebra containing all the open sets in Rm; so we want to prove that M is a

σ-algebra containing all the open sets in Rm.

First we claim that M is a σ-algebra. We have to check the three axioms:

1. f−1(∅) = ∅ ∈ Bn, so ∅ ∈M.

2. Suppose Ak ∈M for all k ∈ N. Then for each k we know that f−1(Aj) ∈ Bn. Thus

f−1

(
∞⋃
k=1

Ak

)
=
∞⋃
k=1

f−1(Ak) ∈ Bn

since Bn is a σ-algebra and this is a countable union of Bn sets. Thus
⋃∞
k=1 f

−1(Ak) ∈
M.
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3. Suppose A ∈M. Then f−1(A) ∈ Bn, and thus

f−1(AC) = {x ∈ E : f(x) 6∈ A} = E \ {x ∈ E : f(x) ∈ A} = E \ f−1(A)

is a difference of Bn sets, and thus is in Bn. So AC ∈M.

Thus M satisfies the three axioms of a σ-algebra: it contains the null set, and is closed under

countable unions and under complements. So M is a σ-algebra.

So now we just need to show that M contains all the open sets. So let G ⊆ Rm be an

open set. Then we can write f−1(G) = E ∩H where H ⊆ Rn is open. Thus H ∈ Bn, and

we know E ∈ Bn, so f−1(G) = H ∩ E ∈ Bn. So G ∈M.

Remark 2.43. We know that M contains all the Borel sets; but it might contain far, far

more—and whether it does depends on the specific function. In the extreme case where f is

constant, then M is the largest possible σ-algebra, containing every possible subset of Rm.

Corollary 2.44. Let E ⊆ Rn, F ⊆ Rm be Borel, and let f : E → F be a homeomorphism.

Then f gives a bijection between Borel sets in E and in F . That is, If B ⊆ E, then B ∈ Bn

if and only if f(B) ∈ Bm.

Proof. This follows because f and f−1 are both continuous. The previous theorem shows

that if f(B) is Borel, then so is B; considering the function f−1 instead shows that if B is

Borel, then so is (f−1)−1(B) = f(B).

We still haven’t defined an actual measure, though. Clearly we want to use σ-algebras

to define the class of measurable sets; but what does an actaul measure look like?

Definition 2.45. A measure space consists of three objects:

� A nonempty set X

� A σ-algebra M ⊆ 2X

� A function µ : M→ [0,∞] such that µ(∅) = 0, and if A1, A2, . . . are disjoint then

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

We say the function µ is a measure.

Exercise 2.46. Prove the following facts about abstract measures:

http://jaydaigle.net/teaching/courses/2020-spring-395/ 32

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

1. If A,B ∈M and A ⊆ B, then µ(A) ≤ µ(B).

2. If A1, A2, · · · ∈M, then

µ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ(Ak).

3. If A1 ⊆ A2 ⊆ . . . are in M then

µ

(
∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak).

Example 2.47. � We can take X = Rn, M = L, and µ = λ. This is the Lebesgue

measure.

� We can take X = Rn, M = B the set of Borel sets, and µ = λ. This is the same

measure, but allows fewer sets to be measurable. In particular, many sets which are

null under the Lebesgue measure are unmeasurable here.

� Take X to be any set, M = 2X , and µ(A) =∞ if A 6= ∅.

� The counting measure: Take X to be a non-empty set, M = 2X , and

µ(A) =

{
#A A finite

∞ A infinite

� The Dirac measure: let X be any non-empty set and M = 2X . Fix some x0 ∈ X and

define µ(A) = χA(x0). We usually call this measure the Dirac measure and write it

δx0 . It is also sometimes called the Diract delta function, despite not being a function

on X.

Most of what we’ll prove about the Lebesgue measure is actually true in any abstract

measure space; in particular, our definition of integral will work for any measure.

Definition 2.48. Let X,M, µ be a measure space. We can define a new measure space

called teh completion of (X,M, µ). We define a σ-algebra M by the property that A ∈M if

and only if there are B,C ∈M with B ⊆ A ⊆ C and µ(C \B) = 0. Clearly M ⊆M.

Then in this situation we have µ(C) = µ(B), so define µ(A) = µ(B). It’s not too hard

to show that M is a σ-algebra and µ is a measure.

Exercise 2.49. Prove that, if E ⊆ A ∈M and µ(A) = 0, then E ∈M and µ(E) = 0.
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Definition 2.50. We say a measure space X,M, µ is complete if whenever E ⊆ A ∈M and

µ(A) = 0, the E ∈M.

We observe that the Lebesgue measure is complete; it is in fact the completion of a

measure defined on the Borel sets.

Given a measure space, we can find sub-measure-spaces. Suppose (X,M, µ) is a measure

space, and B ∈ M is a measureable subset of X. Then we can define a new measure space

(B,MB, µB) by taking MB = {A ∩B : A ∈M}, and defining µB(A) = µ(A).

This just means that A is measurable in B if it’s the intersection of a measurable set

with B, and the measure is inherited from the larger space.

Example 2.51. We know that [0, 1] ∈ L, so we can define a measure space ([0, 1],L[0,1], λ[0,1]),

where measurable sets are the intersections of Lebesgue measurable sets with the closed in-

terval. This space has total measure one, and does exactly what you think it should do.

Example 2.52. If our measure space is R2, then R is a Lebesgue-measurable subspace of

R2, so we can look at the measure on R induced by the measure on R2. But this isn’t

really a useful measure! In this case, the induced σ-algebra is exactly the collection of usual

Lebesgue measurable subsets of R. But the measure of any set will be 0.

Finally, we are prepared to make some notes on the topic of probability.

Definition 2.53. A probability space is a measure space (Ω,F, P ) (where Ω is a set, F is a

σ-algebra of subsets of Ω, and P is a measure) such that P (Ω) = 1.

We say that the elements of F, which are subsets of Ω, are events, and the probability of

an event A ∈ F is P (A).

Example 2.54. The space [0, 1] with the (induced) Lebesgue measure is a probability space.

In fact, [0, 1]× [0, 1]× · · · × [0, 1] is a probability space.

Example 2.55. The space [0, 2] with the regular Lebesgue measure is a measure space but

not a probability space, since λ([0, 2]) = 2 6= 1. But if we define µ(A) = 1
2
λ(A), then µ is a

measure and so ([0, 2],L[0,2], µ) is a probability space.

Definition 2.56. Suppose (Ω,F, P ) is a probability space, and B ∈ F with P (B) > 0. We

define the conditional probability of A given B by

P (A|B) =
P (A ∪B)

P (B)
.

Exercise 2.57. Prove that P (A|B) is a probability measure on B.
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