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3 Interesting Sets for the Lebesgue Measure

3.1 Invariance of Lebesgue Measure

Within Rn there are ways we can move sets around that seem like they either shouldn’t

change the measure, or should change it in predictable ways.

Definition 3.1. Let A ⊆ Rn and let x ∈ Rn. We define the translation of A by x to be the

set

x+ A = {x+ a : a ∈ A}.

Now let t ∈ R>0. We define the dilation of A by t to be the set

tA = {ta : a ∈ A}.

Lemma 3.2. Let A ⊆ Rn, let x ∈ Rn, and let t ∈ R>0. Then:

� λ∗(x+ A) = λ(A) and λ∗(tA) = tnλ(A).

� λ∗(x+ A) = λ(A) and λ∗(tA) = tnλ(A).

� If A is measurable, then x + A and tA are measurable, and λ(x + A) = λ(A) and

λ(tA) = tnλ(A).

Proof. We first prove the lemma for special rectangles. If I = [a1, b1] × · · · × [an, bn] is a

special rectangle, then

x+ I = [a1 + x1, b1 + x1]× · · · × [an + xn, bn + xn]

so by definition,

λ(x+ I) =
n∏
i=1

(bi + xi − (ai + xi) =
n∏
i=1

(bi − ai) = λ(I).

Similarly,

tI = [ta1, tb1]× · · · × [tan, tbn]

and so

λ(tI) =
n∏
i=1

t(bi − ai) = tn
n∏
i=1

(bi − ai) = tnλ(I).

Now we want to extend this to all Lebesgue measurable sets. But this just follows

from the steps of the construction of the Lebesgue measure. Clearly the result holds for
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special polygons; and then the set of special polygons contained in x + G or tG is the set

of translations or dilations of special polygons contained in G. Thus the result holds for

open sets. Similarly, the result must hold for compact sets, and thus for inner and outer

measure. Finally, since the result holds for inner and outer measure, it holds for the measure

of measurable sets.

We’d like to generalize these two operations a bit further. We want to include translations

and dilations, and also some other operations like rotations.

Definition 3.3. Suppose f : U → V is a function of vector spaces. We say that f is affine

if

f(ax+ (1− a)y) = af(x) + (1− a)f(y)

for any vectors x, y ∈ U and scalars a ∈ R.

This basically tells us that we don’t preserve vectors, but we do preserve lines: a point

on the line from x to y gets mapped to a point on the line from f(x) to f(y).

Exercise 3.4. Prove that f : U → V is affine if and only if there is a linear function

L : U → V and a vector v ∈ V such that f(x) = v + L(x) for every x ∈ U . Further, this

choice of L and v is unique.

An affine transformation combines a translation and a linear function, but we already

understand translations. So let’s see what linear functions do to the Lebesgue measure. We

wish to prove the following statement:

Theorem 3.5. Let T be a n× n matrix, and let A ⊆ Rn. Then

λ∗(TA) = | detT |λ∗(A)

λ∗(TA) = | detT |λ∗(A)

Further, if A is measurable, then TA is measurable, and

λ(TA) = | detT |λ(A)

sketch. We’ll specialize to just proving this for an open set G; once that’s proven, we can

extend it to the rest of measurable sets. And we can cover G by small cells that we’ve already

understood.
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So let J = [0, 1)×· · ·× [0, 1). This is not a special rectangle, but it is a rectangle. Clearly

λ(J) = 1. Then since T is continuous, we can see that T (J) must be measurable. We set

ρ = λ(TJ)
λ(J)

= λ(TJ). And we claim that λ(TA) = ρλ(A).

From here we’re essentially going to tile G from the inside with copies of J . We can

divide Rn into translated copies of J of the form [a1, a1 + 1)× (a2, a2 + 1)×· · ·× [an, an + 1).

Take all the ones that are inside G. Then tile the remainder with 1/2 × 1/2 × · · · × 1/2

rectangles, and then 1/4, and so on. By following this process we can write G =
⋃∞
k=1 Jk;

each Jk is disjoint, and is a translation of a dilation of J .

For any rectangle Jk = zk + tkJ we see that λ(Jk) = tnkλ(J), and thus

λ(TJk) = λ(Tzk + tkTJ) = λ(tkTJ) = tnkλ(TJ) = ρλ(Jk).

Then we can see that

λ(TG) = λ

(
∞⋃
k=1

TJk

)

=
∞∑
k=1

λ(TJk) =
∞∑
k=1

ρλ(Jk)

= ρ
∞∑
k=1

λ(Jk) = ρλ

(
∞⋃
k=1

Jk

)
= ρλ(G).

This proves our formula for open sets; by our sort of standard Lebesgue construction, we

can extend this to any Lebesgue measurable set.

To prove the theorem, we have to prove that ρ = | detT |. We can just say this is a

theorem of linear algebra: the determinant of a matrix is the volume of the image of the

unit cube. But if we want to prove it, we can follow this outline:

If T is invertible, then it’s a theorem of linear algebra that T can be written as a product

of “elementary” matrices, which correspond to the three row operations. We can show that

this result holds for any elementary matrix; since the determinant is multiplicative, that

implies that it holds for any invertible matrix.

If T is multiplying one dimension by a scalar, then (without loss of generality) T (J) =

[0, c) × [0, 1) × · · · × [0, 1), so det(T ) = c and λ(TJ) = |c|. If T is a row-switching matrix,

then detT = 1 and TJ = J so λ(TJ) = 1.

If T is a row-addition matrix, then detT = 1. Showing that λ(TJ) = 1 is a bit trickier.

But we can carefully choose a set

A = {−cx2 ≤ x1 ≤ 0, 0 ≤ xi ≤ 1 for i > 1}
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and then if we apply the row-adding matrix

T =


1 c 0 . . . 0

0 1 0 . . . 0
...

...
...

...

0 0 0 . . . 1


then T (A) is just A reflected across the first coordinate. Thus λ(TA) = λ(A). Since we

know that λ(TA) = ρλ(A) that proves that ρ = 1 = detT .

Conversely, if T is invertible, hen the determinant of T is zero, so we want to show that

ρ = 0, or equivalently, that λ(TA) = 0. It’s sufficient to show that TRn has zero measure.

But since detT = 0, we know that the kernel is non-trivial, and by the rank-nullity theorem

dimT (Rn) < dimRn. We proved that any proper affine subspace has measure zero, and thus

T (Rn) has measure zero.

(Technically we only proved this if the affine subspace is a special rectangle, but there’s

nothing really interesting about proving it for the rotated versions.)

We’ll finish this discussion by mentioning a particularly important class of affine trans-

formations:

Definition 3.6. Suppose V is an inner product space. We say a linear transformation

L : V → V is orthogonal if 〈L(u), L(v)〉 = 〈u, v〉.
We say a n× n matrix A is orthogonal if A is invertible and A−1 = AT the transpose of

A.

Exercise 3.7. Prove that a matrix is orthogonal if and only if the associated linear trans-

formation is orthogonal.

Exercise 3.8. Prove that if L is orthogonal, then | detL| = 1. Hint: use theorem 3.5 and

use A = B(0, 1).

This shows that if L is an orthogonal matrix, then λ(A) = λ(LA) for any measurable set

A; that is, orthogonal matrices preserve measure. Since translations also preserve measure,

we can generalize just a hair further.

Definition 3.9. Let Φ : Rn → Rn such that there is a z ∈ Rn and an orthogonal matrix L

such that Φ(x) = z +Lx for any x ∈ Rn. Then we say that Φ is a rigid motion. Notice that

Φ is an affine transformation.
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Remark 3.10. The set of rigid motions on Rn form a group, known as the Euclidean group

or the group of rigid motions.

It is equivalent to ask that Φ be an isometry, that is, that Φ preserve distances: we say

that Φ is an isometry if

|Φ(x)− Φ(y)| = |x− y|

for any x, y ∈ Rn.

3.2 A non-measurable set

In this section we will construct (after a fashion) a set E ⊆ Rn that is not measurable.

We begin by looking at the set Qn ⊂ Rn. For any fixed x ∈ Rn we can consider the set

of translations x+ Qn. It’s easy to see that y ∈ x+ Qn if and only if y − x ∈ Qn.

Exercise 3.11. Prove that the translates of Qn partition Rn. That is, if x, y ∈ Rn, then

either x+ Qn = y + Qn or (x+ Qn) ∩ (y + Qn) = ∅.

We sometimes might call these translates “cosets” of Qn.

It’s clear that Rn =
⋃
x∈Rn x+Qn. But each set on the right occurs infinitely many times.

If we assume the axiom of choice, we can pick exactly one x ∈ Rn in each translate of Qn;

let E ⊂ Rn be the set of these chosen points. Then Rn =
⋃
x∈E(x + Qn), and this union is

disjoint.

But we can also turn this statement around! For every x ∈ Rn, we have exactly one

y ∈ E such that x − y ∈ Qn. But if we write x − y = z, we see that there is exactly one

z ∈ Qn such that x− z = y ∈ E. So instead we can write a disjoint union

Rn =
⋃
z∈Qn

z + E.

And this union is disjoint.

But this by itself generates a problem. It’s easy to see from this that if E is measurable,

it must have positive measure. For

λ∗(Rn) = λ∗

( ⋃
z∈Qn

z + E

)
≤
∑
z∈Qn

λ(z + E) =
∑
z∈Qn

λ(E).

If λ∗(E) = 0, then, we have λ∗(Rn) = 0 which is clearly false.

But we will show that λ∗(E) = 0. Let K be any compact subset of E; we will show that

λ(K) = 0. Fix D = B1(0) ∩ Qn to be the rational points in the unit ball. Then D is a
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bounded, countably infinite set. We know that⋃
r∈D

r +K ⊆
⋃
r∈D

r + E

is a countably infinite disjoint union. We compute that

λ

(⋃
r∈D

r +K

)
=
∑
r∈D

λ(r +K)
∑
r∈D

λ(K).

If λ(K) > 0, then this sum is infinite; but since DandK are bounded, the union is bounded

and thus has finite measure. Thus we must have λ(K) = 0. Since this holds for any compact

set K ⊆ E, this implies that λ∗(E) = 0.

Then 0 = λ∗(E) < λ∗(E), and so E is not measurable.

Corollary 3.12. If A ⊆ Rn is measurable and λ(A) > 0 then there is a non-measurable

subset B ⊆ A.

Proof. Let E be the set we constructed above; then we can write

A =
⋃
x∈Qn

((x+ E) ∩ A) .

Since A has positive measure, and this is a countable union, there is at least one x0 ∈ Qn

such that (x0 + E) ∩ A has positive outer measure. Then set B = (x0 + E) ∩ A. By our

argument from above, λ∗(B) = 0, but λ∗(B) > 0. Thus B 6∈ L.

This same logic, with some care, can be used to generate important paradoxical results.

Fact 3.13 (Banach-Tarski). Let A,B be any two bounded subsets of R3 with nonempty

interior. Then we can write both sets as finite disjoint unions A =
⋃n
k=1Ak, B =

⋃n
k=1Bk,

and define rigid motions Φk : R3 → R3, such that Φk(Ak) = Bk.

This is “paradoxical” because A and B need not have the same measure, but we know the

rigid motions Φk preserve measure. In the famous example, we take A to be a ball of radius

1, and B to be the disjoint union of two balls of radius 1. Though an explicit construction

that uses the axiom of choice, Banach and Tarski showed that you can divide A into five

disjoint pieces, and use rigid motions of each piece to produce B.

However, there is no rigid motion such that Φ(A) = B.

Exercise 3.14. Prove that there are disjoint subsets A,B ⊆ Rn such that

λ∗(A ∪B) < λ∗(A) + λ∗(B)

λ∗(A ∪B) > λ∗(A) + λ∗(B).
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Exercise 3.15. Let A,B,C ⊆ Rn such that A ⊆ C and λ(B ∩ C) = 0. Then A,B are

not necessarily disjoint but they are separated in a measure theoretic sense. Prove that

λ∗(A ∪B) = λ∗(A) + λ∗(B).

3.3 Cantor Sets and Lebesgue Functions

In this section we’re mostly going to stay in R, although there are perfectly reasonable

generalizations to Rn and we’ll try to mention them.

We’ve already seen the Cantor set C ⊆ R in section 2.1.4. We removed a union of open

middle thirds, and saw what was left. Here we can generalize this.

Choose a sequence of positive real number lk such that 1 > 2l1 > 4l2 > · · · > 2klk > . . . .

We can start with the closed interval [0, 1] and remove an open interval from the middle of

length 1−2l1, leaving [0, l1]∪ [1− l1, 1] as the remainder. We denote the middle open interval

(l1, 1− l1) = J1/2.

From each of these closed intervals we can remove a middle bit of length l1− 2l2, leaving

four intervals of length l2. We call the removed intervals J1/4 = (l2, l1 − l2) and J3/4 =

(1− l1 + l2, 1− l2).
At the kth step of this process, we have remaining 2k intervals of length lk, and have

removed 2k − 1 intervals which we have labeled Ji/2k for 1 ≤ i ≤ 2k − 1.

Let us denote the limiting set

A = [0, 1] \
⋃

k∈N,1≤i≤2k−1

Ji/2k .

A is the complement of a union of open intervals, and thus A is closed and hence compact.

We see that λ(A) = limk→∞ 2klk.

We obtain the original Cantor set C by taking lk = 3−k for each k. Then λ(C) =

limk→∞(2/3)k = 0.

The generalized Cantor sets have one more interesting property: they are nowhere dense.

Definition 3.16. A set A is nowhere dense if its interior is empty. That is, A is nowhere

dense if A◦ = ∅. Consequently, A◦ = ∅ as well.

Why is A nowhere dense? if A has non-empty interior, then it must contain an open

interval I with positive length r. We can choose a k such that 2−k ≤ r, and then A is

contained in a union of disjoint intervals of length 2−k. Thus I 6⊂ A.

You might think that this implies that A has zero measure. Recall we used the original

Cantor set to show you can have an uncountable set with zero measure. But we can build

http://jaydaigle.net/teaching/courses/2020-spring-395/ 41

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

“fat” Cantor sets with positive measure. In fact, if we set

lk =
θk + 1

(k + 1)2k

then λ(A) = θ. This works for any θ ∈ [0, 1). Thus we can have a nowhere dense set of

positive measure, and in fact of just about as much measure as we like.

We can now define the Lebesgue function associated to A. We’ll set J0 = (−∞, 0) and

J1 = (1,∞). Then it’s easy to define a function f : AC → [0, 1] by f(x) = r for every

x ∈ Jr. We know that the interval Jr is entirely to the left of Js if r < s, so f is an increasing

function.

Further, f is continuous on AC . Informally, we can convince ourselves of this because

it seems like the function must be locally constant. But there are infinitely many infinitely

small sub-intervals, so it’s possible something weird is going on.

However, suppose |x − y| < lk. Then if x ∈ Jr and y ∈ Js, one of two things must

happen. One possibility is that r = s, in which case f(x) = f(y). But if r 6= s, then the

intervals Jr and Js must be relatively small, and close together. Both r and s will have to

have denominators ≥ 2−k, and thus |f(x) − f(y)| < 2−k. Thus f must be continuous, and

in fact uniformly continuous.

(You can see Jones p. 88 for a careful proof of this last fact, but it’s mostly some careful

work with this definition as a limit).

Thus f is continuous on AC . It turns out that we can extend f to be continuous on the

closure of AC—which is in fact all of R.

Exercise 3.17. Let E ⊆ Rn and f : E → R be uniformly continuous. Then there is a unique

function F : E → R such that F is continuous and F (x) = f(x) for all x ∈ E.

In our particular case we will call this extension the Lebesgue function corresponding

to A. It is a continuous non-decreasing function f : R → [0, 1] that has the property that

f(x) = r for any x ∈ Jr. By the intermediate value theorem, it is surjective onto [0, 1].

This function is also an almost-bijection between the extended Cantor set A and the open

interval (0, 1). First, if x < y then f(x) < f(y), unless x, y ∈ Jr for some r. In particular, if

x, y ∈ A then f(x) < f(y) unless the open interval (x, y) is one of the Jr. Thus x is almost

strictly increasing on A.

In particular, f is strictly increasing on A except there are two points outputting i/2k

for each i, k. So let B = {inf(Jr)} ∪ {0} be the set of all the left endpoints of the intervals

Jr. Then f : (A \B)→ (0, 1) is strictly increasing surjective function, and thus a bijection.
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By standard set theory/cardinality arguments, this means that A has the same cardinality

as (0, 1).

Exercise 3.18. If f is the Lebesgue function associated to some Cantor set A, then f(1 −
x) + f(x) = 1 for any x.

3.4 Non-Borel Measurable Sets

In this section we will prove that not every measurable subset of R is Borel. When we talk

about product measures, we’ll extend this result to Rn.

Let C be the ternary Cantor set, and let f be the Lebesgue function associated to it. f

is strictly increasing on C, but not on R; but we can make it strictly increasing by defining

g(x) = x + f(x). Since f is continuous and nondecreasing, g is continuous and strictly

increasing. Then g gives us a homeomorphism from [0, 1] onto [0, 2].

We first claim that g(C) has positive measure. Since g is a bijection, we know that

g(C) = [0, 2] \ g(CC) = [0, 2] \ g
(⋃

Jr

)
= [0, 2] \

⋃
g(Jr).

But on Jr the function f is constant, so the function g is just given by g(x) = x + r.

Thus g maps each open interval J to another open interval of the same length, and so

λ(g(Jr)) = λ(Jr).

Then we have

λ
⋃

g(Jr) =
∑

λg(Jr) =
∑

λ(Jr) = 1

since we worked this out when we studied the Cantor set. Thus we have

λ(g(C)) = λ([0, 2])− λ(g(CC)) = 2− 1 = 1.

So g has already done something strange: it’s a homeomorphism between a set of measure

zero and a set of measure 1. Somehow it stretches the volume of C infinitely.

But now let’s consider this set g(C). It’s a closed set of measure 1. And since it has

positive measure, by corollary 3.12, there is some set B ⊆ g(C) that is not measurable. Then

we define A = g−1(B).

We know that A ⊆ C, and thus λ∗(A) ≤ λ(C) = 0. Thus A is measurable because the

Lebesgue measure is complete. So we just have to prove that A is not Borel. But since g is

a homeomorphism, A is Borel if and only if g(A) = B is Borel (by corollary 2.44). But B is

not measureable, and so it’s definitely not Borel. Thus A isn’t Borel either.
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So we’ve constructed a measure zero set which isn’t Borel, but is measurable (because

it’s measure zero). We can easily build a positive measure set that’s measurable but not

Borel by, like, taking A ∪ [5, 7]. This will have measure 2, but still not be Borel.

One more observation to make here: we know homeomorphisms preserve Borel sets. But

they clearly don’t preserve measurable sets, since A is measurable and g(A) = B is not.
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