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4 The Integral

4.1 Measurable Functions

Before we can define the integral, we need to spend a bit of time talking about the sort of

functions we can integrate.

First, we want to get some notational conventions out of the way. We’ll often need to

talk about the extended real number line R = [−∞,∞]. Most of the algebra with ∞ does

what you probably think it should by this point; but it’s important to note that sometimes

0 · ∞ is undefined and other times it’s 0.

In order to do integrals, We want to take functions where we can approximate the output

in some reasonable sense: if we look at all the values where f takes on a value “near” a, the

set we get will be sensible. We thus define:

Definition 4.1. Let X be a set and M a σ-algebra on X. Let f : X → R. We say that f

is M-measurable if, for all tR, the set f−1([−∞, t]) is M-measurable.

Another way of expressing this is that for all t ∈ R, we have {x : f(x) ≤ t} ∈M.

Exercise 4.2. Let A ⊂ X. Prove that the characteristic function χA is M-measurable if and

only if A ∈M.

Exercise 4.3. Let M = {∅, X} and N = 2X . Describe explicitly the sets of M-measurable

functions and of N-measurable functions.

You might ask why we specficially look at [−∞, t] and not [−∞, t) or (t,∞] or something.

The answer is that it doesn’t matter.

Proposition 4.4. Let M be a σ-algebra and f : X → R. Then the following are equivalent:

1. f is measurable

2. f−1([−∞, t)) ∈M for any t ∈ (−∞,∞]

3. f−1((t,∞]) ∈M for any t ∈ R

4. f−1((t,∞, ]) ∈M for any t ∈ [−∞,∞)

5. f−1({−∞}) ∈M, f−1({∞}) ∈M, and f−1(E) ∈M for every Borel set E ⊂ R.

Proof.

http://jaydaigle.net/teaching/courses/2020-spring-395/ 45

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

Proposition 4.5. Assume f, g : X → R are M-measurable, and φ : R → R is Borel

measurable. Then

1. φ ◦ f is M-measurable.

2. If f 6= 0 then 1
f

is M-measurable.

3. If 0 < p <∞ then |f |p is M-measurable.

4. f + g is M-measurable.

5. fg is M-measurable.

Proof. 1. If E is a Borel set, then φ−1(E) is Borel, and thus f−1(φ−1(E)) ∈M.

2. Excercise. Prove that φ(t) = 1
t

is Borel measurable and then conclude this result.

3. The function φ(t) = |t|p is continuous, and thus Borel measurable.

4. This one takes a small amount of work.

We know that f(x) + g(x) < t if and only if f(x) < t − g(x), if and only if there is a

r ∈ Q such that f(x) < r < t− g(x). So we can write

(f + g)−1([−∞, t)) =
⋃
r∈Q

f−1((−∞, r)) ∩ g−1((−∞, t− r)).

Here we use a dumb trick called polarization. We know that f · f is measurable for any

measurable f , by (3). So we write

fg =
1

4
(f + g)2 − 1

4
(f − g)2.

Since f + g and f − g are measurable, this whole function is measurable.

Proposition 4.6. Suppose fk : X → R is M-measurable for all k ∈ N. Then the following

functions are all M-measruable:

� supk fk

� infk fk

� lim supk→∞ fk

� lim infk→∞ fk

http://jaydaigle.net/teaching/courses/2020-spring-395/ 46

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

� limk→∞ fk, if the pointwise limit exists.

Proof. We can write

{x : sup fk(x) ≤ t} =
⋂
k

{x : fk(x) ≤ t}.

The right-hand side is an intersection of measurable sets since each fk is measurable, so the

left-hand side is measurable. Similarly

{x : inf fk(x) ≥ t} =
⋂
k

{x : fk(x) ≥ t}.

Then we know that lim sup fk = inf sup fk, and lim inf fk = sup inf fk. Since both sup and

inf are measurable, so are these.

Finally, if lim fk exists, then lim fk = lim sup fk = lim inf fk is measurable.

4.2 Simple Functions

Definition 4.7. A simple function from X to R is any function which assumes finitely many

values. Thus we can write

s =
m∑
k=1

αkχAk

where the sets Ak are disjoint and the numbers αk ∈ R are distinct.

Exercise 4.8. A simple function s is measurable if and only if each set Ak is measurable.

Definition 4.9. Let a ∈ R. We define

a+ =

{
a a ≥ 0

0 a < 0

a− =

{
0 a ≥ 0

−a a < 0

We call these the positive part and negative part of a.

We observe that a = a+ − a− and |a| = a+ + a−. A silly but useful observation is that

a+a− = 0.

We can extend this definition for functions: if f : X → R then f+(x) = (f(x))+ and

f−(x) = (f(x))−.

Exercise 4.10. If f is M-measurable, then so are f+ and f−.
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It’s easy to see that the limit of a sequence of simple measurable functions is measur-

able; this follows directly from proposition 4.6. Much less obvious is that the converse of

this statement is also true: every measurable function is the limit of a sequence of simple

measurable functions.

That means that the measurable functions are precisely the closure of simple measureable

functions under pointwise limits. A function is measurable if and only if it is the limit of

sk =
∑mk

i=1 αi,kχAi,k
(x).

Theorem 4.11. Suppose f : X → R is M-measurable. Then there is a sequence of

M-measurable simple functions s1, s2, . . . that converge pointwise to f on X. That is,

limk→∞ sk(x) = f(x) for every x ∈ X.

If f ≥ 0, we may choose the sequence such that 0 ≤ s1 ≤ s2 ≤ . . . . We may always

choose the sequence such that |s1| ≤ |s2| ≤ . . . .

Proof. First we prove the case where f ≥ 0. We define sk through the following complicated-

looking formula:

sk(x) =

{
i
2k

i
2k
≤ f(x) < i+1

2k
≤ k

k k ≤ f(x)

This formula does two things. First, the maximum possible value we give sk is k, and the

only values we allow are those that are integer multiples of 1
2k

. Thus there are k2k+1 possible

values of sk, so it is simple.

We need to check two things. First, does the sequence sk converge to f? For large k,

we have |f(x)− sk(x)| < 1
2k

, so the sequence converges pointwise. (In exercise 4.12 you will

prove that this convergence is uniform if the function f is bounded).

Now is each sk measurable? We have that sk(x) = i
2k

when i
2k
≤ f(x) < i+1

2k
, so

s−1k

{
i

2k

}
= f−1

([
i

2k
,
i+ 1

2k

))
and the latter set is measurable because f is measurable. The only other possible value of

sk is k, which happens when k ≤ f(x); then we have

s−1k {k} − f
−1 ([k,∞])

and again this set is measurable since f is measurable. Thus f is the pointwise limit of a

sequence of simple measurable functions.

For a general function f , we can just leverage the previous result, in a way that we’ll use

a lot. We have a sequence of functions 0 ≤ s1 ≤ s2 ≤ . . . converging to f+, and a sequence

0 ≤ t1 ≤ t2 ≤ . . . converging to f−. Then the sequence sk − tk converges to f .
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Exercise 4.12. If f : X → R is measurable and bounded, prove that it is the uniform limit

of a sequence of measurable functions.

This result has one simple consequence that isn’t strictly speaking about measurable

functions, but which will be extremely useful to us. Remember we said that we can approxi-

mate any Lebesgue measurable set with a Borel set: a Lebesgue measurable set is a Borel set

union a set of measure zero. This means that we can approximate a Lebesgue measurable

function with a Borel measurable function.

Theorem 4.13. Suppose f : Rn → R is Lebesgue measurable. Then there is a Borel mea-

surable function g : Rn → R such that {x : f(x) 6= g(x)} has measure zero.

Proof. As usual, start by assuming f ≥ 0. There is an increasing sequence 0 ≤ s1 ≤ s2 ≤ . . .

of Lebesgue measurable simple functions sk that converge to f . Then for each k, we can

write

sk =

mk∑
i=1

αi,kχAi,k

whre each Ai,k is a Lebesgue measurable set. Then there is a Borel set Ei,k such that

λ(Ai,k \ Ei,k) = 0. Define

tk =

mk∑
i=1

αi,kχEi,k
.

This is a simple, Borel measurable function such that 0 ≤ tk ≤ sk and tk = sk except on a

set Nk of measure zero.

Define g = supk tk; this is Borel measurable since it’s the supremum of Borel measurable

functions. Then g(x) = f(x) unless x ∈ (Ai,k \ Ei,k) for some i. But

λ

(
mk⋃
i=1

Ai,k \ Ei,k

)
=

mk∑
i=1

λ(Ai,k \ Ei,k) = 0.

Now suppose f is any function. We have shown that we can approximate f+ with

some Borel measurable g+, and can approximate f− with some Borel measurable g−. Then

g = g+ − g− is a Borel measurable function, and g(x) = f(x) except on a set of measure

zero.

And now, with those preliminaries completed, we are ready to start defining the integral.

For the moment, we’ll let S be the set of Lebesgue-measurable simple functions s : Rn →
[0,∞).
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Definition 4.14. Let s ∈ S, with s =
∑m

k=1 αkχAk
where the Ak are disjoint measurable

sets. Then the integral of s is ∫
s dλ =

m∑
k=1

αkλ(Ak).

Here we use the convention that 0 ·∞ = 0. If αk = 0, it doesn’t matter if λ(Ak) is infinite.

And when we allow ∞-valued functions, we’ll ignore that as long as it happens on a set of

measure 0.

We can always assume that
⋃
Ak = Rn if that’s convenient; if it isn’t true, we can always

define Am+1 = (
⋃m

k=1Ak)
C

and αm+1 = 0, and nothing substantive will change.

It’s not immediately clear that this definition is well-defined; there is more than one way

to describe a simple function like this. But we will prove that it is well-defined in the next

proposition.

Before we do that, though, it’s worth emphasizing the ways this is similar to the Riemann

integral. We can look at the Riemann integral as approximating functions below by a series

of step functions. So any finite Riemann sum will add up a finite collection of heights-times-

widths.

Here the αk plays the role of the height, and the λ(Ak) plays the role of the width. But

we get some extra flexibility by not requiring our Ak to all be intervals; this flexibility is

given by all the work we did to define the Lebesgue measure in section 2.

Proposition 4.15. 1.
∫
s dλ is well-defined, and doesn’t depend on the measurable sets

we choose to divide Rn into.

2. 0 ≤
∫
s dλ ≤ ∞.

3. If 0 ≤ c <∞ is a constant, then
∫
cs dλ = c

∫
s dλ.

4. If s, t ∈ S, then
∫

(s+ t) dλ =
∫
s dλ+

∫
t dλ.

5. If s, t ∈ S and s ≤ t, then
∫
s dλ ≤

∫
t dλ.

Proof. We’re going to prove (5) first, and that’s going to give us most of the rest for free.

Suppose we have s, t ∈ S with s ≤ t. Then we have representations

s =
m∑
k=1

αkχAk
t =

n∑
j=1

βjχBj
.

http://jaydaigle.net/teaching/courses/2020-spring-395/ 50

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

We assume that
⋃
Ak =

⋃
Bj = Rn. So we’ve partitioned Rn two ways: into the Ak and

into the Bj. We can mutually refine these partitions: the sets Ak ∩ Bj are all disjoint, and

their union is Rn. Then we can write∫
s dλ =

m∑
k=1

αkλ(Ak) =

n,m∑
j,k

αkλ(Ak ∩Bj)

∫
t dλ =

n∑
k=1

βjλ(Bk) =

n,m∑
j,k

βjλ(Ak ∩Bj).

We claim that for each j, k, then αkλ(Ak ∩Bj) ≤ βjλ(Ak ∩Bj). If λ(Ak ∩Bj) = 0, then

this is trivially true. If λ(Aj ∩Bj) > 0, then there is some x ∈ Aj ∩Bj. Then s(x) = αk and

t(x) = βj, but s ≤ t, so αk ≤ βj, which proves our claim.

But then αkλ(Ak∩Bj) ≤ βjλ(Ak∩Bj) for every j, k, and thus
∫
s λ ≤

∫
t dλ by definition.

Now this by itself proves that our definition is well-posed. For suppose we have s = t as

just two different ways of representing the same underlying function. Then s ≤ t and also

t ≤ s, so
∫
s dλ ≤

∫
t dλ and also

∫
t dλ ≤

∫
s dλ.

Given that the definition is well posed, items (2) and (3) are fairly clear. So we just have

to prove (4). But by the logic from above, we have

s+ t =

n,m∑
j,k

(αk + βj)χAk∩Bj∫
(s+ t) dλ =

n,m∑
j,k

(αk + βj)λ(Ak ∩Bj)

=

n,m∑
j,k

αkλ(Ak ∩Bj) +

n,m∑
j,k

βjλ(Ak ∩Bj)

=

∫
s dλ+

∫
t dλ.

4.3 The Integral of Non-Negative Functions

We can now integrate simple functions, which are the measure theory analogues of our finite

Riemann sums from the Riemann integral. Now we want to extend this as far as possible.

The essential idea is this: we can compute the integrals of simple functions. Since every

measurable function is the limit of simple functions, we can define the integral of a measurable

function to be the limit of the integrals of the simple functions.

This definition is quite simple, and it’s genuinely shocking how well it works.

http://jaydaigle.net/teaching/courses/2020-spring-395/ 51

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

Definition 4.16. Let f : Rn → [0,∞] be measurable. We define the (Lebesgue) integral of

f to be ∫
f dλ = sup

{∫
s dλ : s ≤ f, s ∈ S

}
.

Exercise 4.17. Prove that our two definitions of the integral coincide if f is a measurable

simple function. In particular, prove that if f : Rn → [0,∞] is a measurable simple function

with 0 ≤ αk ≤ ∞, then ∫
f dλ =

m∑
k=1

αkλ(Ak).

We now want to prove an analogue of proposition 4.15 for this more general integral.

Most of the statements just follow immediately from the definition:

1.
∫
f dλ is well defined (since every set has a supremum);

2. 0 ≤
∫
f dλ ≤ ∞

3.
∫
cf dλ = c

∫
f dλ

5. If f ≤ g then
∫
f dλ ≤

∫
g dλ.

However, it’s highly non-trivial to prove that
∫

(f + g) dλ = inf f dλ+
∫
g dλ.

One half of this is easy. We have that∫
(f + g) dλ = sup

{∫
s dλ : s ≤ f + g

}
= sup

{∫
(s+ t) dλ : s+ t ≤ f + g

}
= sup

{∫
s dλ+

∫
t dλ : s+ t ≤ f + g

}
.

But while s ≤ f, t ≤ g implies that s+ t ≤ f + g, the converse isn’t true. So{∫
s dλ+

∫
t dλ : s+ t ≤ f + g

}
)
{∫

s dλ+

∫
t dλ : s ≤ f, t ≤ g

}
and thus ∫

(f + g) dλ ≥
∫
f dλ+

∫
g dλ.

This is basically because our definition doesn’t apply to any sequence of simple functions

approaching f , but just sequences approaching from below. (This is similar to a definition

of Riemann sum that only uses lower sums.)
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There are various ways to prove the converse to this statement, many of which we could

work out right now. One example is to show that the supremum over s ≤ f is the same as

the infimum over t ≥ f . But there are some major results that we want to prove anyway

that will give us this result as a simple corollary.

In particular, one of the primary advantages of the Lebesgue integral formulation is that

it allows us to interchange limits and integrals relatively freely.

Proposition 4.18 (Lebesgue Monotone Convergence Theorem). Let f1, f2, · · · : Rn → R be

measurable such that

0 ≤ f1 ≤ f2 ≤ . . . .

Then

lim
k→∞

∫
fk dλ =

∫ (
lim
k→∞

fk

)
dλ.

4.4 Integrating non-non-negative functions

4.5 Integrating over sets other than Rn

If X is any set, and f : X → R, we define

∑
x∈X

f(x) = sup

{∑
x∈F

f(x) : F ⊆ X is finite

}
.

Think about why we need this definition; why this is case complicated if X 6= N?

If X = N, prove that
∑

n∈N f(x) =
∑∞

k=1 f(k).

Let (X,M, µ) be a measure space, and let µ be the completion of µ. If f : X → R is

µ-measurable, we know it must also be µ-measurable. Prove that
∫
f dµ =

∫
f dµ.

(Conversely, if g is M-measurable, it need not be M-measurable. But there is a M-

measurable function f such that f(x) = g(x) almost everywhere, and then
∫
g dµ =

∫
f dµ.)

Exercise 4.19. Let E ∈ M and assume λ(E) = 0. Prove that every function defined on E

is measurable, and that
∫
E
f dµ = 0 for any f defined on E.

4.6 Two-place functions

Differentiating under the integral sign blah blah

—

Let l,m ∈ N, and set n = l+m. We can decompose Rn by writing Rn = Rl ×Rm. If we

have a point z ∈ Rn, we will write z = (x, y), where xi = zi and yi−l = zi.
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Then we can view functions on Rn as two-place functions on Rl and Rm. We have

f(z) = f(x, y), and if we fix some specific y0 ∈ Rm then we have a function fy0 : Rl → R
defined by fy0(x) = f(x, y0). We can similarly define fx0 : Rm → R by fx0(y) = f(x0, y).

We call these functions fy and fx the sections of f determined by y or x. They’re

essentially the cross-sections we use to graph functions in multivariable calculus.

We’ll find those sections especially interesting if f is the characteristic function of some

A ⊆ Rn. Then we have

fy(x) =

{
1 (x, y) ∈ A

0(x, y) ∈ AC .

Then fy is the characteristic function of some subset of Rl, and we write

Ay = {x ∈ Rl : (x, y) ∈ A} = (χA)−1y ({1}).

Thus by definition, we have χAy = (χA)y. We call the set Ay the section of A determined by

y.

If we have a function f : Rn, for any fixed y ∈ Rm the function fy : Rl → R may or may

not be integrable. If it is, we will write F (y) =
∫
Rl fy(x) dλ(x).

If fy is integrable for almost every y ∈ Rm, then this gives us a function F : Rm → R.

That “almost” is important, since it’s fairly hard to guarantee that fy is integrable for every

y.

Theorem 4.20 (Tonelli). Suppose f : Rn → [0,∞] is measurable. Then for almost eveyr

y ∈ Rm, the section fy : Rl → [0,∞] is measurable, and thus the function F (y) =
∫
Rl fy(x) dx

is defined for almost every y.

Further, this function F : Rm → [0,∞] is measurable, and∫
Rm

F (y) dy =

∫
Rn

f(z) dz.

We’re not going to prove this, but I will give a quick outline. But first I want to take a

minute to convince you that this is exactly the result we used in multivariable calculus. We

have ∫
Rn

f(z) dz =

∫
Rm

F (y) dy =

∫
Rm

∫
Rl

fy(x) dx dy =

∫
Rm

∫
Rl

f(x, y) dx dy.

Thus the multivariable integral is the same as the iterated integral. And this is why in Math

212 we don’t really spend much time thinking about how to do double integrals and two-

variable Riemann sums directly; we can always just replace them with iterated one-variable

integrals.
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This also explains why we can interchange the order of integration whenever we want.

There’s not really any difference between x and y here except the order we write them in.

So we could just as easily have∫
Rn

f(z) dz =

∫
Rl

F (x) dx =

∫
Rl

∫
Rm

fx(y) dy dx =

∫
Rl

∫
Rm

f(x, y) dy dx.

Thus we get the same thing no matter which order we integrate in.

Sketch of proof. First, through some fairly tedious work, we show that the result holds for a

characteristic function of a bounded set. We prove that∫
Rm

λ(Ay) dy = λ(A).

That is, if we integrate the measures of each section of A, we get the total measure of A.

(Recall this is how we computed volumes in calculus 2!)

After this we show that we can use the increasing function theorem as a lever. If Tonelli’s

theorem holds for each function in an increasing sequence of functions, it applies to their

limit. That is, if fj,y → fy, then we get a family of functions Fj(y) that converge to F (y) by

the increasing convergence theorem. And then we can conclude that∫
Rm

F (y) dy = lim
j→∞

∫
Rm

Fj(y) dy = lim
j→∞

∫
Rm

fj(z) dz =

∫
Rn

f(z) dz.

But since the result holds for characteristic functions of bounded sets, we can lever that

up to give us any characteristic function, and then any simple function, and then any non-

negative function.

Tonelli’s theorem isn’t quite as strong as we’d like, though. It only applies to integrals

of non-negative functions. Fortunately, as usual, we can move from non-negative functions

to L1 functions pretty easily.

Theorem 4.21 (Fubini). Suppose that f ∈ L1(Rn). Then for almost every y ∈ Rm, the

function fy is in L1(Rl), and so the function

F (y) =

∫
Rl

fy(x) dx

is well-defined. Further, this function is (finitely) integrable, and∫
Rm

F (y) dy =

∫
Rn

f(z) dz.
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Proof. This proof works in more or less the obvious way. We define f = f+ − f−. Then for

almost all y ∈ Rm the sections f+,y and f−,y are measurable, and by Tonelli’s theorem we

we can define the measurable functions

G(y) =

∫
Rl

f−,y dx H(y) =

∫
Rl

f+,y dx

and we get that ∫
Rm

Gdy =

∫
Rn

f− dz

∫
Rm

H dy =

∫
Rn

f+ dz.

Since f ∈ L1, we know both these integrals are finite, which means that G,H are finite

almost everywhere. But if G is finite for almost every y, then
∫
Rl f−,y dx < ∞ for almost

every y. Similarly,
∫
Rl f+,y dx < ∞ for almost every y. Thus both are finite almost always,

and so fy ∈ L1(Rl) for almost every y.

Further, for almost every y, we can take F (y) = H(y) − G(y) and thus F is integrable.

Then we have∫
Rm

F dy =

∫
Rm

H dy −
∫
Rm

Gdy =

∫
Rn

f+ dz −
∫
Rn

f− dz =

∫
Rn

f dz.

Proposition 4.22. If X is a measurable subset of Rl and Y is a measurable subset of Rm,

then X × Y is a measurable subset of Rn, and λ(X × Y ) = λ(X)λ(Y ).

Proof. We really only need to prove that X × Y is measurable, since the equality follows

from Fubini.

We can write both X and Y as countable unions of sets of finite measure. We can take

e.g. X =
⋃∞

j=1(X ∩Bj(x)). But if X =
⋃∞

j=1Xj and Y =
⋃∞

k=1 Yk then we can write

X × Y =
∞⋃

j,k=1

Xj × Yk.

So we just have to prove that Xj × Yk is measurable when Xj, Yk have finite measure.

Without loss of generality, suppose X, Y have finite measure. We can find F1 ⊆ X ⊆ G1

and F2 ⊆ X ⊆ G2 closed and open respectively, with λ(G1 \ F1), λ(G2 \ F2) < ε. Then

F1 × F2 ⊆ X × Y ⊆ G1 ×G2 closed and open.

Now let’s consider the set G1×G2 \F1×F2. We want to show we can make this as small

in measure as we want, because then we can squeeze our set X×Y between a closed set and

an open set. But we can see that

G1 ×G2 \ F1 × F2 ⊆ ((G1 \ F1)×G2) ∪ (G1 × (G2 \ F2))
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This containing set is open. We can estimate1 its measure:

λ (((G1 \ F1)×G2) ∪ (G1 × (G2 \ F2))) ≤ λ(G1 \ F1)λ(G2) + λ(G1)λ(G2 \ F2)

≤ ελ(G2) + ελ(G1)

< ε(λ(F2) + ε) + ε(λ(F1) + ε)

≤ ε(λ(Y ) + λ(X) + 2ε).

But this is all we needed: we can make λ(G1 ×G2 \ F1 × F2) as small as we want. And this

means that X × Y is squeezed between an open set and a closed set, and thus is Lebesgue

measurable.

1Analysts use the word “estimate” to mean “we’re about to write down like twelve inequalities in a row
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