
Jay Daigle Occidental College Math 395: Real Analysis II

What’s an Integral, Anyway?

The main goal of this class is to develop a more in-depth understanding of the integral.

To support this understanding we will first develop a sophisticated approach to the idea of

measure, which tells us how large a set is. (You can think of this as a useful generalization

of “area” or “volume”.)

You probably remember the Riemann integral, from either Analysis I or Calculus II.

Definition 0.1. Let f : [a, b] → R. We say f is Riemann Integrable on [a, b] if there is a

number I ∈ R so that, for any ε > 0, there is a δ > 0 such that, if S is a Riemann sum

corresponding to a partition of width less than δ, then |S − I| < ε. In this case we say that

I is the Riemann Integral of f and write I =
∫ b
a
f(x) dx.

This definition is perfectly serviceable, but it has a few major issues. One is just that

it’s incredibly awkward to state, and difficult to use to prove things.

Second, there are a lot of functions that this definition doesn’t quite apply to. You

may remember so-called “improper” integrals from calculus II: these are integrals either

over unbounded sets, like
∫∞
−∞ e

−x2 dx, or integrals of unbounded functions like
∫ 1

0
1√
x
dx. In

either case the Riemann integral does not actually converge, and we need to use an awkward

limiting process to even define, let alone compute, the integral.

Third, there are many sets we can’t integrate over. A Riemann integral can integrate over

sets like [1, 3] but not over sets like the rational numbers or the Cantor set. As something

of a corollary, we can consistently integrate continuous and nearly-continuous functions, but

we can’t integrate messy functions like

χQ(x) =

{
1 x ∈ Q
0 x 6∈ Q

.

Fourth, and perhaps most importantly, the Riemann integral doesn’t interact well with

limits of sequences of functions. If fn is a sequence of functions, we would like to prove a

theorem like

lim
n→infty

∫
fn(x) dx =

∫
lim
n→∞

f(x) dx.

However, this is unfortunately false. An easy example is to define

fn(x) =


4n2x 0 ≤ x < 1

2n

4n− 4n2x 1
2n
x < 1

n

0 1
n
< x ≤ 1

.
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This looks complicated, but the graph is just an isosceles triangle with base frac1n and

height 2n, and thus total area 1. So we know that for each n,
∫ 1

0
fn(x) dx = 1.

However, for any fixed x ∈ [0, 1], it’s easy to see that limn→∞ fn(x) = 0. So if f is the

pointwise limit of fn, we have f = 0 and
∫ 1

0
f(x) dx = 0. Thus

lim
n→∞

∫ 1

0

fn(x) dx = 1 6= 0 =

∫ 1

0

lim
n→∞

f(x) dx.

A new definition of the integral can’t fix this example; the triangles under the fn have

area 1, and the pointwise limit is zero, and no amount of redefinition will fix that. But the

Lebesgue integral we will define makes it easy to see exactly why this example breaks—and

makes it easy to prove that in “most” cases, our desired theorem is actually true.

In the process of building our new and improved approach to the integral, we will develop

ideas that help us understand probability better. Tu solve the problems with our integral

we will find a way to define the measure or volume of a set. But if we have a collection of

possible events, we can treat the probability of something hpapening as the measure of the

set of events in which it happens.

If we are rolling a six-sided die, each side appears with probability or measure 1
6
, and we

don’t need any sophisticated tools to establish this. But if we are choosing a real number

between zero and one, how do we describe the probability of getting a rational number? This

will require a bit more work. And that work is where the content of this course starts.
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1 Euclidean Space

In this section we will review the basic properties of real Euclidean space. Most of them

should be familiar to you from Analysis I (Math 310), but I’ll collect them here so you can

remember the important bits, and also have a useful reference.

1.1 Set Theory

We write R for the set of real numbers, and Rn for the set {(x1, . . . , xn) : xi ∈ R} of n-tuples

of real numbers. This is a special case of the Cartesian product of sets. If A1, . . . , An are all

sets, then
n∏
i=1

Ai = A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai}.

We recall the set operations including union A ∪ B, intersection A ∩ B, set complement

AC , and set difference A \ B. We also have inclusion A ⊂ B and containment A ⊃ B. If

A ∩B = ∅ the empty set, then A and B are disjoint.

In this course we will often want to talk about unions and intersections of many sets. We

often use I to stand for an index set, such that for each i ∈ I we have a corresponding set

Ai. Then we can write ⋃
i∈I

Ai = {a : ∃i ∈ I such that a ∈ Ai};⋂
i∈I

Ai = {a : ∀i ∈ I, a ∈ Ai}.

If the index set I is the natural numbers N = {1, 2, 3, . . . }, instead we often write
⋃∞
i=1Ai

or
⋂∞
i=1Ai.

There are a couple of important principles about set intersection and union.

Fact 1.1 (De Morgan’s Laws). Let I be an index set. Then(⋃
i∈I

Ai

)C

=
⋂
i∈I

ACi(⋂
i∈I

Ai

)C

=
⋃
i∈I

ACi .
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Definition 1.2. Let A1, A2, . . . be a sequence of sets. We define

lim sup
k→∞

Ak =
∞⋂
j=1

(
∞⋃
k=j

Ak

)
,

lim inf
k→∞

Ak =
∞⋃
j=1

(
∞⋂
k=j

Ak

)
.

Proposition 1.3. Let A1, A2, . . . , be a sequence of sets. Then

lim sup
k→∞

Ak = {a : a ∈ Ak for infinitely many k ∈ N}.

Proof. If a ∈ Ak for infinitely many k ∈ N, then a ∈
⋃∞
k=j Ak for any j ∈ N. Thus

a ∈
⋂∞
j=1

⋃∞
k=j Ak = lim supk→∞Ak.

Conversely, if a ∈ Ak for only finitely many k, then we can choose some j0 larger than

all of those k and then a 6∈
⋃∞
k=j0

Ak. Thus a 6∈
⋂∞
j=1

⋃∞
k=j Ak = lim supk→∞Ak.

Exercise 1.4. State and prove an analogue of Proposition 1.3 for lim infk→∞Ak.

Now recall that we say a set A is countable if it is either finite or in bijection with the

natural numbers. Informally, A is countable if you can list all of its elements in order. Recall

that N and Q are countable, but R is not.

In fact, if A1, . . . , An are all countable, then
∏n

i=1 Ai is countable. And if I is a countable

index set and Ai is countable for each i ∈ I, then
⋃
i∈I Ai is countable.

1.2 Topology and Metric in Euclidean Space

In order to understand sequences and sets, we need a sense of topology : we need to know

which sets are “open”, which tells us which points are close together. To really do analysis,

we need something a bit stronger: we need a metric, which tells us how far apart two points

are.

In Euclidean space we have something even better: a norm.

Definition 1.5. Let x = (x1, . . . , xn) ∈ Rn. We define the norm of x to be |x| =
√
x2

1 + · · ·+ x2
n.

The norm has the following important properties:

Fact 1.6. Let x, y ∈ Rn, and r ∈ R. Then
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� (Positive definite) |x| ≥ 0, and |x| = 0 if and only if x = 0 = (0, . . . , 0) is the zero

vector.

� (Scalars) |rx| = |r||x|.

� (Triangle Inequality) |x+ y| ≤ |x|+ |y|.

This norm gives us a metric:

Definition 1.7. Let x, y ∈ Rn. We define the distance between x and y to be d(x, y) = |x−y|.

Exercise 1.8. The distance d : Rn × Rn → R is a metric. That is, if x, y, z ∈ Rn, then

� (Positive definite) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

� (Symmetry) d(x, y) = d(y, x).

� (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

Recall that we can use this metric to define a convergent sequence:

Definition 1.9. Let x ∈ Rn, and let x1, x2, . . . be a sequence of points in Rn. We say that

limn→∞ xn = x if, for every ε > 0, there is a N ∈ N such that if n > N then d(xn, x) < ε.

From the metric, we can also define open sets.

Definition 1.10. Let x ∈ Rn and 0 < r < ∞. We define the open ball with radius r and

center x to be

Br(x) = B(x, r) = {y ∈ Rn : d(x, y) < r}.

We define the closed ball with radius r and center x to be

Br(x) = {y ∈ Rn : d(x, y) ≤ r}.

If x ∈ A ⊂ Rn, we say that x is an interior point of A if there is some 0 < r < ∞ such

that Br(x) ⊂ A. We define the interior of A, denoted A◦ or Å, to be the set of all interior

points of A.

We say that A is open if every x ∈ A is an interior point of A. A is open if and only if

A = A◦.

Fact 1.11. This definition of open sets defines a topology on Rn. That is:

� ∅ and Rn are open.
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� The union of any collection of open sets is open.

� The intersection of any finite collection of open sets is open.

Exercise 1.12. Find a collection of open sets whose intersection is not open.

Exercise 1.13. Prove that any open ball is an open set.

We say that set is closed if its complement is open. Then

Fact 1.14. � ∅ and Rn are closed.

� The union of any finite collection of closed sets is closed.

� The intersection of any collection of closed sets is closed.

Remark 1.15. Despite what you might think, “closed” and “open” are not opposites. Some

sets are neither open nor closed. (Can you think of one?) Some sets are both open and

closed. Topologists call those sets “clopen”, because mathematicians have terrible senses of

humor.

Definition 1.16. Let x ∈ Rn and A ⊂ Rn. We say that x is a limit point of A if for every

r > 0, there is a point y 6= x such that y ∈ A ∩ Br(x). That is, any open ball around x

contains a point in A that is not x.

Fact 1.17. x is a limit point of A if and only if Br(x) contains infinitely many points of A

for any r > 0.

A set A is closed if and only if it contains all its limit points.

We define the closure of A to be the set

A = {x : x ∈ A or x is a limit point of A}.

We conclude this section with a note on notational convention, quoted directly from

Jones:

Convention: Hereafter we shall strive for consistency in denoting open sets with the

letter G and closed sets with the letter F . Obviously, any two letters would do, but tradition

is on the side of G and F . In German the noun Gebiet means region, and in French the

adjective fermé means closed.
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1.3 Compact and Bounded

The definition of compactness is one of the most subtle and important in all of topology.

Definition 1.18. Let A ⊂ Rn. Suppose that, whenever A is contained in a union of open

sets, it is also contained in the union of some finite collection of those sets. Then we say A

is compact.

We can write this in symbolic notation, which will be clearer in some ways and less clear

than others. Suppose that whenever A ⊂
⋃
i∈I Gi and each Gi is open, then there exist

i1, . . . , iN ∈ I such that A ⊂
⋃N
k=1 Gik . Then A is compact.

We can get a grasp of this definition by seeing how it applies to a few easy cases:

Exercise 1.19. Prove that:

� ∅ is compact.

� Any finite set is compact.

� If A,B are compact, then so is A ∪B.

� B(x, r) is not compact.

� Rn is not compact.

However, this definition is often unwieldy. Fortunately, in the case of Euclidean space

specifically, there is a much easier criterion to check.

Definition 1.20. Let A ⊂ Rn. We say that A is bounded if there is some x ∈ Rn and some

r > 0 so that A ⊂ Br(x).

Theorem 1.21 (Heine-Borel). Let A ⊂ Rn. Then A is compact if and only if it is closed

and bounded.

Proof. Please don’t make me prove this. It’s kinda tedious.

There is one more way to think about compactness: we can relate it to sequence conver-

gence.

Theorem 1.22 (Bolzano-Weierstrass). Every bounded infinite subset of Rn has a limit point.
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Proof. Let A be a bounded subset of Rn with no limit points. We shall prove it is finite.

Since A has no limit points, it contains all its limit points, and thus is closed. Since it is

closed and bounded, it is compact.

If x ∈ A, then since x is not a limit point of A, there is some rx so that Brx(x)∩A = {x}.
Now clearly A ⊂

⋃
x∈ABrx(x); and since A is compact, that means there is some finite set I

so that A ⊂
⋃
x∈I Brx(x) =

⋃
x∈I{x} which is a finite set. Thus A is finite.

Exercise 1.23. Every bounded sequence in Rn has a convergent subsequence.

Definition 1.24. We say a set A is sequentially compact if every sequence in A has a

convergent subsequence.

Fact 1.25. Every compact set is sequentially compact.

Every sequentially compact subset of Rn is compact.

Remark 1.26. In a metric space, compactness and sequential compactness are equivalent.

Thus for our purposes they are interchangeable. But you can construct a sequentially com-

pact topological space that is not compact.

We have one more family of results we wish to prove about compact sets. When we begin

to talk about the volume or measure of a set, we will want to talk about compact subsets of

open sets. So we will conclude by proving a couple results about how well we can fit compact

sets inside open sets.

Lemma 1.27. Let K be compact, and Gi be open such that K ⊂
⋃
i∈I Gi.

Then there exists an ε > 0 such that: for every x ∈ K there exists an i ∈ I such that

Bε(x) ⊂ Gi.

(The number ε is known as the Lebesgue number for the covering {Gi}. )

Note very importantly that there’s a uniformity condition here: we have one ε that works

for every x, though each x may work for only one i.

Proof. For each x ∈ K, there is an ix such that x ∈ Gix . Since Gix is open, we can pick an

rx so that B2rx(x) ⊂ Gix .

We know that K ⊂
⋃
x∈K Brx(x), and since K is compact and open balls are open, we

can pick a finite set x1, . . . , xN ∈ K so that

K ⊂
N⋃
j=1

Brxj
(xj).
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Take ε to be the minimum of these rxj .

Now suppose x ∈ K. Then there is a j such that x ∈ Brxj
(xj), and thus d(x, xj) < rxj <

2rxj − ε. Thus Bε(x) ⊂ B2rxj
(xj) ⊂ Gixj

.

Corollary 1.28. Let K be compact and G be open, with K ⊂ G. Then there is an ε > 0

such that for all x ∈ K, we have Bε(x) ⊂ G.

Corollary 1.29. Let K be compact and F be closed, with K ∩F = ∅. Then there exists an

ε > 0 such that for every x ∈ K and y ∈ F we have d(x, y) ≥ ε.

1.4 Functions and Continuity

Definition 1.30. Let x0 ∈ A ⊂ Rn and let f : A→ Rm. We say that f is continuous at x0

if for every ε > 0 there is a δ > 0 such that if x ∈ A and d(x, x0) < δ then d(f(x), f(x0)) < ε.

If f is continuous at x0 for every x0 ∈ A then we say f is continuous on A.

It’s very important to note that we’re only worreid about x ∈ A for the purposes of this

definition. Thus whether a given function f is continuous at a given point x0 or not can

depend on what we give as the domain of f .

Exercise 1.31. For any fixed x ∈ Rn, the function f(y) = d(x, y) is continuous on Rn.

Theorem 1.32. Let A ⊂ Rn and f : A→ Rm. Then f is continuous if and only if for every

open set G ⊂ Rm, ther is an open set H ⊂ Rn such that f−1(G) = H ∩ A.

This is basically what it means for a set to be open “in A”: thus f is continuous if and

only if f−1(G) ∩ A is open in A.

In particular, if f : Rn → Rm then f is continuous if and only if f−1(G) ⊂ Rn is open for

any open G ⊂ Rm.

Exercise 1.33. State and prove an equivalent of theorem 1.32 for closed sets.

A useful set of facts for working with this property:

Fact 1.34. Let f : A→ B, and suppose Xi ⊆ A, Yi ⊆ B. Then we have

� f−1
(⋃

i∈I Yi
)

=
⋃
i∈I f

−1(Yi)

� f−1
(⋂

i∈I Yi
)

=
⋂
i∈I f

−1(Yi)
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� f
(⋃

i∈I Xi

)
=
⋃
i∈I f(Xi)

� f
(⋂

i∈I Xi

)
⊆
⋃
i∈I(Xi).

Exercise 1.35. Find a function f : A → B and a family of sets Xi ⊆ A such that

f
(⋂

i∈I Xi

)
6=
⋃
i∈I(Xi).

Exercise 1.36. Let f : A→ B. Then

� f(f−1(Y )) = Y ∩ f(A) for any A ⊆ B.

� f−1(f(X)) ⊃ X for any X ⊆ A.

Proposition 1.37. Let A ⊆ Rn and f : A → Rm. Let K be a compact subset of A. Then

f(K) is compact.

However, this doesn’t work the other way.

Exercise 1.38. Give an example of a continuous function f : R→ R and a compact function

K ⊆ R such that f−1(K) is not compact.

Corollary 1.39. Let K ⊆ Rn be compact and f : K → R be continuous. then f attains a

maximum and a minimum value on K.

In math we’re often interested in functions which are bijections—which show that two

sets are in at least some sense equivalent. To preserve topological equivalence we want those

invertible functions to be topologically “nice” functions, which in this cae means continuous.

Definition 1.40. Suppose A ⊆ Rn and B ⊆ Rm, and f : A → B is a bijection. If f and

f−1 are continuous functions, we say that f is a homeomorphism from A to B.

Exercise 1.41. Suppose A,B are open and f : A → B is a homeomorphism. Prove that f

gives a bijection between the open subsets of A and the open subsets of B.

Finally, recall that sometimes we want our functions to be not just continuous, but

uniformly continuous.

Definition 1.42. Let A ⊆ Rn and f : A→ Rm. Then f is uniformly continuous on A if, for

every ε > 0 there exists a δ > 0 such that if x, y ∈ A with d(x, y) < δ, then d(f(x), f(y)) < ε.

Every uniformly continuous function is continuous, but the converse isn’t true. However:

Fact 1.43. If K is compact and f : K → Rm is continouous, then f is uniformly continuous.
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1.5 Distance from a Set

We have a clear definition of the distance between two points, but we often want to know

the distance between a point and a set. This turns out to be a bit subtler but not too bad.

Definition 1.44. Let A ⊆ Rn be nonempty, and let x ∈ Rn. The distance from x to A is

the number

d(x,A) = inf{d(x, y) : y ∈ A}.

(Since this is a set of real numbers bounded below by 0, it has an infimum.)

Proposition 1.45. If A ⊆ Rn is nonempty and x ∈ Rn, then there is a x0 ∈ A such that

d(x,A) = d(x, x0).

Proof.

Corollary 1.46. If A ⊆ Rn is closed and nonempty, and x ∈ Rn, then there is a x0 ∈ A
such that d(x,A) = d(x, x0). That is, there is a closest point to x in A.

Exercise 1.47. Let A ⊆ Rn. Then x ∈ A if and only if d(x,A) = 0.

Proposition 1.48. Assume A 6= ∅. Then d(x,A) is a continuous function of x.

Proof. For x, x′ ∈ Rn, for any y ∈ A we have that

d(x,A) ≤ d(x, y) ≤ d(x, x′) + d(x′, y).

Thus d(x,A)− d(x, x′) ≤ d(x′, y) for any y ∈ A. Thus

d(x,A)− d(x, x′) ≤ d(x′, A).d(x,A)− d(x′, A) ≤ d(x, x′).

By symmetry, we also must have

d(x′, A)− d(x,A) ≤ d(x, x′)

|d(x,A)− d(x′, A)| ≤ d(x, x′).

Theorem 1.49 (Bump Functions). Assume F is closed, G open, and F ⊆ G ⊆ Rn. Then

there is a continuous function f : Rn → R such that

0 ≤ f(x) ≤ 1 ∀x ∈ Rn

f(x) = 1 ∀x ∈ F

f(x) = 0 ∀x ∈ Gc.
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That is, for any closed subset of an open set, we can write a continuous function that is

1 on the closed subset and 0 outside of the open set. Such a function is called an Urysohn

function after Pavel Urysohn.

Proof. This is easy if either F or Gc is empty. Otherwise, we can define

f(x) =
d(x,Gc)

d(x,Gc) + d(x, F )
.

We know that f is continuous by proposition 1.48, since the denominator is never zero.

Definition 1.50. Let ∅ 6= A ⊆ Rn. The diameter of A is

diam(A) = sup{d(x, y) : x, y ∈ A}.

We know that 0 ≤ diam(A) ≤ ∞.

Exercise 1.51. Let ∅ 6= A ⊆ Rn. Then

� diam(A) = 0 if and only if A contains exactly one point.

� diam(A) <∞ if and only if A is bounded.

� diam(A) = diam(A).

� diam(Br(x)) = 2r.
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2 The Lebesgue Measure on Rn

2.1 Defining the Lebesgue Measure

2.1.0 The empty set

Define λ(∅) = 0.

2.1.1 Special rectangles

We can take a closed interval [a, b] ⊂ R, and then we can take a rectangle or box as

I = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then we define

λ(I) = (b1 − a1) . . . (bn − an) =
n∏
i=1

(bi − ai).

Exercise 2.1. Let I ⊂ Rn be a special rectangle. Prove that the following conditions are

equivalent:

1. λ(I) = 0

2. I◦ = ∅

3. I is contained in an affine subspace of Rn having dimension smaller than n. (An affine

subspace is a set {x0 + x : x ∈ E} where E is a subspace and x0 is a fixed point.)

We will call these “rectangles” even if they are one-dimensional, or one-hundred-dimensional.

This is mostly because the pictures we’re going to draw are all two-dimensional, and that’s

mostly because those are easy to draw.

2.1.2 Special Polygons

A special polygon is a finite union of special rectangles, each of which has nonzero measure.

All of the sides or edges must be perpendicular to a coordinate axis.

We can define the measure of a special polygon straightforwardly. If I1, . . . , IN are spe-

cial rectangles with disjoint interiors, and P =
⋃N
k=1 Ik is a special polygon, then λ(P ) =∑N

k=1 λ(Ik).

This is really the only reasonable definition: if we chop our special polygon into pieces,

we want the measure of the pieces to add up to the measure of the polygon.
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There are two compatibility conditions we should need to check, but they’re tedious and

boring and straightforward to check so we’ll just state them here.

Fact 2.2. � Every special polygon can be expressed as the union of finitely many special

rectangles with disjoint interiors.

� If P is a special polygon, and P =
⋃n
k=1 Ik =

⋃m
`=1 J` are two different ways of writing

P as a union of special rectangles with disjoint interiors, then
∑n

k=1 λ(Ik) =
∑m

`=1 J`.

Proposition 2.3. � If P1 ⊆ P2 then λ(P1) ≤ λ(P2).

� If P1 and P2 have disjoint interiors, then λ(P1 ∪ P2) = λ(P1) + λ(P2).

2.1.3 Open Sets

Here we want to define the measure of any open set. We will follow this by defining the

measure of compact sets, and then extend to arbitrary sets by squeezing them between open

and compact sets.

Definition 2.4. If ∅ 6= G ⊆ Rn is an open set, we define

λ(G) = sup {λ(P ) : P ⊆ G,P is a special polygon} .

We know the set we’re taking the supremum over is non-empty, since G has some interior

and thus contains some rectangle. If the set of polygon measures is bounded then λ(G) is a

real number; if the set is unbounded, then we write λ(G) =∞.

Proposition 2.5. If G is open and P is a special polygon with P ⊂ G, then there is another

special polygon P ′ with P ⊂ P ′ ⊂ G and λ(P ) < λ(P ′).

Proof. Since P is closed and G is open, we have G∩PC open. Let x ∈ G∩PC ; then there is

an r such that x ∈ Br(x) ⊂ G∩PC , and we can let I be a closed special rectangle contained

in Br(x). Then set P ′ = P ∪ I; P ′ is a special rectangle, and clearly P ⊂ P ′ ⊂ G.

Exercise 2.6. If G is a bounded open set, prove that λ(G) <∞.

Proposition 2.7. Let G ⊆ Rn be an open set. Then

1. 0 ≤ λ(G) ≤ ∞

2. λ(G) = 0 if and only if G = ∅.
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3. λ(Rn) =∞.

4. If G1 ⊂ G2 are open sets, then λ(G1) ≤ λ(G2).

5. If Gk is open for k ∈ N, then

λ

(
∞⋃
k=1

Gk

)
≤

∞∑
k=1

λ(Gk).

6. If Gk are disjoint open sets, then

λ

(
∞⊔
k=1

Gk

)
=
∞∑
k=1

λ(Gk).

7. If P is a special polygon, then λ(P ) = λ(P ◦).

Proof. 1. By definition.

2. If G 6= ∅ then G contains some nontrivial special polygon P . Then λ(G) ≥ λ(P ) > 0.

3. Exercise.

4. This is basically a property of suprema. If G1 ⊂ G2, then any special polygon contained

in G1 is also contained in G2. Thus

{P ⊂ G1} ⊂ {P ⊂ G2}

{λ(P ) : P ⊂ G1} ⊂ {λ(P ) : P ⊂ G2}

sup{λ(P ) : P ⊂ G1} ⊂ sup{λ(P ) : P ⊂ G2}

since any upper bound for the larger set is also an upper bound for the smaller set.

5. This one is trickier than it looks. First note that the union is in fact an open set.

Let P be a special polygon such that P ⊂
⋃∞
k=1 Gk. Since P is compact, we know there

is a Lebesgue number ε > 0 such that, for every x ∈ P , there is a k with Bε(x) ⊂ Gk.

(See lemma 1.27).

We know P is a union of non-overlapping rectangles; we can always further subdivide

those rectangles, and thus we can assume that P =
⋃n
j=1 Ij with each Ij a special

rectangle of diameter less than 2ε. If we let xj be the center of the rectangle Ij, then

we have Ij ⊂ Bε(xj) ⊂ Gk for some k.
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Now we can divide our rectangles up according to their open sets. For each k, define Pk

to be the union of all Ij such that Ij ⊂ Gk and IJ 6⊂ Gi for i < k. (This second condition

is just to make sure we don’t double-count any rectangle). But every rectangle is

contained in at least one of these open sets, so P =
⋃∞
k=1 Pk.

Most of these Pk are empty, since there are only finitely many special rectangles running

around. But each non-empty Pk is a special polygon, with Pk ⊂ Gk. And we know the

Pk have disjoint interiors. Thus we know that

λ(P ) =
N∑
k=1

λ(Pk) ≤
N∑
k=1

λ(Gk) ≤
∞∑
k=1

λ(Gk).

But we’ve shown that for any special polygon P ⊂
⋃
Gk, we have λ(P ) ≤

∑
λ(Gk).

Thus we have

λ

(
∞⋃
k=1

Gk

)
= sup

{
λ(P ) : P ⊂

⋃
Gk

}
≤

∞∑
k=1

λ(Gk).

6. We already know that λ
⊔
Gk ≤

∑
λ(Gk) by property 5. So we just need to show the

reverse, that
∑
λ(Gk) ≤ λ

⊔
Gk.

For each k, let Pk be a special polygon with Pk ⊂ Gk. Then the Pk are disjoint, and

for any n ∈ N we have

n∑
k=1

λ(Pk) = λ

(
n⋃
k=1

Pk

)
≤ λ

(
∞⊔
k=1

Gk

)

Since this is true for any special polygons Pk ⊂ Gk, we know that the union is an upper

bound for any polygons; thus it’s an upper bound for the supremum, and we get

n∑
k=1

λ(Gk) ≤ λ

(
∞⊔
k=1

Gk

)
.

Then this statement is true for any finite sum on the left, so it must still be true in

the limit; so we have
∞∑
k=1

λ(Gk) ≤ λ

(
∞⊔
k=1

Gk

)
.

And this is what we needed to show.
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7. It’s easy to see that λ(P ◦) ≤ λ(P ) (though not completely trivial). If Q is a special

polygon with Q ⊂ P ◦, then Q ⊂ P and thus λ(Q) ≤ λ(P ). This is true for any Q, and

thus we have

λ(P ◦) = sup
Q⊂P ◦

λ(Q) ≤ λ(P ).

Now we need to prove the other direction. We’ll start by proving it for special rectan-

gles. If I is a special rectangle, then for any ε > 0 we can find a rectangle I ′ ⊂ I◦ such

that λ(I ′) > λ(I)− ε (by simply shrinking each dimension by n
√
ε/2 or something like

that).

This tells us that λ(I◦) > λ(I) − ε. But this is true for any ε > 0, so we have

λ(I◦) ≥ λ(I).

Now if P is a special polygon written as a union of non-overlapping special rectangles

Ik, then
⋃n
k=1 I

◦
k is a disjoint union contained in P ◦. Thus

λ(P ) =
n∑
k=1

λ(Ik) ≤
n∑
k=1

λ(I◦k) ≤ λ(P )◦.

Exercise 2.8. Prove that every nonempty open subset of R can be written as a countable

disjoint union of open intervals G =
⋃
k(ak, bk), and this expression is unique.

Then conclude that λ(G) =
∑

k(bk − ak).

Remark 2.9. In R we can use this as our construction, but it doesn’t really generalize to Rn

easily. You can make that work, but it’s even more painful.

2.1.4 Compact Sets

If K ⊂ Rn is compact, then define

λ(K) = inf{λ(G) : K ⊂ G,G open}.

There’s something we immediately have to check: if K is a compact special polygon,

does this new definition match the old one?

This is a little hard to talk about, so we’ll introduce some very temporary notation.

We’ll use α for the definition of measure we gave in 2.1.2 that applies specifically to special

polygons. And we’ll use β for the definition that applies to any compact set. We’ll prove

they’re both the same, and then we can go back to calling both of them λ instead.
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It’s any to see that α(P ) ≤ β(P ) for any special polygon P . Whenever P ⊂ G, then

α(P ) ≤ λ(G). Therefore, α(P ) ≤ inf{λ(G)} = β(P ).

Conversely, we want to show that β(P ) ≤ α(P ). Suppose P =
⋃n
k=1 Ik is a union of

non-overlapping rectangles. For any ε > 0 we can pick special rectangles I ′k ⊂ I◦k such that

λ(I ′k) < λ(Ik) + ε/n.

Then if we set G =
⋃n
k=1 I

′◦
k we have P ⊂ G, and thus

β(P ) ≤ λ(G) ≤
n∑
k=1

λ(I ′◦k )

<

n∑
k=1

λ(Ik) + ε = α(P ) + ε.

Since this is true for any ε > 0, we have β(P ) ≤ α(P ).

We want to prove several properties of the measure of these compact sets. But mostly

we can leverage the results we already proved about open sets.

Proposition 2.10. 1. 0 ≤ λ(K) <∞

2. If K1 ⊂ K2 then λ(K1) ≤ λ(K2).

Proof. Exercise

3. λ(K1 ∪K2) ≤ λ(K1) + λ(K2).

Proof. If K1 ⊂ G1 and K2 ⊂ G2 then K1 ∪K2 ⊂ G1 ∪G2, and thus

λ(K1 ∪K2) ≤ λ(G1 ∪G2) ≤ λ(G1) + λ(G2).

Thus

λ(K1 ∪K2) ≤ inf λ(G1) + λ(G2) = λ(K1) + λ(K2).

4. If K1 and K2 are disjoint, then λ(K1 ∪K2) = λ(K1) + λ(K2).

Proof. Wince K1 and K2 are compact, there is a ε > 0 such that for every x ∈ K1, y ∈
K2, then d(x, y) ≥ ε. (This is the Lebesgue number again, with the open sets being

KC
1 and KC

2 .) Then if we let G be an open set containing K1 ∪K2, we can write

G1 = G ∩
⋃
x∈K1

Bε/2(x)

G2 = G ∩
⋃
x∈K2

Bε/2(x).
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Then we have Ki ⊂ Gi and G1 ∩G2 = ∅. So we have

λ(K1) + λ(K1) ≤ λ(G1) + λ(G2) = λ(G1 ∪G2) ≤ λ(G).

Since this holds for any G ⊃ K1 ∪K2, we have λ(K1) + λ(K2) ≤ λ(K1 ∪K2). Since

the opposte inequality follows from part (3), that proves equality.

Remark 2.11. We didn’t try to prove any results about infinite unions of compact sets. Why

not?

Here we should mention one very important example: the Cantor set. (It is sometimes

known as the ternary Cantor set to distinguish from some generalizations.)

Definition 2.12. We first define a family of open intervals contained in [0, 1]. We define

G1 = (1
3
, 2

3
); then [0, 1]\G1 is two closed intervals of length one third. We remove the middle

third of each of these: we define G2 = (1
9
, 2

9
)∪ (7

9
, 8

9
). Then [0, 1] \ (G1 ∪G2) = is four closed

intervals of length 1/9. We can iterate this construction to get an infinite sequence of disjoint

open sets G1, G2, . . . .

We define the (ternary) Cantor set to be the set

C = [0, 1] \
∞⋃
k=1

Gk.

Fact 2.13. The Cantor set C is uncountable.

Exercise 2.14. Prove that C is compact. Then prove that λ(C) = 0.

2.1.5 Inner and Outer Measure

We would like to extend our definition of measure to cover any set. We don’t quite have the

ability to do that yet, but we can define two quanties that do apply to any set.

Definition 2.15. Let A ⊆ Rn. Then we define

� The outer measure of A

λ∗(A) = inf{λ(G) : A ⊂ G open}

� The inner measure of A

λ∗(A) = sup{λ(K) : A ⊃ K compact}.
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Notice that these are basically concepts we’ve seen before; outer measure is how we

defined the measure of a compact set, and inner measure is basically how we defined the

measure of an open set. So this entire set of definitions has a sort of push-pull quality.

Proposition 2.16. 1. λ∗(A) ≤ λ∗(A).

Proof. If K ⊂ A ⊂ G, then K ⊂ G, and thus λ(K) ≤ λ(G).

2. If A ⊆ B then λ∗(A) ≤ λ∗(B) and λ∗(A) ≤ λ∗(B).

3. λ∗ (
⋃∞
k=1Ak) ≤

∑∞
k=1 λ

∗(Ak).

Proof. We basically want to cover each Ak with an open set. If ε > 0, then for each k

we can find a Gk ⊇ Ak such that λ(Gk) < λ∗(Ak) + ε2−k. Then we have

λ∗

(
∞⋃
k=1

Ak

)
≤ λ

(
∞⋃
k=1

Gk

)
≤

∞∑
k=1

λ(Gk)

<
∞∑
k=1

(λ∗(Ak) + ε2−k) =
∞∑
k=1

λ∗(Ak) + ε.

Since this holds for any ε > 0, we’re done.

4. If the Ak are disjoint, then

λ∗

(
∞⋃
k=1

Ak

)
≥

∞∑
k=1

λ∗(Ak).

Proof. Exercise.

5. If A is open or compact, then λ∗(A) = λ∗(A) = λ(A).

Proof. If A is open, then clearly λ∗(A) = λ(A). If P is any special polygon with P ⊂ A,

then P is compact, so λ(P ) ≤ λ∗(A); and thus λ(A) ≤ λ∗(A).

But then λ(A) ≤ λ∗(A) ≤ λ∗(A) = λ(A), so all the numbers are equal.

Now suppose A is compact. Then λ∗(A) = λ(A) clearly, and λ(A) = λ∗(A) because

that’s the definition of λ(A).
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2.1.6 Sets with Finite Outer Measure

Recall we want to assign a measure to every possible set. In the last subsubsection 2.1.5 we

defined two “measure-like” numbers that apply to any set. But which one should we use?

It turns out that very strange things can happen in general, which we will see later. But

all of those strangenesses are avoided if our two measures are in fact the same.

Definition 2.17. Let A ⊆ Rn be a set with finite outer measure. We say that A is measurable

and belongs to L0 if λ∗(A) = λ∗(A), and in that case we define the measure of A to be

λ(A) = λ∗(A) = λ∗(A).

Proposition 2.18. The family L0 contains all open sets with finite measure and all compact

sets. Our new definition of measure belongs to every previous definition of measure we’ve

given.

Lemma 2.19. If A,B ∈ L0 are disjoint, then A ∪B ∈ L0 and λ(A ∪B) = λ(A) + λ(B).

Proof.

λ∗(A ∪B) ≤ λ∗(A) + λ∗(B) = λ(A) + λ(B)

= λ∗(A) + λ∗(B) ≤ λ∗(A ∪B)

≤ λ∗(A ∪B).

We want to be able to tell whether a set is measurable in an easy-to-compute way. The

main tool for this is the following theorem on approximation, which says that if we can

approximate our set with open sets and compact sets that are “close together” then our set

is in L0.

Theorem 2.20 (Approximation of Measure). Let A ⊆ Rn such that λ∗(A) < ∞. Then

A ∈ L0 if and only if: for every ε > 0 there is a compact set K and an open G such that

K ⊆ A ⊆ G and λ(G \K) < ε.

Proof. If A ∈  L0, then that means that the inner measure and outer measure of A are the

same. But we can always approximate the outer measure well with an open set, and the

inner measure with a compact set. So for any ε > 0 we can find G ⊆ A,K ⊆ A such that

λ(G) < λ∗(A) + ε/2 = λ(A) + ε/2

λ(K) > λ∗(A)− ε/2 = λ(A)− ε/2.

http://jaydaigle.net/teaching/courses/2020-spring-395/ 21

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

Since K and G \K are disjoint, we have λ(G) = λ(K) + λ(G \K). Rearranging this gives

λ(G \K) = λ(G)− λ(K)

< λ(A) + ε/2− λ(A) + ε/2 = ε.

Conversely, suppose that for any ε > 0 there exist K ⊆ A ⊆ G with λ(G \K) < ε. Fix

an epsilon, and then choose such sets G and K. We have that

λ∗(A) ≤ λ(G) = λ(K) + λ(G \K)

< λ(K) + ε ≤ λ∗(A) + ε.

Since this holds for any ε > 0, we conclude that λ∗(A) ≤ λ∗(A) ≤ λ∗(A). Thus the outer

and inner measures are equal, and A ∈ L0 by definition.

We want to figure out how we can combine L0 sets to get other L0 sets. We start by

looking at our binary operations, and then we’ll figure out how to work with countably many

sets at once.

Proposition 2.21. If A,B ∈ L0 then A ∪B,A ∩B,A \B ∈ L0 as well.

Proof. We’ll start with the set difference, using the theorem on approximation.

Fix ε > 0, and then we can write K1 ⊆ A ⊆ G1, K2 ⊆ B ⊆ G2 with λ(Gi \Ki) < ε/2.

Then set K = K1 \G2 and G = G1 \K2.

G is clearly open, and K is closed and thus compact. Further, we have K ⊆ A \B ⊆ G,

and G \K ⊆ (G1 \K1) ∪ (G2 \K2). Thus λ(G \K) < ε, and thus A \B ∈ L0.

Given this fact, we can prove the other two claims with minimal work. A∩B = A\(A\B)

is a difference of differences of L0 sets, and thus is in L0. And A ∪ B = (A \ B) ∪ B is a

disjoint union of L0 sets, and thus is L0 by lemma 2.19.

Theorem 2.22 (Countable additivity). Let Ak ∈ L0, and set A =
⋃∞
k=1 Ak. Assume

λ∗(A) <∞. Then A ∈ L0, and

λ(A) ≤
∞∑
k=1

λ(Ak).

Further, if the Ak are disjoint, then

λ(A) =
∞∑
k=1

λ(Ak).
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Proof. If the Ak are disjoint, this is easy. We know that

λ∗(A) ≤
∞∑
k=1

λ∗(Ak)

=
∞∑
k=1

λ∗(Ak) ≤ λ∗(A) ≤ λ∗(A).

If the Ak are not disjoint, we can’t do anything this simple. The first inequality holds,

but we don’t actually have an inequality on the inner measure. But if we can reduce this

to a question about a disjoint union, then we can use the previous result and things become

much simpler.

Define a new family of sets as follows. We take B1 = A1, and then for each k > 1 we

define

Bk = Ak \

(
k−1⋃
i=1

Ak

)
.

Then each Bk ∈ L0, and clearly the Bk are disjoint. Each Bk is a subset of the corresponding

Ak, and
⋃∞
k=1Bk =

⋃∞
k=1Ak = A. Then we can use our result on disjoint unions to see that

A ∈ L0, and

λ(A) =
∞∑
k=1

λ(Bk) ≤
∞∑
k=1

λ(Ak).

2.1.7 Measurable Sets

Definition 2.23. Let A ⊂ Rn. We say that A is (Lebesgue) measurable if, for every M ∈ L0,

then A ∩M ∈ L0. If A is measurable, we define the (Lebesgue) measure of A to be

λ(A) = sup{λ(A ∩M) : M ∈ L0}.

We denote the set of all measurable subsets of Rn with the symbol L.

We now have another (final!) definition of measure; so we need to make sure it’s the

same as our previous definitions.

Proposition 2.24. Let A ⊆ Rn with λ∗(A) <∞. Then A ∈ L0 if and only if A ∈ L. And

if A ∈ L, then our two definitions of measure coincide.

Proof. If A ∈ L0, then A ∩M ∈ L0 for any M ∈ L0, and thus A ∈ L.

Conversely, suppose A ∈ L. We know that Bk(0) ∈ L0 since it’s open, so we know that

Ak = A ∩Bk(0) ∈ L0. But A =
⋃∞
k=1 Ak, and theorem 2.22 tells us that A ∈ L0.
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Now we need to prove that the measure formulas coincide; for the rest of this proof we’ll

use λ′ for our final definition of measure given in Definition 2.23.

Suppose A ∈ L0 ⊂ L. Then since for any M ∈ L0, we know that A ∩M ⊆ A, and

so λ(A ∩M) ≤ λ(A), and thus λ′(A) ≤ λ(A). But conversely, A ∈ L0, so we must have

λ(A) ≤ λ(A ∩ A) ≤ λ′(A). Thus λ′ = λ.

2.2 Basic Properties of the Lebesgue Measure

Now that we have finally given a complete definition of Lebesgue measure, we want to collect

all the properties that apply to it. Many of these are properties we’ve seen already at various

earlier stages of the construction, but we need to see they still hold at this completed stage.

Some other properties are basically new.

Proposition 2.25. 1. A ∈ L if and only if AC ∈ L.

2. If Ak ∈ L, then
⋃∞
k=1 Ak ∈ L and

⋂∞
k=1 Ak ∈ L .

3. If A,B ∈ L then A \B ∈ L.

Proof. 1. For any M ∈ L0, we know that Ac ∩M = M \ A = M \ (A ∩M). This is a

difference of L0 sets, and thus is in L0. Therefore AC ∈ L.

2. If Ak ∈ L and A =
⋃∞
k=1 Ak, then for any M we have that A ∪M =

⋃∞
k=1Ak ∩M .

Since λ∗(A∩M) ≤ λ(M) is finite, theorem 2.22 tells us that A∩M ∈ L0. Thus A ∈ L.

The result on intersections follows from De Morgan’s Laws: we know that

∞⋂
k=1

Ak =

(
∞⋃
k=1

ACk

)C

.

Since complements and countable unions preserve measurability, this is a measurable

set.

3. A \B = A ∩BC is measurable.

Proposition 2.26. [Countable Additivity] If Ak are measurable, then

λ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

λ(Ak).

If the union is disjoint, then

λ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

λ(Ak).

http://jaydaigle.net/teaching/courses/2020-spring-395/ 24

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

Proof. Let A =
⋃∞
k=1Ak. Then by theorem 2.22 we know that

λ(A ∪M) ≤
∞∑
k=1

λ(Ak ∩M) ≤
∞∑
k=1

λ(Ak).

Thus
∑∞

k=1 λ(Ak) is an upper bound for λ(A ∩M), and so we have λ(A) ≤
∑∞

k=1 λ(Ak).

Now suppose the sets are disjoint; we just need to prove the opposite inequality. For any

n ∈ N we can choose sets M1, . . . ,Mn ∈ L0, and define M =
⋃n
k=1 Mk. Then

λ(A) ≥ λ(A ∩M) =
∞∑
k=1

λ(Ak ∩M)

≥
n∑
k=1

λ(Ak ∩M) ≥
n∑
k=1

λ(Ak ∩Mk).

Since λ(Ak ∩Mk) ≤ λ(Ak), we conclude that λ(A) ≥
∑n

k=1 λ(Ak). Since this is true for any

n ∈ N, we must have λ(A) ≥
∑∞

k=1 λ(Ak), as desired.

Proposition 2.27. Suppose A1, A2, . . . are measurable sets. Then:

1. If A1 ⊆ A2 ⊆ . . . , then

λ

(
∞⋃
k=1

Ak

)
= lim

k→∞
λ(Ak).

2. If A1 ⊇ A2 ⊇ . . . , and further if λ(A1) <∞, then

λ

(
∞⋂
k=1

Ak

)
= lim

k→∞
λ(Ak).

Proof. 1. We can write
⋃
Ak as a disjoint union; in this case this is very easy, since we

have
∞⋃
k=1

Ak = A1 ∪
∞⋃
k=2

(Ak \ Ak−1).

Then countable additivity implies that

λ

(
∞⋃
k=1

Ak

)
= λ(A1) +

∞∑
k=2

λ(Ak \ Ak−1)

= lim
n→∞

λ(A1) +
n∑
k=2

λ(Ak \ Ak−1)

= lim
n→∞

λ

(
A1 ∪

n⋃
k=2

(Ak \ Ak−1)

)
= lim

n→∞
λ(An).
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2. Exercise.

Proposition 2.28. 1. All open sets and all closed sets are measurable.

2. If λ∗(A) = 0, then A is measurable and λ(A) = 0.

Proof. 1. If G is open, then we can write G =
⋃∞
k=1(G ∩ Bk(0)) as a countable union

of bounded open sets. Each bounded open set has finite outer measure and thus is

measurable; and we know a countable union of measurable sets is measurable. Thus

G is measurable.

If F is closed, then FC is open and thus measurable. So F is measurable.

2. We know that 0 ≤ λ∗(A) = 0 ≤ λ∗(A) = 0. Thus A ∈ L0 and so A is measurable, and

λ(A) = 0.

Proposition 2.29 (Approximation). Let A ⊆ Rn. Then A is measurable if and only if: for

every ε > 0 there exist F ⊆ A ⊆ G such that λ(G \ F ) < ε.

Proof. First, suppose A has the approximation property as described. We’re going to ap-

proximate A with a clearly measurable set and then show the remainder is so small that it

must also be measurable.

For any k ∈ N we can find Fk ⊆ A ⊆ Gk, with λ(Gk \ Fk) < 1
k
. Let B =

⋃∞
k=1 Fk. Then

B is a countable union of measurable sets and thus measurable, and B ⊆ A.

Further, we know that A \B ⊆ Gk \B ⊆ Gk \Fk, and thus λ∗(A \B) ≤ λ(Gk \Fk) < 1
k
.

Since this holds for each k, we see that λ∗(A \ B) = 0, and thus A \ B is measurable. We

conclude that A = B ∪ (A \B) is a union of measurable sets and thus measurable.

Conversely, suppose A is a measurable subset of Rn. If we take any finite measure

subset, we know we can approximate it; so we’ll build a sequence of these approximations

that approximate all of A.

For each k, define Ek = Bk(0)\Bk−1(0), which you can visualize like a washer or annulus

centered at zero. Since each Ek is bounded, we know that A∩EK ∈ L0, and thus we can find

a compact set Kk and an open set Gk such that Kk ⊆ A∩Ek ⊆ Gk and λ(Gk \Kk) < ε2−k.

We define F =
⋃∞
k=1 Kk and G =

⋃∞
k=1Gk. It’s clear that Gk is open. It’s less trivial to

see that F is closed, but we can check that it contains all of its limit points; if x ∈ F then

x must be a limit point of some finite union
⋃n
k=1Kk, and this is a finite union and thus

closed, so x ∈
⋃n
k=1Kk ⊆ F .
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So we have F ⊆ A ⊆ G are closed and open respectively. And we can see that

G \ F =
∞⋃
k=1

(Gk \ F ) ⊆
∞⋃
k=1

(Gk \Kk)

and so

λ(G \ F ) ≤
∞∑
k=1

λ(Gk \Kk)

<
∞∑
k=1

ε2−k = ε.

Proposition 2.30. 1. If A is measurable, then λ∗(A) = λ∗(A) = λ(A).

2. If A ⊆ B and B is measurable, then λ∗(A) + λ∗(B \ A) = λ(B).

Proof. 1. If λ∗(A) <∞, then this follows from section 2.1.6. So suppose A is measurable,

and λ∗(A) =∞.

If λ(A) < ∞, then we could find F ⊆ A ⊆ G with λ(G \ F ) < 1, and then we’d have

that

λ(G) = λ(G \ A) + λ(A) ≤ λ(G \ F ) + λ(A) < 1 + λ(A) <∞

which is a contradiction.

Now we just need to show that λ∗(A) =∞. We know that λ(A∩Bk(0)) <∞, and for

any k we have

λ(A ∩Bk(0)) = λ∗(A ∩Bk(0)) ≤ λ∗(A).

But we know that limk→∞ λ(A ∩ Bk(0)) = λ(A) = ∞ since this is a union of an

ascending chain. Thus we also must have that λ∗(A) =∞.

2. For any open G ⊇ A, we know that

λ(G) + λ∗(B \ A) ≥ λ(B ∩G) + λ∗(B \ A) ≥ λ(B ∩G) + λ∗(B \G)

= λ(B ∩G) + λ(B \G) = λ(B).

This holds for any G, so we have λ(B) ≤ λ∗(A) + λ∗(B \ A).

Conversely, for any compact K ⊆ B \ A, we can do basically the same thing:

λ∗(A) + λ(K) ≤ λ∗(B \K) + λ(K)

= λ(B \K) + λ(K) = λ(B).
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Thus λ∗(A) + λ∗(B \ A) ≤ λ(B).

Proposition 2.31 (Carathéodory). A set A is measureable if and only if for every E ⊆ Rn,

we have that

λ∗(E) = λ∗(E ∩ A) + λ∗(E ∩ Ac).

Remark 2.32. This proposition provides another way to construct measure; we could have

used the outer measure only and avoided inner measure. But this presentation would have

been somewhat less concrete, and made some other steps kind of tricky.

Proof. Notice first that this equation is partly cheating. For any set A, measurable or not,

we know that

λ∗(E) ≤ λ∗(E ∩ A) + λ∗(E ∩ Ac)

by the countable subadditivity of outer measure as proven in 2.16. So in either direction

we’re really just looking at the opposite inequality.

Suppose A is measurable. If E ⊂ G open, then

λ(G) = λ(G ∩ A) + λ(G ∩ Ac) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac).

Thus

λ∗(E) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac)

by definition of outer measure.

Conversely, suppose that λ∗(E) = λ∗(E ∩A) +λ∗(E ∩Ac) for any E. Then in particular,

for any finitely measurable M ∈ L0 we have

λ(M) = λ∗(M) = λ∗(M ∩ A) + λ∗(M ∩ Ac).

But we also know that

λ(M) = λ∗(M ∩ A) + λ∗(M ∩ Ac)

from proposition 2.30, since we can take M ∩ Ac = M \ (M ∩ A).

But subtracting these equations gives that 0 = λ∗(M ∩ A) − λ∗(M ∩ A), and thus

λ∗(M ∩A) = λ∗(M ∩A); and this is precisely what it means to say that M ∩A ∈ L0. since

this holds for any measurable M , then A ∈ L by definition.
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2.3 Abstract Measure Spaces

At this point I want to take a moment and discuss which of the properties of the Lebesgue

measure generalize, and are necessary for it to be “a measure”.

We first want to talk about the properties that measurable sets have to have.

Definition 2.33. Let X be any set. We define an algebra of subsets of X to be a subset

M ⊆ 2X of the power set of X that satisfies the following properties:

� ∅ ∈M

� If A,B ∈M then A ∪B ∈M.

� If A ∈M then AC = X \ A ∈M.

It’s easy to see that an algebra of sets must be closed under any finite unions, and also

under finite intersections and under set difference.

All these statements are true of the Lebesgue measurable sets. But the measurable sets

have one extra property:

Definition 2.34. Let M ⊆ 2X be an algebra. Then it is a σ-algebra if it is also closed under

countable unions (and thus intersections): if A1, A2, . . . ,∈M then
⋃∞
k=1 Ak ∈M.

Example 2.35. � The power set 2X is a σ-algebra.

� {∅, X} is a σ-algebra. In fact, this is a sub-σ-algebra of any σ-algebra.

� The measurable sets L ⊂ 2Rn
are a σ-algebra.

� Let X be any set, ane let M0 be the set of all sets A such that either A is finite or AC

is finite. Then M0 is an algebra but not a σ-algebra.

� Let X be any set, ane let M1 be the set of all sets A such that either A is countable

or AC is countable. Then M0 is an a σ-algebra.

� Any finite algebra is a σ-algebra for basically dumb reasons.

From this we want to find a way to build σ-algebras. There is one lemma which will be

very useful for this:

Exercise 2.36. Let X be a set, and Mi ⊂ 2X be a σ-algebra for each i in some index set I.

Prove that
⋂
i∈I Mi is a σ-algebra.
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Notice this is a little weird. We’re not intersecting subsets of X to get a new subset of

X; we’re intersecting collections of subsets of X to get a new collection of subsets of X.

Now suppose N ⊂ 2X is any collection of subsets—not necessarily an algebra. We can

consider the family of σ-algebras that contain N. Clearly there are some such σ-algebras,

since 2X is itself a σ-algebra. If we take the intersection of all these σ-algebras, we will get

a new σ-algebra:

M =
⋂
P⊇N

P.

Then M will contain N, and it is contained in any σ-algebra that contains N, so it is the

smallest σ-algebra containing N. We say that M is the σ-algebra generated by N.

An important note is that this is, and essentially must be, non-constructive. There are

sets in M that we can’t build by a countable chain of unions or intersections of elements

of N. In fact, a set in M can be a countable union of countable intersections of countable

unions of countable intersections of . . .

If we want to construct the σ-algebra M explicitly, we need to do some sort of transfinite

induction, which is cumbersome and we just don’t want to do it. But it’s clear (non-

constructively) that M must exist, and we’re satisfied with that.

So far this tells us that we can generate σ-algebras, but doens’t tell us what we want to

do with them, or which σ-algebras we want. But if we want to build a measure, we definitely

want to be able to measure all the “reasonable” sets.

Definition 2.37. The class of Borel sets in Rn, denoted B, is the σ-algebra generated by

the collection of open sets. Clearly B ⊆ L. We sometimes write Bn when we need to specify

the dimension.

Exercise 2.38. Prove that the class of Borel sets is also the σ-algebra generated by the

collection of special rectangles.

Thus B is the smallest σ-algebra that contains all the sets we obviously want to be able

to measure.

The Borel sets in Rn are not actually all the Lebesgue measurable sets. But they are

close.

Definition 2.39. If A ⊆ Rn is measurable with λ(A) = 0, then A is a null set. A is null if

and only if λ∗(A) = 0.

Theorem 2.40. Suppose A ⊆ Rn is measurable. Then we can write A = E ∪ N such that

E and N are disjoint, E is a Borel set, and N is a null set.
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Proof. For every k ∈ N there is a closed set Fk ⊆ A such that λ(A \ Fk) < 1
k
, by our

approximation property 2.29. Set E =
⋃∞
k=1 Fk. Then E is not necessarily closed, but it is

certainly Borel since it’s a countable union of closed, Borel sets.

Further, E ⊆ A. Then for any k, we have

λ(A \ E) ≤ λ(A \ Fk) <
1

k
.

Thus λ(A \ E) = 0 and thus A \ E is null.

In fact, we proved something much stronger than the theorem statement. The set E is

not only Borel, it is specifically a countable union of closed sets; we call such sets Fσ sets.

Dually, a countable intersection of open sets is called a Gδ set.

Exercise 2.41. Prove that if N ⊆ Rn is null, then there is a Borel null set N ′ such that

N ⊆ N ′. In particular, prove that N ′ can be chosen to be a Gδ set.

Theorem 2.42. Let E ⊆ Rn be Borel, and let f : E → Rm be continuous. If A is Borel in

Rm, then f−1(A) is Borel in Rn.

Proof. This proof has to be a little weird again, because we have to use the universal property

of Borel sets; we can’t actually study the structure of f−1(A) and see that it’s Borel—first

because we don’t know what it “should” look like, and second because we don’t know what

A looks like.

So we’ll define a class of subsets: let

M = {A : A ⊂ Rm, f−1(A) ∈ Bn}.

If we can show that Bm ⊆ M then we have proven what we want to prove. But Bm is

the smallest σ-algebra containing all the open sets in Rm; so we want to prove that M is a

σ-algebra containing all the open sets in Rm.

First we claim that M is a σ-algebra. We have to check the three axioms:

1. f−1(∅) = ∅ ∈ Bn, so ∅ ∈M.

2. Suppose Ak ∈M for all k ∈ N. Then for each k we know that f−1(Aj) ∈ Bn. Thus

f−1

(
∞⋃
k=1

Ak

)
=
∞⋃
k=1

f−1(Ak) ∈ Bn

since Bn is a σ-algebra and this is a countable union of Bn sets. Thus
⋃∞
k=1 f

−1(Ak) ∈
M.
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3. Suppose A ∈M. Then f−1(A) ∈ Bn, and thus

f−1(AC) = {x ∈ E : f(x) 6∈ A} = E \ {x ∈ E : f(x) ∈ A} = E \ f−1(A)

is a difference of Bn sets, and thus is in Bn. So AC ∈M.

Thus M satisfies the three axioms of a σ-algebra: it contains the null set, and is closed under

countable unions and under complements. So M is a σ-algebra.

So now we just need to show that M contains all the open sets. So let G ⊆ Rm be an

open set. Then we can write f−1(G) = E ∩H where H ⊆ Rn is open. Thus H ∈ Bn, and

we know E ∈ Bn, so f−1(G) = H ∩ E ∈ Bn. So G ∈M.

Remark 2.43. We know that M contains all the Borel sets; but it might contain far, far

more—and whether it does depends on the specific function. In the extreme case where f is

constant, then M is the largest possible σ-algebra, containing every possible subset of Rm.

Corollary 2.44. Let E ⊆ Rn, F ⊆ Rm be Borel, and let f : E → F be a homeomorphism.

Then f gives a bijection between Borel sets in E and in F . That is, If B ⊆ E, then B ∈ Bn

if and only if f(B) ∈ Bm.

Proof. This follows because f and f−1 are both continuous. The previous theorem shows

that if f(B) is Borel, then so is B; considering the function f−1 instead shows that if B is

Borel, then so is (f−1)−1(B) = f(B).

We still haven’t defined an actual measure, though. Clearly we want to use σ-algebras

to define the class of measurable sets; but what does an actaul measure look like?

Definition 2.45. A measure space consists of three objects:

� A nonempty set X

� A σ-algebra M ⊆ 2X

� A function µ : M→ [0,∞] such that µ(∅) = 0, and if A1, A2, . . . are disjoint then

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

We say the function µ is a measure.

Exercise 2.46. Prove the following facts about abstract measures:
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1. If A,B ∈M and A ⊆ B, then µ(A) ≤ µ(B).

2. If A1, A2, · · · ∈M, then

µ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ(Ak).

3. If A1 ⊆ A2 ⊆ . . . are in M then

µ

(
∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak).

Example 2.47. � We can take X = Rn, M = L, and µ = λ. This is the Lebesgue

measure.

� We can take X = Rn, M = B the set of Borel sets, and µ = λ. This is the same

measure, but allows fewer sets to be measurable. In particular, many sets which are

null under the Lebesgue measure are unmeasurable here.

� Take X to be any set, M = 2X , and µ(A) =∞ if A 6= ∅.

� The counting measure: Take X to be a non-empty set, M = 2X , and

µ(A) =

{
#A A finite

∞ A infinite

� The Dirac measure: let X be any non-empty set and M = 2X . Fix some x0 ∈ X and

define µ(A) = χA(x0). We usually call this measure the Dirac measure and write it

δx0 . It is also sometimes called the Diract delta function, despite not being a function

on X.

Most of what we’ll prove about the Lebesgue measure is actually true in any abstract

measure space; in particular, our definition of integral will work for any measure.

Definition 2.48. Let X,M, µ be a measure space. We can define a new measure space

called teh completion of (X,M, µ). We define a σ-algebra M by the property that A ∈M if

and only if there are B,C ∈M with B ⊆ A ⊆ C and µ(C \B) = 0. Clearly M ⊆M.

Then in this situation we have µ(C) = µ(B), so define µ(A) = µ(B). It’s not too hard

to show that M is a σ-algebra and µ is a measure.

Exercise 2.49. Prove that, if E ⊆ A ∈M and µ(A) = 0, then E ∈M and µ(E) = 0.
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Definition 2.50. We say a measure space X,M, µ is complete if whenever E ⊆ A ∈M and

µ(A) = 0, the E ∈M.

We observe that the Lebesgue measure is complete; it is in fact the completion of a

measure defined on the Borel sets.

Given a measure space, we can find sub-measure-spaces. Suppose (X,M, µ) is a measure

space, and B ∈ M is a measureable subset of X. Then we can define a new measure space

(B,MB, µB) by taking MB = {A ∩B : A ∈M}, and defining µB(A) = µ(A).

This just means that A is measurable in B if it’s the intersection of a measurable set

with B, and the measure is inherited from the larger space.

Example 2.51. We know that [0, 1] ∈ L, so we can define a measure space ([0, 1],L[0,1], λ[0,1]),

where measurable sets are the intersections of Lebesgue measurable sets with the closed in-

terval. This space has total measure one, and does exactly what you think it should do.

Example 2.52. If our measure space is R2, then R is a Lebesgue-measurable subspace of

R2, so we can look at the measure on R induced by the measure on R2. But this isn’t

really a useful measure! In this case, the induced σ-algebra is exactly the collection of usual

Lebesgue measurable subsets of R. But the measure of any set will be 0.

Finally, we are prepared to make some notes on the topic of probability.

Definition 2.53. A probability space is a measure space (Ω,F, P ) (where Ω is a set, F is a

σ-algebra of subsets of Ω, and P is a measure) such that P (Ω) = 1.

We say that the elements of F, which are subsets of Ω, are events, and the probability of

an event A ∈ F is P (A).

Example 2.54. The space [0, 1] with the (induced) Lebesgue measure is a probability space.

In fact, [0, 1]× [0, 1]× · · · × [0, 1] is a probability space.

Example 2.55. The space [0, 2] with the regular Lebesgue measure is a measure space but

not a probability space, since λ([0, 2]) = 2 6= 1. But if we define µ(A) = 1
2
λ(A), then µ is a

measure and so ([0, 2],L[0,2], µ) is a probability space.

Definition 2.56. Suppose (Ω,F, P ) is a probability space, and B ∈ F with P (B) > 0. We

define the conditional probability of A given B by

P (A|B) =
P (A ∪B)

P (B)
.

Exercise 2.57. Prove that P (A|B) is a probability measure on B.
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3 Interesting Sets for the Lebesgue Measure

3.1 Invariance of Lebesgue Measure

Within Rn there are ways we can move sets around that seem like they either shouldn’t

change the measure, or should change it in predictable ways.

Definition 3.1. Let A ⊆ Rn and let x ∈ Rn. We define the translation of A by x to be the

set

x+ A = {x+ a : a ∈ A}.

Now let t ∈ R>0. We define the dilation of A by t to be the set

tA = {ta : a ∈ A}.

Lemma 3.2. Let A ⊆ Rn, let x ∈ Rn, and let t ∈ R>0. Then:

� λ∗(x+ A) = λ(A) and λ∗(tA) = tnλ(A).

� λ∗(x+ A) = λ(A) and λ∗(tA) = tnλ(A).

� If A is measurable, then x + A and tA are measurable, and λ(x + A) = λ(A) and

λ(tA) = tnλ(A).

Proof. We first prove the lemma for special rectangles. If I = [a1, b1] × · · · × [an, bn] is a

special rectangle, then

x+ I = [a1 + x1, b1 + x1]× · · · × [an + xn, bn + xn]

so by definition,

λ(x+ I) =
n∏
i=1

(bi + xi − (ai + xi) =
n∏
i=1

(bi − ai) = λ(I).

Similarly,

tI = [ta1, tb1]× · · · × [tan, tbn]

and so

λ(tI) =
n∏
i=1

t(bi − ai) = tn
n∏
i=1

(bi − ai) = tnλ(I).

Now we want to extend this to all Lebesgue measurable sets. But this just follows

from the steps of the construction of the Lebesgue measure. Clearly the result holds for
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special polygons; and then the set of special polygons contained in x + G or tG is the set

of translations or dilations of special polygons contained in G. Thus the result holds for

open sets. Similarly, the result must hold for compact sets, and thus for inner and outer

measure. Finally, since the result holds for inner and outer measure, it holds for the measure

of measurable sets.

We’d like to generalize these two operations a bit further. We want to include translations

and dilations, and also some other operations like rotations.

Definition 3.3. Suppose f : U → V is a function of vector spaces. We say that f is affine

if

f(ax+ (1− a)y) = af(x) + (1− a)f(y)

for any vectors x, y ∈ U and scalars a ∈ R.

This basically tells us that we don’t preserve vectors, but we do preserve lines: a point

on the line from x to y gets mapped to a point on the line from f(x) to f(y).

Exercise 3.4. Prove that f : U → V is affine if and only if there is a linear function

L : U → V and a vector v ∈ V such that f(x) = v + L(x) for every x ∈ U . Further, this

choice of L and v is unique.

An affine transformation combines a translation and a linear function, but we already

understand translations. So let’s see what linear functions do to the Lebesgue measure. We

wish to prove the following statement:

Theorem 3.5. Let T be a n× n matrix, and let A ⊆ Rn. Then

λ∗(TA) = | detT |λ∗(A)

λ∗(TA) = | detT |λ∗(A)

Further, if A is measurable, then TA is measurable, and

λ(TA) = | detT |λ(A)

sketch. We’ll specialize to just proving this for an open set G; once that’s proven, we can

extend it to the rest of measurable sets. And we can cover G by small cells that we’ve already

understood.
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So let J = [0, 1)×· · ·× [0, 1). This is not a special rectangle, but it is a rectangle. Clearly

λ(J) = 1. Then since T is continuous, we can see that T (J) must be measurable. We set

ρ = λ(TJ)
λ(J)

= λ(TJ). And we claim that λ(TA) = ρλ(A).

From here we’re essentially going to tile G from the inside with copies of J . We can

divide Rn into translated copies of J of the form [a1, a1 + 1)× (a2, a2 + 1)×· · ·× [an, an + 1).

Take all the ones that are inside G. Then tile the remainder with 1/2 × 1/2 × · · · × 1/2

rectangles, and then 1/4, and so on. By following this process we can write G =
⋃∞
k=1 Jk;

each Jk is disjoint, and is a translation of a dilation of J .

For any rectangle Jk = zk + tkJ we see that λ(Jk) = tnkλ(J), and thus

λ(TJk) = λ(Tzk + tkTJ) = λ(tkTJ) = tnkλ(TJ) = ρλ(Jk).

Then we can see that

λ(TG) = λ

(
∞⋃
k=1

TJk

)

=
∞∑
k=1

λ(TJk) =
∞∑
k=1

ρλ(Jk)

= ρ
∞∑
k=1

λ(Jk) = ρλ

(
∞⋃
k=1

Jk

)
= ρλ(G).

This proves our formula for open sets; by our sort of standard Lebesgue construction, we

can extend this to any Lebesgue measurable set.

To prove the theorem, we have to prove that ρ = | detT |. We can just say this is a

theorem of linear algebra: the determinant of a matrix is the volume of the image of the

unit cube. But if we want to prove it, we can follow this outline:

If T is invertible, then it’s a theorem of linear algebra that T can be written as a product

of “elementary” matrices, which correspond to the three row operations. We can show that

this result holds for any elementary matrix; since the determinant is multiplicative, that

implies that it holds for any invertible matrix.

If T is multiplying one dimension by a scalar, then (without loss of generality) T (J) =

[0, c) × [0, 1) × · · · × [0, 1), so det(T ) = c and λ(TJ) = |c|. If T is a row-switching matrix,

then detT = 1 and TJ = J so λ(TJ) = 1.

If T is a row-addition matrix, then detT = 1. Showing that λ(TJ) = 1 is a bit trickier.

But we can carefully choose a set

A = {−cx2 ≤ x1 ≤ 0, 0 ≤ xi ≤ 1 for i > 1}
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and then if we apply the row-adding matrix

T =


1 c 0 . . . 0

0 1 0 . . . 0
...

...
...

...

0 0 0 . . . 1


then T (A) is just A reflected across the first coordinate. Thus λ(TA) = λ(A). Since we

know that λ(TA) = ρλ(A) that proves that ρ = 1 = detT .

Conversely, if T is invertible, hen the determinant of T is zero, so we want to show that

ρ = 0, or equivalently, that λ(TA) = 0. It’s sufficient to show that TRn has zero measure.

But since detT = 0, we know that the kernel is non-trivial, and by the rank-nullity theorem

dimT (Rn) < dimRn. We proved that any proper affine subspace has measure zero, and thus

T (Rn) has measure zero.

(Technically we only proved this if the affine subspace is a special rectangle, but there’s

nothing really interesting about proving it for the rotated versions.)

We’ll finish this discussion by mentioning a particularly important class of affine trans-

formations:

Definition 3.6. Suppose V is an inner product space. We say a linear transformation

L : V → V is orthogonal if 〈L(u), L(v)〉 = 〈u, v〉.
We say a n× n matrix A is orthogonal if A is invertible and A−1 = AT the transpose of

A.

Exercise 3.7. Prove that a matrix is orthogonal if and only if the associated linear trans-

formation is orthogonal.

Exercise 3.8. Prove that if L is orthogonal, then | detL| = 1. Hint: use theorem 3.5 and

use A = B(0, 1).

This shows that if L is an orthogonal matrix, then λ(A) = λ(LA) for any measurable set

A; that is, orthogonal matrices preserve measure. Since translations also preserve measure,

we can generalize just a hair further.

Definition 3.9. Let Φ : Rn → Rn such that there is a z ∈ Rn and an orthogonal matrix L

such that Φ(x) = z +Lx for any x ∈ Rn. Then we say that Φ is a rigid motion. Notice that

Φ is an affine transformation.
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Remark 3.10. The set of rigid motions on Rn form a group, known as the Euclidean group

or the group of rigid motions.

It is equivalent to ask that Φ be an isometry, that is, that Φ preserve distances: we say

that Φ is an isometry if

|Φ(x)− Φ(y)| = |x− y|

for any x, y ∈ Rn.

3.2 A non-measurable set

In this section we will construct (after a fashion) a set E ⊆ Rn that is not measurable.

We begin by looking at the set Qn ⊂ Rn. For any fixed x ∈ Rn we can consider the set

of translations x+ Qn. It’s easy to see that y ∈ x+ Qn if and only if y − x ∈ Qn.

Exercise 3.11. Prove that the translates of Qn partition Rn. That is, if x, y ∈ Rn, then

either x+ Qn = y + Qn or (x+ Qn) ∩ (y + Qn) = ∅.

We sometimes might call these translates “cosets” of Qn.

It’s clear that Rn =
⋃
x∈Rn x+Qn. But each set on the right occurs infinitely many times.

If we assume the axiom of choice, we can pick exactly one x ∈ Rn in each translate of Qn;

let E ⊂ Rn be the set of these chosen points. Then Rn =
⋃
x∈E(x + Qn), and this union is

disjoint.

But we can also turn this statement around! For every x ∈ Rn, we have exactly one

y ∈ E such that x − y ∈ Qn. But if we write x − y = z, we see that there is exactly one

z ∈ Qn such that x− z = y ∈ E. So instead we can write a disjoint union

Rn =
⋃
z∈Qn

z + E.

And this union is disjoint.

But this by itself generates a problem. It’s easy to see from this that if E is measurable,

it must have positive measure. For

λ∗(Rn) = λ∗

( ⋃
z∈Qn

z + E

)
≤
∑
z∈Qn

λ(z + E) =
∑
z∈Qn

λ(E).

If λ∗(E) = 0, then, we have λ∗(Rn) = 0 which is clearly false.

But we will show that λ∗(E) = 0. Let K be any compact subset of E; we will show that

λ(K) = 0. Fix D = B1(0) ∩ Qn to be the rational points in the unit ball. Then D is a
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bounded, countably infinite set. We know that⋃
r∈D

r +K ⊆
⋃
r∈D

r + E

is a countably infinite disjoint union. We compute that

λ

(⋃
r∈D

r +K

)
=
∑
r∈D

λ(r +K)
∑
r∈D

λ(K).

If λ(K) > 0, then this sum is infinite; but since DandK are bounded, the union is bounded

and thus has finite measure. Thus we must have λ(K) = 0. Since this holds for any compact

set K ⊆ E, this implies that λ∗(E) = 0.

Then 0 = λ∗(E) < λ∗(E), and so E is not measurable.

Corollary 3.12. If A ⊆ Rn is measurable and λ(A) > 0 then there is a non-measurable

subset B ⊆ A.

Proof. Let E be the set we constructed above; then we can write

A =
⋃
x∈Qn

((x+ E) ∩ A) .

Since A has positive measure, and this is a countable union, there is at least one x0 ∈ Qn

such that (x0 + E) ∩ A has positive outer measure. Then set B = (x0 + E) ∩ A. By our

argument from above, λ∗(B) = 0, but λ∗(B) > 0. Thus B 6∈ L.

This same logic, with some care, can be used to generate important paradoxical results.

Fact 3.13 (Banach-Tarski). Let A,B be any two bounded subsets of R3 with nonempty

interior. Then we can write both sets as finite disjoint unions A =
⋃n
k=1 Ak, B =

⋃n
k=1 Bk,

and define rigid motions Φk : R3 → R3, such that Φk(Ak) = Bk.

This is “paradoxical” because A and B need not have the same measure, but we know the

rigid motions Φk preserve measure. In the famous example, we take A to be a ball of radius

1, and B to be the disjoint union of two balls of radius 1. Though an explicit construction

that uses the axiom of choice, Banach and Tarski showed that you can divide A into five

disjoint pieces, and use rigid motions of each piece to produce B.

However, there is no rigid motion such that Φ(A) = B.

Exercise 3.14. Prove that there are disjoint subsets A,B ⊆ Rn such that

λ∗(A ∪B) < λ∗(A) + λ∗(B)

λ∗(A ∪B) > λ∗(A) + λ∗(B).
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Exercise 3.15. Let A,B,C ⊆ Rn such that A ⊆ C and λ(B ∩ C) = 0. Then A,B are

not necessarily disjoint but they are separated in a measure theoretic sense. Prove that

λ∗(A ∪B) = λ∗(A) + λ∗(B).

3.3 Cantor Sets and Lebesgue Functions

In this section we’re mostly going to stay in R, although there are perfectly reasonable

generalizations to Rn and we’ll try to mention them.

We’ve already seen the Cantor set C ⊆ R in section 2.1.4. We removed a union of open

middle thirds, and saw what was left. Here we can generalize this.

Choose a sequence of positive real number lk such that 1 > 2l1 > 4l2 > · · · > 2klk > . . . .

We can start with the closed interval [0, 1] and remove an open interval from the middle of

length 1−2l1, leaving [0, l1]∪ [1− l1, 1] as the remainder. We denote the middle open interval

(l1, 1− l1) = J1/2.

From each of these closed intervals we can remove a middle bit of length l1− 2l2, leaving

four intervals of length l2. We call the removed intervals J1/4 = (l2, l1 − l2) and J3/4 =

(1− l1 + l2, 1− l2).

At the kth step of this process, we have remaining 2k intervals of length lk, and have

removed 2k − 1 intervals which we have labeled Ji/2k for 1 ≤ i ≤ 2k − 1.

Let us denote the limiting set

A = [0, 1] \
⋃

k∈N,1≤i≤2k−1

Ji/2k .

A is the complement of a union of open intervals, and thus A is closed and hence compact.

We see that λ(A) = limk→∞ 2klk.

We obtain the original Cantor set C by taking lk = 3−k for each k. Then λ(C) =

limk→∞(2/3)k = 0.

The generalized Cantor sets have one more interesting property: they are nowhere dense.

Definition 3.16. A set A is nowhere dense if its interior is empty. That is, A is nowhere

dense if A◦ = ∅. Consequently, A◦ = ∅ as well.

Why is A nowhere dense? if A has non-empty interior, then it must contain an open

interval I with positive length r. We can choose a k such that 2−k ≤ r, and then A is

contained in a union of disjoint intervals of length 2−k. Thus I 6⊂ A.

You might think that this implies that A has zero measure. Recall we used the original

Cantor set to show you can have an uncountable set with zero measure. But we can build
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“fat” Cantor sets with positive measure. In fact, if we set

lk =
θk + 1

(k + 1)2k

then λ(A) = θ. This works for any θ ∈ [0, 1). Thus we can have a nowhere dense set of

positive measure, and in fact of just about as much measure as we like.

We can now define the Lebesgue function associated to A. We’ll set J0 = (−∞, 0) and

J1 = (1,∞). Then it’s easy to define a function f : AC → [0, 1] by f(x) = r for every

x ∈ Jr. We know that the interval Jr is entirely to the left of Js if r < s, so f is an increasing

function.

Further, f is continuous on AC . Informally, we can convince ourselves of this because

it seems like the function must be locally constant. But there are infinitely many infinitely

small sub-intervals, so it’s possible something weird is going on.

However, suppose |x − y| < lk. Then if x ∈ Jr and y ∈ Js, one of two things must

happen. One possibility is that r = s, in which case f(x) = f(y). But if r 6= s, then the

intervals Jr and Js must be relatively small, and close together. Both r and s will have to

have denominators ≥ 2−k, and thus |f(x) − f(y)| < 2−k. Thus f must be continuous, and

in fact uniformly continuous.

(You can see Jones p. 88 for a careful proof of this last fact, but it’s mostly some careful

work with this definition as a limit).

Thus f is continuous on AC . It turns out that we can extend f to be continuous on the

closure of AC—which is in fact all of R.

Exercise 3.17. Let E ⊆ Rn and f : E → R be uniformly continuous. Then there is a unique

function F : E → R such that F is continuous and F (x) = f(x) for all x ∈ E.

In our particular case we will call this extension the Lebesgue function corresponding

to A. It is a continuous non-decreasing function f : R → [0, 1] that has the property that

f(x) = r for any x ∈ Jr. By the intermediate value theorem, it is surjective onto [0, 1].

This function is also an almost-bijection between the extended Cantor set A and the open

interval (0, 1). First, if x < y then f(x) < f(y), unless x, y ∈ Jr for some r. In particular, if

x, y ∈ A then f(x) < f(y) unless the open interval (x, y) is one of the Jr. Thus x is almost

strictly increasing on A.

In particular, f is strictly increasing on A except there are two points outputting i/2k

for each i, k. So let B = {inf(Jr)} ∪ {0} be the set of all the left endpoints of the intervals

Jr. Then f : (A \B)→ (0, 1) is strictly increasing surjective function, and thus a bijection.
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By standard set theory/cardinality arguments, this means that A has the same cardinality

as (0, 1).

Exercise 3.18. If f is the Lebesgue function associated to some Cantor set A, then f(1 −
x) + f(x) = 1 for any x.

3.4 Non-Borel Measurable Sets

In this section we will prove that not every measurable subset of R is Borel. When we talk

about product measures, we’ll extend this result to Rn.

Let C be the ternary Cantor set, and let f be the Lebesgue function associated to it. f

is strictly increasing on C, but not on R; but we can make it strictly increasing by defining

g(x) = x + f(x). Since f is continuous and nondecreasing, g is continuous and strictly

increasing. Then g gives us a homeomorphism from [0, 1] onto [0, 2].

We first claim that g(C) has positive measure. Since g is a bijection, we know that

g(C) = [0, 2] \ g(CC) = [0, 2] \ g
(⋃

Jr

)
= [0, 2] \

⋃
g(Jr).

But on Jr the function f is constant, so the function g is just given by g(x) = x + r.

Thus g maps each open interval J to another open interval of the same length, and so

λ(g(Jr)) = λ(Jr).

Then we have

λ
⋃

g(Jr) =
∑

λg(Jr) =
∑

λ(Jr) = 1

since we worked this out when we studied the Cantor set. Thus we have

λ(g(C)) = λ([0, 2])− λ(g(CC)) = 2− 1 = 1.

So g has already done something strange: it’s a homeomorphism between a set of measure

zero and a set of measure 1. Somehow it stretches the volume of C infinitely.

But now let’s consider this set g(C). It’s a closed set of measure 1. And since it has

positive measure, by corollary 3.12, there is some set B ⊆ g(C) that is not measurable. Then

we define A = g−1(B).

We know that A ⊆ C, and thus λ∗(A) ≤ λ(C) = 0. Thus A is measurable because the

Lebesgue measure is complete. So we just have to prove that A is not Borel. But since g is

a homeomorphism, A is Borel if and only if g(A) = B is Borel (by corollary 2.44). But B is

not measureable, and so it’s definitely not Borel. Thus A isn’t Borel either.
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So we’ve constructed a measure zero set which isn’t Borel, but is measurable (because

it’s measure zero). We can easily build a positive measure set that’s measurable but not

Borel by, like, taking A ∪ [5, 7]. This will have measure 2, but still not be Borel.

One more observation to make here: we know homeomorphisms preserve Borel sets. But

they clearly don’t preserve measurable sets, since A is measurable and g(A) = B is not.
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4 The Integral

4.1 Measurable Functions

Before we can define the integral, we need to spend a bit of time talking about the sort of

functions we can integrate.

First, we want to get some notational conventions out of the way. We’ll often need to

talk about the extended real number line R = [−∞,∞]. Most of the algebra with ∞ does

what you probably think it should by this point; but it’s important to note that sometimes

0 · ∞ is undefined and other times it’s 0.

In order to do integrals, We want to take functions where we can approximate the output

in some reasonable sense: if we look at all the values where f takes on a value “near” a, the

set we get will be sensible. We thus define:

Definition 4.1. Let X be a set and M a σ-algebra on X. Let f : X → R. We say that f

is M-measurable if, for all tR, the set f−1([−∞, t]) is M-measurable.

Another way of expressing this is that for all t ∈ R, we have {x : f(x) ≤ t} ∈M.

Exercise 4.2. Let A ⊂ X. Prove that the characteristic function χA is M-measurable if and

only if A ∈M.

Exercise 4.3. Let M = {∅, X} and N = 2X . Describe explicitly the sets of M-measurable

functions and of N-measurable functions.

You might ask why we specficially look at [−∞, t] and not [−∞, t) or (t,∞] or something.

The answer is that it doesn’t matter.

Proposition 4.4. Let M be a σ-algebra and f : X → R. Then the following are equivalent:

1. f is measurable

2. f−1([−∞, t)) ∈M for any t ∈ (−∞,∞]

3. f−1((t,∞]) ∈M for any t ∈ R

4. f−1((t,∞, ]) ∈M for any t ∈ [−∞,∞)

5. f−1({−∞}) ∈M, f−1({∞}) ∈M, and f−1(E) ∈M for every Borel set E ⊂ R.

Proof.
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Proposition 4.5. Assume f, g : X → R are M-measurable, and φ : R → R is Borel

measurable. Then

1. φ ◦ f is M-measurable.

2. If f 6= 0 then 1
f

is M-measurable.

3. If 0 < p <∞ then |f |p is M-measurable.

4. f + g is M-measurable.

5. fg is M-measurable.

Proof. 1. If E is a Borel set, then φ−1(E) is Borel, and thus f−1(φ−1(E)) ∈M.

2. Excercise. Prove that φ(t) = 1
t

is Borel measurable and then conclude this result.

3. The function φ(t) = |t|p is continuous, and thus Borel measurable.

4. This one takes a small amount of work.

We know that f(x) + g(x) < t if and only if f(x) < t − g(x), if and only if there is a

r ∈ Q such that f(x) < r < t− g(x). So we can write

(f + g)−1([−∞, t)) =
⋃
r∈Q

f−1((−∞, r)) ∩ g−1((−∞, t− r)).

Here we use a dumb trick called polarization. We know that f · f is measurable for any

measurable f , by (3). So we write

fg =
1

4
(f + g)2 − 1

4
(f − g)2.

Since f + g and f − g are measurable, this whole function is measurable.

Proposition 4.6. Suppose fk : X → R is M-measurable for all k ∈ N. Then the following

functions are all M-measruable:

� supk fk

� infk fk

� lim supk→∞ fk

� lim infk→∞ fk
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� limk→∞ fk, if the pointwise limit exists.

Proof. We can write

{x : sup fk(x) ≤ t} =
⋂
k

{x : fk(x) ≤ t}.

The right-hand side is an intersection of measurable sets since each fk is measurable, so the

left-hand side is measurable. Similarly

{x : inf fk(x) ≥ t} =
⋂
k

{x : fk(x) ≥ t}.

Then we know that lim sup fk = inf sup fk, and lim inf fk = sup inf fk. Since both sup and

inf are measurable, so are these.

Finally, if lim fk exists, then lim fk = lim sup fk = lim inf fk is measurable.

4.2 Simple Functions

Definition 4.7. A simple function from X to R is any function which assumes finitely many

values. Thus we can write

s =
m∑
k=1

αkχAk

where the sets Ak are disjoint and the numbers αk ∈ R are distinct.

Exercise 4.8. A simple function s is measurable if and only if each set Ak is measurable.

Definition 4.9. Let a ∈ R. We define

a+ =

{
a a ≥ 0

0 a < 0

a− =

{
0 a ≥ 0

−a a < 0

We call these the positive part and negative part of a.

We observe that a = a+ − a− and |a| = a+ + a−. A silly but useful observation is that

a+a− = 0.

We can extend this definition for functions: if f : X → R then f+(x) = (f(x))+ and

f−(x) = (f(x))−.

Exercise 4.10. If f is M-measurable, then so are f+ and f−.
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It’s easy to see that the limit of a sequence of simple measurable functions is measur-

able; this follows directly from proposition 4.6. Much less obvious is that the converse of

this statement is also true: every measurable function is the limit of a sequence of simple

measurable functions.

That means that the measurable functions are precisely the closure of simple measureable

functions under pointwise limits. A function is measurable if and only if it is the limit of

sk =
∑mk

i=1 αi,kχAi,k
(x).

Theorem 4.11. Suppose f : X → R is M-measurable. Then there is a sequence of

M-measurable simple functions s1, s2, . . . that converge pointwise to f on X. That is,

limk→∞ sk(x) = f(x) for every x ∈ X.

If f ≥ 0, we may choose the sequence such that 0 ≤ s1 ≤ s2 ≤ . . . . We may always

choose the sequence such that |s1| ≤ |s2| ≤ . . . .

Proof. First we prove the case where f ≥ 0. We define sk through the following complicated-

looking formula:

sk(x) =

{
i

2k
i

2k
≤ f(x) < i+1

2k
≤ k

k k ≤ f(x)

This formula does two things. First, the maximum possible value we give sk is k, and the

only values we allow are those that are integer multiples of 1
2k

. Thus there are k2k+1 possible

values of sk, so it is simple.

We need to check two things. First, does the sequence sk converge to f? For large k,

we have |f(x)− sk(x)| < 1
2k

, so the sequence converges pointwise. (In exercise 4.12 you will

prove that this convergence is uniform if the function f is bounded).

Now is each sk measurable? We have that sk(x) = i
2k

when i
2k
≤ f(x) < i+1

2k
, so

s−1
k

{
i

2k

}
= f−1

([
i

2k
,
i+ 1

2k

))
and the latter set is measurable because f is measurable. The only other possible value of

sk is k, which happens when k ≤ f(x); then we have

s−1
k {k} − f

−1 ([k,∞])

and again this set is measurable since f is measurable. Thus f is the pointwise limit of a

sequence of simple measurable functions.

For a general function f , we can just leverage the previous result, in a way that we’ll use

a lot. We have a sequence of functions 0 ≤ s1 ≤ s2 ≤ . . . converging to f+, and a sequence

0 ≤ t1 ≤ t2 ≤ . . . converging to f−. Then the sequence sk − tk converges to f .
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Exercise 4.12. If f : X → R is measurable and bounded, prove that it is the uniform limit

of a sequence of measurable functions.

This result has one simple consequence that isn’t strictly speaking about measurable

functions, but which will be extremely useful to us. Remember we said that we can approxi-

mate any Lebesgue measurable set with a Borel set: a Lebesgue measurable set is a Borel set

union a set of measure zero. This means that we can approximate a Lebesgue measurable

function with a Borel measurable function.

Theorem 4.13. Suppose f : Rn → R is Lebesgue measurable. Then there is a Borel mea-

surable function g : Rn → R such that {x : f(x) 6= g(x)} has measure zero.

Proof. As usual, start by assuming f ≥ 0. There is an increasing sequence 0 ≤ s1 ≤ s2 ≤ . . .

of Lebesgue measurable simple functions sk that converge to f . Then for each k, we can

write

sk =

mk∑
i=1

αi,kχAi,k

whre each Ai,k is a Lebesgue measurable set. Then there is a Borel set Ei,k such that

λ(Ai,k \ Ei,k) = 0. Define

tk =

mk∑
i=1

αi,kχEi,k
.

This is a simple, Borel measurable function such that 0 ≤ tk ≤ sk and tk = sk except on a

set Nk of measure zero.

Define g = supk tk; this is Borel measurable since it’s the supremum of Borel measurable

functions. Then g(x) = f(x) unless x ∈ (Ai,k \ Ei,k) for some i. But

λ

(
mk⋃
i=1

Ai,k \ Ei,k

)
=

mk∑
i=1

λ(Ai,k \ Ei,k) = 0.

Now suppose f is any function. We have shown that we can approximate f+ with

some Borel measurable g+, and can approximate f− with some Borel measurable g−. Then

g = g+ − g− is a Borel measurable function, and g(x) = f(x) except on a set of measure

zero.

And now, with those preliminaries completed, we are ready to start defining the integral.

For the moment, we’ll let S be the set of Lebesgue-measurable simple functions s : Rn →
[0,∞).
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Definition 4.14. Let s ∈ S, with s =
∑m

k=1 αkχAk
where the Ak are disjoint measurable

sets. Then the integral of s is ∫
s dλ =

m∑
k=1

αkλ(Ak).

Here we use the convention that 0 ·∞ = 0. If αk = 0, it doesn’t matter if λ(Ak) is infinite.

And when we allow ∞-valued functions, we’ll ignore that as long as it happens on a set of

measure 0.

We can always assume that
⋃
Ak = Rn if that’s convenient; if it isn’t true, we can always

define Am+1 = (
⋃m
k=1Ak)

C
and αm+1 = 0, and nothing substantive will change.

It’s not immediately clear that this definition is well-defined; there is more than one way

to describe a simple function like this. But we will prove that it is well-defined in the next

proposition.

Before we do that, though, it’s worth emphasizing the ways this is similar to the Riemann

integral. We can look at the Riemann integral as approximating functions below by a series

of step functions. So any finite Riemann sum will add up a finite collection of heights-times-

widths.

Here the αk plays the role of the height, and the λ(Ak) plays the role of the width. But

we get some extra flexibility by not requiring our Ak to all be intervals; this flexibility is

given by all the work we did to define the Lebesgue measure in section 2.

Proposition 4.15. 1.
∫
s dλ is well-defined, and doesn’t depend on the measurable sets

we choose to divide Rn into.

2. 0 ≤
∫
s dλ ≤ ∞.

3. If 0 ≤ c <∞ is a constant, then
∫
cs dλ = c

∫
s dλ.

4. If s, t ∈ S, then
∫

(s+ t) dλ =
∫
s dλ+

∫
t dλ.

5. If s, t ∈ S and s ≤ t, then
∫
s dλ ≤

∫
t dλ.

Proof. We’re going to prove (5) first, and that’s going to give us most of the rest for free.

Suppose we have s, t ∈ S with s ≤ t. Then we have representations

s =
m∑
k=1

αkχAk
t =

n∑
j=1

βjχBj
.
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We assume that
⋃
Ak =

⋃
Bj = Rn. So we’ve partitioned Rn two ways: into the Ak and

into the Bj. We can mutually refine these partitions: the sets Ak ∩ Bj are all disjoint, and

their union is Rn. Then we can write∫
s dλ =

m∑
k=1

αkλ(Ak) =

n,m∑
j,k

αkλ(Ak ∩Bj)

∫
t dλ =

n∑
k=1

βjλ(Bk) =

n,m∑
j,k

βjλ(Ak ∩Bj).

We claim that for each j, k, then αkλ(Ak ∩Bj) ≤ βjλ(Ak ∩Bj). If λ(Ak ∩Bj) = 0, then

this is trivially true. If λ(Aj ∩Bj) > 0, then there is some x ∈ Aj ∩Bj. Then s(x) = αk and

t(x) = βj, but s ≤ t, so αk ≤ βj, which proves our claim.

But then αkλ(Ak∩Bj) ≤ βjλ(Ak∩Bj) for every j, k, and thus
∫
s λ ≤

∫
t dλ by definition.

Now this by itself proves that our definition is well-posed. For suppose we have s = t as

just two different ways of representing the same underlying function. Then s ≤ t and also

t ≤ s, so
∫
s dλ ≤

∫
t dλ and also

∫
t dλ ≤

∫
s dλ.

Given that the definition is well posed, items (2) and (3) are fairly clear. So we just have

to prove (4). But by the logic from above, we have

s+ t =

n,m∑
j,k

(αk + βj)χAk∩Bj∫
(s+ t) dλ =

n,m∑
j,k

(αk + βj)λ(Ak ∩Bj)

=

n,m∑
j,k

αkλ(Ak ∩Bj) +

n,m∑
j,k

βjλ(Ak ∩Bj)

=

∫
s dλ+

∫
t dλ.

4.3 The Integral of Non-Negative Functions

We can now integrate simple functions, which are the measure theory analogues of our finite

Riemann sums from the Riemann integral. Now we want to extend this as far as possible.

The essential idea is this: we can compute the integrals of simple functions. Since every

measurable function is the limit of simple functions, we can define the integral of a measurable

function to be the limit of the integrals of the simple functions.

This definition is quite simple, and it’s genuinely shocking how well it works.
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Definition 4.16. Let f : Rn → [0,∞] be measurable. We define the (Lebesgue) integral of

f to be ∫
f dλ = sup

{∫
s dλ : s ≤ f, s ∈ S

}
.

Exercise 4.17. Prove that our two definitions of the integral coincide if f is a measurable

simple function. In particular, prove that if f : Rn → [0,∞] is a measurable simple function

with 0 ≤ αk ≤ ∞, then ∫
f dλ =

m∑
k=1

αkλ(Ak).

We now want to prove an analogue of proposition 4.15 for this more general integral.

Most of the statements just follow immediately from the definition:

1.
∫
f dλ is well defined (since every set has a supremum);

2. 0 ≤
∫
f dλ ≤ ∞

3.
∫
cf dλ = c

∫
f dλ

5. If f ≤ g then
∫
f dλ ≤

∫
g dλ.

However, it’s highly non-trivial to prove that
∫

(f + g) dλ = inf f dλ+
∫
g dλ.

One half of this is easy. We have that∫
(f + g) dλ = sup

{∫
s dλ : s ≤ f + g

}
= sup

{∫
(s+ t) dλ : s+ t ≤ f + g

}
= sup

{∫
s dλ+

∫
t dλ : s+ t ≤ f + g

}
.

But while s ≤ f, t ≤ g implies that s+ t ≤ f + g, the converse isn’t true. So{∫
s dλ+

∫
t dλ : s+ t ≤ f + g

}
)
{∫

s dλ+

∫
t dλ : s ≤ f, t ≤ g

}
and thus ∫

(f + g) dλ ≥
∫
f dλ+

∫
g dλ.

This is basically because our definition doesn’t apply to any sequence of simple functions

approaching f , but just sequences approaching from below. (This is similar to a definition

of Riemann sum that only uses lower sums.)
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There are various ways to prove the converse to this statement, many of which we could

work out right now. One example is to show that the supremum over s ≤ f is the same as

the infimum over t ≥ f . But there are some major results that we want to prove anyway

that will give us this result as a simple corollary.

In particular, one of the primary advantages of the Lebesgue integral formulation is that

it allows us to interchange limits and integrals relatively freely.

Proposition 4.18 (Lebesgue Monotone Convergence Theorem). Let f1, f2, · · · : Rn → R be

measurable such that

0 ≤ f1 ≤ f2 ≤ . . . .

Then

lim
k→∞

∫
fk dλ =

∫ (
lim
k→∞

fk

)
dλ.

4.4 Integrating non-non-negative functions

4.5 Integrating over sets other than Rn

If X is any set, and f : X → R, we define

∑
x∈X

f(x) = sup

{∑
x∈F

f(x) : F ⊆ X is finite

}
.

Think about why we need this definition; why this is case complicated if X 6= N?

If X = N, prove that
∑

n∈N f(x) =
∑∞

k=1 f(k).

Let (X,M, µ) be a measure space, and let µ be the completion of µ. If f : X → R is

µ-measurable, we know it must also be µ-measurable. Prove that
∫
f dµ =

∫
f dµ.

(Conversely, if g is M-measurable, it need not be M-measurable. But there is a M-

measurable function f such that f(x) = g(x) almost everywhere, and then
∫
g dµ =

∫
f dµ.)

Exercise 4.19. Let E ∈ M and assume λ(E) = 0. Prove that every function defined on E

is measurable, and that
∫
E
f dµ = 0 for any f defined on E.

4.6 Two-place functions

Differentiating under the integral sign blah blah

—

Let l,m ∈ N, and set n = l+m. We can decompose Rn by writing Rn = Rl ×Rm. If we

have a point z ∈ Rn, we will write z = (x, y), where xi = zi and yi−l = zi.
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Then we can view functions on Rn as two-place functions on Rl and Rm. We have

f(z) = f(x, y), and if we fix some specific y0 ∈ Rm then we have a function fy0 : Rl → R
defined by fy0(x) = f(x, y0). We can similarly define fx0 : Rm → R by fx0(y) = f(x0, y).

We call these functions fy and fx the sections of f determined by y or x. They’re

essentially the cross-sections we use to graph functions in multivariable calculus.

We’ll find those sections especially interesting if f is the characteristic function of some

A ⊆ Rn. Then we have

fy(x) =

{
1 (x, y) ∈ A

0(x, y) ∈ AC .

Then fy is the characteristic function of some subset of Rl, and we write

Ay = {x ∈ Rl : (x, y) ∈ A} = (χA)−1
y ({1}).

Thus by definition, we have χAy = (χA)y. We call the set Ay the section of A determined by

y.

If we have a function f : Rn, for any fixed y ∈ Rm the function fy : Rl → R may or may

not be integrable. If it is, we will write F (y) =
∫
Rl fy(x) dλ(x).

If fy is integrable for almost every y ∈ Rm, then this gives us a function F : Rm → R.

That “almost” is important, since it’s fairly hard to guarantee that fy is integrable for every

y.

Theorem 4.20 (Tonelli). Suppose f : Rn → [0,∞] is measurable. Then for almost eveyr

y ∈ Rm, the section fy : Rl → [0,∞] is measurable, and thus the function F (y) =
∫
Rl fy(x) dx

is defined for almost every y.

Further, this function F : Rm → [0,∞] is measurable, and∫
Rm

F (y) dy =

∫
Rn

f(z) dz.

We’re not going to prove this, but I will give a quick outline. But first I want to take a

minute to convince you that this is exactly the result we used in multivariable calculus. We

have ∫
Rn

f(z) dz =

∫
Rm

F (y) dy =

∫
Rm

∫
Rl

fy(x) dx dy =

∫
Rm

∫
Rl

f(x, y) dx dy.

Thus the multivariable integral is the same as the iterated integral. And this is why in Math

212 we don’t really spend much time thinking about how to do double integrals and two-

variable Riemann sums directly; we can always just replace them with iterated one-variable

integrals.
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This also explains why we can interchange the order of integration whenever we want.

There’s not really any difference between x and y here except the order we write them in.

So we could just as easily have∫
Rn

f(z) dz =

∫
Rl

F (x) dx =

∫
Rl

∫
Rm

fx(y) dy dx =

∫
Rl

∫
Rm

f(x, y) dy dx.

Thus we get the same thing no matter which order we integrate in.

Sketch of proof. First, through some fairly tedious work, we show that the result holds for a

characteristic function of a bounded set. We prove that∫
Rm

λ(Ay) dy = λ(A).

That is, if we integrate the measures of each section of A, we get the total measure of A.

(Recall this is how we computed volumes in calculus 2!)

After this we show that we can use the increasing function theorem as a lever. If Tonelli’s

theorem holds for each function in an increasing sequence of functions, it applies to their

limit. That is, if fj,y → fy, then we get a family of functions Fj(y) that converge to F (y) by

the increasing convergence theorem. And then we can conclude that∫
Rm

F (y) dy = lim
j→∞

∫
Rm

Fj(y) dy = lim
j→∞

∫
Rm

fj(z) dz =

∫
Rn

f(z) dz.

But since the result holds for characteristic functions of bounded sets, we can lever that

up to give us any characteristic function, and then any simple function, and then any non-

negative function.

Tonelli’s theorem isn’t quite as strong as we’d like, though. It only applies to integrals

of non-negative functions. Fortunately, as usual, we can move from non-negative functions

to L1 functions pretty easily.

Theorem 4.21 (Fubini). Suppose that f ∈ L1(Rn). Then for almost every y ∈ Rm, the

function fy is in L1(Rl), and so the function

F (y) =

∫
Rl

fy(x) dx

is well-defined. Further, this function is (finitely) integrable, and∫
Rm

F (y) dy =

∫
Rn

f(z) dz.
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Proof. This proof works in more or less the obvious way. We define f = f+ − f−. Then for

almost all y ∈ Rm the sections f+,y and f−,y are measurable, and by Tonelli’s theorem we

we can define the measurable functions

G(y) =

∫
Rl

f−,y dx H(y) =

∫
Rl

f+,y dx

and we get that ∫
Rm

Gdy =

∫
Rn

f− dz

∫
Rm

H dy =

∫
Rn

f+ dz.

Since f ∈ L1, we know both these integrals are finite, which means that G,H are finite

almost everywhere. But if G is finite for almost every y, then
∫
Rl f−,y dx < ∞ for almost

every y. Similarly,
∫
Rl f+,y dx < ∞ for almost every y. Thus both are finite almost always,

and so fy ∈ L1(Rl) for almost every y.

Further, for almost every y, we can take F (y) = H(y) − G(y) and thus F is integrable.

Then we have∫
Rm

F dy =

∫
Rm

H dy −
∫
Rm

Gdy =

∫
Rn

f+ dz −
∫
Rn

f− dz =

∫
Rn

f dz.

Proposition 4.22. If X is a measurable subset of Rl and Y is a measurable subset of Rm,

then X × Y is a measurable subset of Rn, and λ(X × Y ) = λ(X)λ(Y ).

Proof. We really only need to prove that X × Y is measurable, since the equality follows

from Fubini.

We can write both X and Y as countable unions of sets of finite measure. We can take

e.g. X =
⋃∞
j=1(X ∩Bj(x)). But if X =

⋃∞
j=1Xj and Y =

⋃∞
k=1 Yk then we can write

X × Y =
∞⋃

j,k=1

Xj × Yk.

So we just have to prove that Xj × Yk is measurable when Xj, Yk have finite measure.

Without loss of generality, suppose X, Y have finite measure. We can find F1 ⊆ X ⊆ G1

and F2 ⊆ X ⊆ G2 closed and open respectively, with λ(G1 \ F1), λ(G2 \ F2) < ε. Then

F1 × F2 ⊆ X × Y ⊆ G1 ×G2 closed and open.

Now let’s consider the set G1×G2 \F1×F2. We want to show we can make this as small

in measure as we want, because then we can squeeze our set X×Y between a closed set and

an open set. But we can see that

G1 ×G2 \ F1 × F2 ⊆ ((G1 \ F1)×G2) ∪ (G1 × (G2 \ F2))
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This containing set is open. We can estimate1 its measure:

λ (((G1 \ F1)×G2) ∪ (G1 × (G2 \ F2))) ≤ λ(G1 \ F1)λ(G2) + λ(G1)λ(G2 \ F2)

≤ ελ(G2) + ελ(G1)

< ε(λ(F2) + ε) + ε(λ(F1) + ε)

≤ ε(λ(Y ) + λ(X) + 2ε).

But this is all we needed: we can make λ(G1 ×G2 \ F1 × F2) as small as we want. And this

means that X × Y is squeezed between an open set and a closed set, and thus is Lebesgue

measurable.

1Analysts use the word “estimate” to mean “we’re about to write down like twelve inequalities in a row
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5 Probability and Function Spaces

5.1 Probability and Measure

Definition 5.1. Let Ω,F, P be a probability space. If X : Ω → R is measurable, we say it

is a random variable.

In a probability context, this restriction to measurable functions maybe makes a bit more

sense. A random variable is a function where X−1(a, b) is always measurable. And that just

means that we can coherently ask for the probability that X lands between a and b.

In some sense this definition is actually backwards. If we have a random variable of

interest, we may want to ask which sets we actually need to find probabilities for.

Definition 5.2. The σ-algebra generated by a random variable X is the set

FX = X−1(B) = {S ∈ F : S = X−1(B) for some B ∈ B}.

That is, we start with a random variable X, and we ask specifically which sets we need in

order to compute P (X−1(a, b)), the probability that X lands between a and b.

We always have FX ⊆ F, but sometimes it is a great deal smaller. For instance, if X is

a constant, then X−1(B) is either ∅ or Ω, depending on whether the single constant output

is in B or not. Thus FX = {∅,Ω} ( F.

If X is a simple function then FX is finite; if X takes countably many values then FX is

uncountable. In general, the more complicated X is, the more sets are in FX .

Exercise 5.3. Prove that FX is a σ-algebra.

Exercise 5.4. Is the family {X(A) : A ∈ F} a σ-algebra of subsets of R?

When we run an experiment, we often want to know about Ω. But the random variable

X is the outcomes of the experiment we can actually measure. So we can’t actually see

anything more fine-grained than FX by measuring the outcomes of X. If your random

variable is reporting whether a number is even or odd, for instance, you’ll never be able to

learn anything about how common any given number is.

Given a random variable X : Ω→ R, we can get probability distribution over R.

Definition 5.5. Let X : Ω→ R be a random variable. We define the probability distribution

of X to be the measure Px defined by PX(B) = P (X−1(B)) for any Borel set B ⊂ R.
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We need to prove that this is actually a measure.

Proposition 5.6. Let X : Ω → R be a random variable. Then the probability distribution

PX is a probability measure on the Borel sets of R.

Proof. We need to prove three things. It’s easy to see that Px(∅) = P (∅) = 0 since P is a

measure. And clearly PX(R) = P (Ω) = 1 since P is a probability measure. So we just need

to prove that PX is countably additive on disjoint sets.

Let A1, A2, . . . be disjoint Borel sets. Then their inverse images X−1(A) are disjoint, and

X−1 (
⋃∞
i=1Ai) =

⋃∞
i=1X

−1(Ai). Then we can compute

PX

(
∞⋃
i=1

Ai

)
= P

(
X−1

(
∞⋃
i=1

Ai

))

= P

(
∞⋃
i=1

X−1 (Ai)

)

=
∞∑
i=1

P (X−1(Ai)) =
∞∑
i=1

PX(Ai).

We can build a lot of useful probability distributions this way. For instance, fix a real

number a ∈ R and suppose X(ω) = a for any ω ∈ Ω. Then PX is the Dirac measure

δa(B) = 1 if a ∈ B and δa(B) = 0 if a 6∈ B.

In fact, we can get pretty much any discrete probability distribution here, by taking X

to be a step function that outputs only our discrete outputs. These probability distributions

are weighted sums of Dirac measures:

PX(A) =
∞∑
i=1

piδai(A)

where each ai ∈ R and
∑∞

i=1 pi = 1. We say that each value ai occurs with probability pi.

Notice that this covers cases with finitely many possible values, like a die, and also cases

with infinitely many possible discrete values, like a Poisson distribution.

We can also get most reasonable continuous probability distributions this way. Let Ω =

[0, 1], with the Lebesgue sigma algebra and measure. We can define X : Ω→ R by X(ω)αω+

β. Then for any subset B ⊂ R we have

PX(B) =
1

a
λ(B ∩ [b, a+ b]).
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But both of these situations could be handled by more elementary probability methods.

The real theoretical value of a measure-theory approach to probability is that we can combine

them.

Example 5.7. Suppose we’re going to drive from Los Angeles to San Diego. We plan to

leave tomorrow at random between noon and 4 PM, and it takes two hours to drive 120

miles there. What is the probability distribution of our distance from San Diego at 4 PM?

If we know when we’re going to leave, it’s easy enough to figure out our distance at 4

PM. Specifically, if left before 2PM, our distance will be zero. But if we left at time ω after

2 PM, our distance will be 120 − (4 − ω)60 = 60ω − 120. Putting this together gives the

random variable

X(ω) =

{
0 ω ∈ [0, 2]

60ω − 120 ω ∈ (2, 4].

The probability distribution of X gives us a probability measure [0, 120].

Specifically, we define a uniform probability measure on [0, 4] by P (A) = λ(A)/4. Then

if B ⊂ [0, 120], we define PX(B) = P (X−1(B)). This measure works out to be

PX(B) =
1

2
δ0(B) +

1

2

(
1

120
λ (B)

)
.

The probability measure is partly continuous and partly discrete. This doesn’t cause any

problems to our new approach, though: we can integrate against this measure perfectly fine.

In fact, integrating against these measures is quite simple.

Proposition 5.8. Let X : Ω→ R be a random variable. Then∫
R
g(x) dPX(x) =

∫
Ω

g(X(ω)) dP (ω).

This tells us that we can convert between integrals against PX on R, and integrals against

P on Ω. This is especially helpful when, for instance, Ω is a subset of the real line and P is

a scaling of the Lebesgue measure.

Proof. We really only need to prove this for characteristic functions. We see that∫
R
χA(x) dPX(x) = PX(A) = P (X−1(A))∫

Ω

χA(X(ω)) dP (ω) =

∫
Ω

(
1 if X(ω) ∈ A
0 if X(ω) 6∈ A

)
dP (ω)

=

∫
Ω

(
1 if ω ∈ X−1(A)

0 if ω 6∈ X−1(A)

)
dP (ω)

=

∫
Ω

χX−1(A)(ω) dP (ω) = P (X−1(A)).
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Thus the equality holds for characteristic functions.

The rest of the proof follows from our standard arguments. By linearity, the result holds

for any finite linear combination of characteristic functions, and thus for non-negative simple

functions. By the Monotone Convergence Theorem, then, our result holds for non-negative

functions. And if our functions are in L1 then our result holds for g+ and g− separately, and

thus holds for g.

With our previous example:∫
g(X(ω)) dP (ω) =

∫
g(x) dPX(x) =

∫
g(x) · 1

2
dδ0 +

∫
g(x) · 1

240
dλ.

—-

Many probability distributions we want to define will be continuous.

Definition 5.9. We say a probability distribution P is (absolutely) continuous if there

exists some function f : Ω→ R such that P (A) =
∫
A
f dµ. The function f is the probability

denssity function.

It must be the case here that
∫
ω
f dµ = 1.

Example 5.10. � The uniform distribution: let Ω ⊆ R be a set with finite Lebesgue

measure, and define

f(x) =

{
1

λ(Ω)
x ∈ Ω

0 x 6∈ Ω.

� The Gaussian or normal distribution: define

n(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

� The Cauchy distribution: Define

c(x) =
1

π(1 + x2)
.

The cumulative distribution function is the function F (y) =
∫ y
−∞ f(x) dx. This function

is absolutely continuous, which is a stronger property than just continuous, and is basically

equivalent to the Fundamental Theorem of Calculus holding.

It is possible to define a cumulative distribution function that is continuous but not

absolutely continuous, and that doesn’t come from a density function. Consider the Lebesgue

function f : R→ [0, 1] we defined in section 3.3.
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This function is continuous by definition, and since it is constant on all the closed intervals

we removed, it has zero derivative almost everywhere. Consequently, we can compute that∫ 1

0

f ′(t) dt =

∫ 1

0

0 dt = 0,

but f(1)− f(0) = 1, so the fundamental theorem of calculus doesn’t hold here!

(The fundamental theorem has the continuity of f ′ at all but finitely many points as a

hypothesis. That is much stronger than requiring the derivative to merely exist, or even be

continuous, almost everywhere.)

But the important thing is that we can translate between cumulative distribution func-

tions and random variables.

Definition 5.11. Let X : Ω→ R be a random variable. We define the cumulative distribu-

tion function of X to be

FX(y) = PX((−∞, y]) = P ({ω : X(ω) ≤ y}).

This is a function from R to [0, 1].

It’s easy to check that this CDF has a few nice properties.

Proposition 5.12. 1. FX is non-decreasing.

2. limy→∞ FX(y) = 1, and limy→−∞ FX(y) = 0.

3. FX is continuous from the right.

The CDF isn’t always continuous. This is pretty obvious if we consider something like

a discrete space; the CDF corresponding to rolling a die has discontinuities at 1, 2, 3, 4, 5, 6.

But all the discontinuities have to correspond to individual points in R that have positive

probability.

Exercise 5.13. Prove that FX is continuous if and only if PX({y}) = 0 for all y ∈ R

We can also go the other way, and this allows us to ignore a lot of potential complexity

when actually working with probabilities. In particular, any time we have function that

looks like a CDF, then we can pretend it comes from a random variable. Even better, we

can assume this random variable is on the space ([0, 1],B, λ); so once we get the CDF we

care about, we can totally ignore the structure of the underlying probability space.
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Theorem 5.14. Suppose F : R → [0, 1] satisfies all three conditions given in proposition

??. That is, F is nondecreasing, asymptotically approaches 0 and 1, and is right continuous.

Then F is the cumulative distribution function of some random variable on ([0, 1],B, λ).

That is, there exists a random variable X : [0, 1]→ R such that F = FX .

Proof. We start by defining two different “quasi” random variables.

X+(ω) = inf{x : F (x) > ω}

X−(ω) = sup{x : F (x) < ω}.

We claim that FX− = F , that is, that

F (y) = λ({ω : X−(ω) ≤ y}).

But since F is increasing, we know that this set is an interval with left endpoint zero. So we

just want to prove that F (y) is the right endpoint of this interval, that is, if X−(ω) ≤ y if

and only if ω ≤ F (y).

Suppose ω ≤ F (y). Then

{x : F (x) < ω} ⊆ {x : F (x) < F (y)} ⊆ {x : x ≤ y}

since F is monotonic. Thus X−(ω) = sup{x : F (x) < ω} ≤ y.

Now suppose X−(ω) ≤ y. Then we know that F (X−1(ω)) ≤ F (y). Because we assumed

F is continuous from the right,

Theorem 5.15. If PX is an absolutely continuous probability distribution on Ω with density

fX , and g : Ω→ R is integrable with respect to the measure PX , then∫
Ω

g(x) dPX(x) =

∫
Ω

fX(x)g(x) dx.

Proof. Prove for characteristic functions χA, and then extend.

Definition 5.16. IfX is a random variable on (Ω,F, P ), we define the expectation or expected

value of X to be

E(X) =

∫
Ω

X dP.

It’s easy to see that we have

E(X) =

∫
R
x dPX(x)

and if X has density fX then

E(X) =

∫
R
xfX(x) dx.
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Remark 5.17. The terminology here is historical and pretty fixed, but also terrible. We

rarely expect to get the expected value of a random variable in any consistent way. And it’s

pretty common for the expected value to be not just measure zero, but actually impossible;

the expected value of a die roll is 3.5.

Definition 5.18. Let X be a random variable. Then we define the moment of order n of

X to be E(Xn), if this integral exists.

If we set µ = E(X), then we define the central moments of X to be E ((X − µ)n).

Our preceeding work makes these easy to compute.

E(Xn) =

∫
xn dPX(x)

E((X − µ)n) =

∫
(x− µ)n dPX(x)

and if X is absolutely continuous with density fX then

E(Xn) =

∫
xnfX(x) dx

E((x− µ)n) =

∫
(x− µ)nfX(x) dx.

These quantities tell us a lot about how our overall probability distribution/measure is

shaped. (For instance, the second moment measures the variance, and the third measures

the skewedness of the distribution.)

Since all of these computations are just integrals, we have a lot of useful tools to prove

things about them. We will develop more specific ideas about these sorts of integrals soon,

when we study the Lp spaces.

Definition 5.19. We say the variance of a random variable is the second central moment

Var(X) = E
(
(X − µ)2

)
= E

(
(X − E(x))2

)
.

Because the integral is linear, we can expand this out:

Var(X) = E(X2 − 2µX + µ2) = E(X2)− 2µE(X) + µ2 = E(X2)− µ2.

Thus if we know all the moments, we can find the central moments. A litlte thought shows

you that this relationship is symmetric: if we know the central moments, we can find the

moments.

But if we want to really understand these moments—or some of the fun things we can

do with probabilites—we have to understand function spaces.
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5.2 Function spaces Lp

Fix a measure space (X,M, µ) (or a probability space (Ω,F, P ) if you like).

Definition 5.20. Let f : X → R be measurable. Then for any p ≥ 1 the function |f |p is

also measurable, and so
∫
X
|f |p dµ is well-defined in [0,∞]. We say that f ∈ Lp, or when we

need the precision that f ∈ Lp(X,M, µ), if the integral
∫
X
|f |p dµ is finite.

If f ∈ Lp, we define the norm of f to be

‖f‖p =

(∫
X

|f |p dµ
)1/p

We really want to consider equivalence classes of functions, where f ∼ g if and only

if they are the same outside some set of measure zero. When we talk about the space of

functions Lp we really mean the space modulo this equivalence class. We’re mostly gonna

be super lazy about this, though.

On this quotient space, the norm ‖ · ‖p satisfies the four norm properties:

1. 0 ≤ ‖f‖p <∞

2. ‖f‖p = 0 if and only if f = 0 (almost everywhere)

3. ‖cf‖p = |c| ‖f‖p for any c ∈ R

4. ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The first three properties are fairly trivial, though it’s important to note that we sort of

gerrymandered the definition to make them work. The second property is specifically the

rule that
∫
X
|f |p dµ = 0 if and only if f = 0 almost everywhere. The third is the reason we

must take the pth root of the entire integral.

The fourth property, known as Minkowski’s inequality, is not at all trivial. First we need

a stepping-stone result.

Definition 5.21. If 1 < p < ∞, the Hölder conjugate of p is the number q = p
p−1

. Thus

number satisfies 1
p

+ 1
q

= 1.

If p = 1 we define q =∞ and vice versa.

Exercise 5.22. If 1 < p < ∞ and a, b ≥ 0, find the maximum of the function f(b) =

ab− ap/p. Conclude that

ab ≤ ap/p+ bq/q.
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Proposition 5.23 (Hölder’s Inequality). Suppose f ∈ Lp and g ∈ Lq, where 1
p

+ 1
q

= 1.

Then fg ∈ L1 and ∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖p ‖g‖p.
Proof. We can assume both norms are positive, since the result is trivial if one of the norms

is zero. We can then multiply by constants to assume that ‖f‖p = ‖g‖p = 1. Then for any

x, by exercise ?? we have

|f(x)g(x)| ≤ 1

p
|f(x)|p +

1

q
|g(x)|q|

and integrating gives that ∫
X

|fg| dµ =
1

p
+

1

q
= 1 = ‖f‖p ‖g‖p.

Proposition 5.24 (Minkowski’s Inequality). Suppose 1 ≤ p < ∞ and f, g ∈ Lp. Then

f + g ∈ Lp, and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. First we prove that f + g ∈ Lp. That is, if |f |p and |g|p have finite integrals, then so

does |f + g|p. This isn’t completely trivial, since |f + g|p 6= |f |p + |g|p. (In contrast, this is

trivial if we take p = 1.) But we can compute

|f + g|p ≤ (|f |+ |g|)p

≤ (2 max{|f |, |g|})p = 2p max{|f |p, |g|p}

≤ 2p(|f |p + |g|p).

Since |f |p and |g|p have finite integrals, so does this. And thus, since |f + g|p is dominated

by an integrable function, it is integrable.

To prove the inequality, assume without loss of generality that ‖f + g‖p = 1. Then

1 =

∫
|f + g|p dµ =

∫
|f + g| |f + g|p−1 dµ

≤
∫
|f | |f + g|p−1 dµ+

∫
|g| |f + g|p−1 dµ

≤ ‖f‖p · ‖|f + g|p−1‖q + ‖g‖p · ‖|f + g|p−1‖q.
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But

‖|f + g|p−1‖q =

(∫
|f + g|q(p−1) dµ

)1/q

=

(∫
|f + g|p dµ

)(p−1)/p

= ‖f + g|p−1
p = 1,

so we get ∫
|f + g|p dµ ≤ ‖f‖p + ‖g‖p

as desired.

What do all these norms look like? The 1-norm is measuring the area under our functional

curve, essentially. The 2-norm gives more weight to places where the function is big, and

less where it’s small; as p gets bigger and bigger, more of the weight is on the biggest points

of the function. As p goes to infinity, only the largest outputs of the function matter.

Definition 5.25. Let f be a measurable function. We say that f is essentiallly bounded if

there is a number M <∞ such that |f(x)| ≤M almost everywhere.

We define the space L∞(X,M, µ) to be the set of essentially bounded measurable func-

tions on X. Then we define the ∞-norm to be

‖f‖∞ = inf{M : |f(x)| ≤M for almost all x.}

That is, if f is essentially bounded, then ‖f‖∞ is the smallest possible essential bound.

Why do we need to worry about “essential” boundedness? Remember that we consider

two functions to be “the same” if they agree almost everywhere. So we have to play games.

If we restrict ourselves to continuous functions or something, where every point has a distinct

value, this issue goes away.

Proposition 5.26. If f ∈ L∞, then |f(x)| ≤ ‖f‖∞ for almost every x.

Proposition 5.27. If f ∈ Lr for some r < ∞, then limp→∞ ‖f‖p = ‖f‖∞. (If f 6∈ Lp we

set ‖f‖p =∞.)

Because the functions ‖ · ‖p are norms, they induce metrics and make Lp into a metric

space. In fact, it is a normed vector space. We can even do a little better. All of these spaces

are complete, which makes them Banach spaces.
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Theorem 5.28 (Riesz-Fischer). For 1 ≤ p <∞, the space Lp(X,M, µ) is a Banach space.

Notice that this doesn’t actually depend on the space X or the measure µ!

Sketch of proof. Let fk be a Cauchy sequence. Then we can find a subsequence such that

‖fk+1 − fk‖p ≤ 2−k, and it’s sufficient to show this subsequence converges.

Define F = |f1| +
∑∞

j=1 ‖fj+1 − fj‖p. Then ‖F‖p ≤ ‖f1‖p + 1 is finite, and since the

integral is finite the function F must be finite almost everywhere.

Then almost everywhere, we have that |f1(x)| +
∑∞

j=1 |fj+1(x) − fk(x)| converges, and

thus f1(x) +
∑∞

j=1(fj+1(x)− fj(x)) converges absolutely.

Define f(x) to be this limit when it exists, and 0 otherwise. Then f is defined almost

everywhere and measurable. And

‖f − fk‖p =

∥∥∥∥∥
∞∑
j=k

(fj+1 − fj)

∥∥∥∥∥
p

≤
∞∑
j=k

‖fj+1 − fj‖p

≤
∞∑
j=k

2−j = 21−k.

Thus the sequence fk converges to f in the ‖ · ‖p norm.

Notice the important two-layer argument we’re making here. First we show that fk has

a pointwise limit f almost everywhere. Then we show that fk converges to f in the metric

induced by the Lp norm. This gives us the important corollary:

Corollary 5.29. If a sequence of functions fk converges to a function f in the Lp norm,

then there is a subsequence that converges pointwise to f almost everywhere.

Important note: a sequence can converge in Lp without converging pointwise almost

everywhere. And a sequence can converge pointwise without converging in norm.

Perhaps most weirdly, a sequence of functions that are both Lp and Lq can converge in

the Lp norm and not converge in the Lq norm.

What about L∞? This is also a (complete) Banach space. That result is somewhat easier

to prove but I’m not going to do it here.

There are a few other important function spaces that come up a lot in this sort of

discussion.
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� Given a topological space M , we define Cb(M) to be the set of continuous bounded

functions f : M → R. We can define a norm ‖f‖ = supx∈M |f(x)|. This makes Cb into

a Banach space. Convergence in this norm is just uniform convergence.

(This is sort of a smaller version of L∞. But here we don’t have to worry about the

“essentially bounded” bit because our continuous functions are defined at each point.

There’s no “almost everywhere” flexibility to them.)

� We define the space C0(Rn) to be the space of continuous functions f : Rn → R such

that lim|x|→∞ f(x) = 0. We can again define a norm ‖f‖ = supx∈Rn |f(x)|.

In fact, all such functions are bounded, so C0 ⊂ Cb, with the same norm. Because C0

is a closet subset of a complete space, it is itself complete.

� The space CC(M) of continuous functions with compact support, meaning that each

function must be zero outside of some compact set. Then CC(Rn) ⊆ C0(Rn). But CC

is not a Banach space, and in fact it is dense in C0 under the ∞ norm.

Similarly, CC(Rn) ⊆ L1(Rn), and is dense in L1 under the 1 norm.

� You will sometimes see the space `p(R). This is the space of sequences of real numbers,

with norm

‖(xn)‖p =

(
n∑
j=1

|xn|p
)1/p

.

This is actually just the same thing as Lp. In particular, if X = N and µ is the counting

measure, then `p(R) = Lp(X,M, µ).

Conversely, for any Lp(Rn) it is possible to find a separable basis, a countable set of

elements {g1, . . . } such that we can write any f ∈ Lp as a convergent sum. Then if

f =
∞∑
j=1

αjgj

we can identify f with the sequence (α1, α2, . . . ). If we choose our basis well, the `p

norm and the Lp norm will be the same.

There’s one more space I want to call special attention to here.

Definition 5.30. We define C∞C (Rn) to be the space of smooth functions with compact

support. That is f ∈ C∞C if every partial derivative of any degree of f is defined, and also f

is zero except on some compact subset of Rn.
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Theorem 5.31. Assume 1 ≤ p <∞. Then C∞C (Rn) is dense in Lp(Rn).

This theorem is really important, because it allows us to approximate Lp functions with

much nicer and more controllable functions. Thus Lp functions can get pretty wild, but they

can’t get too wild outside a set of measure zero, because they still need to be approximable.

Proposition 5.32. Suppose 0 < µ(X) <∞ and 1 ≤ p ≤ q <∞. Then Lq(X) ⊆ Lp(X).

Proof. Suppose f ∈ Lq(X). If |f(x)| > 1 then |f(x)|p ≤ |f(x)|q, and clearly if |f(x)| ≤ 1

then |f(x)|p ≤ 1. Thus |f(x)|p ≤ 1 + |f(x)|q for any x. Then we conclude∫
X

|f |p dµ ≤
∫
X

1 dµ+

∫
X

|f |q dµ = µ(X) +

∫
X

|f |q dµ <∞.

5.2.1 Functionals and Inner Products

Definition 5.33. If V is a (real) vector space, and f : V → R is a linear function, we say

that f is a linear functional.

We define the dual of V to be the space V ∗ of continuous linear functionals on V . This

dual space is a vector space, and if V .

We have a big supply of linear functionals lying around, even if we haven’t called them

that yet.

Example 5.34. Let (X,M, µ) be a measure space, and let p ≥ 1. Then the map

f 7→
∫
X

fp dµ

is a linear functional on Lp(X).

But this is a sort of inflexible approach when we want to look at the dual space; if we

change µ then we change the underlying space as well. We have a better and more general

way of thinking of all the linear functionals on some space.

Fix a function g : X → R. Then we can try to compute
∫
X
f(x)g(x) dµ(x). If the

function fg is integrable, then this will be a real number; so the function g gives us a linear

functional

f 7→
∫
X

fg dµ.

Where is this functional defined? Precisely on the set of functions such that fg ∈ L1. If we

want a linear functional on LP , then we need to guarantee that fg ∈ L1 for any f ∈ Lp(X).
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The answer comes from Hölder’s inequality in proposition ??. Recall that if f ∈ Lp and

g ∈ Lq, where 1
p

+ 1
q

= 1 and 1 < p, q <∞, then∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖p ‖g‖p <∞.
Thus whenever g ∈ Lq(X), we have a well defined functional on Lp. So we have a natural

inclusion Lq(X) ↪→ Lp(X)∗. (And this is sort of an extensions of our “try some different

measures” theory from earlier: for every function g we get a measure g dµ, and f is integrable

with respect to the measure g dµ if and only if g ∈ Lq(X).)

But we can actually get an even better result. It turns out that inclusion is actually

an isomorphism. Every function in Lq gives a linear functional on Lp; but in fact every

linear functional on Lp can be viewed as integrating against a function in Lq. So there is a

canonical isomorphism

Lq(X)
∼−→ Lp(X)∗

g 7→
(
f 7→

∫
X

fg dµ

)
.

Remark 5.35. This is more complicated if p = ∞; the dual of L∞(X) is much bigger than

L1(X) if we assume the axiom of choice. (This is crazy nonsense because why is the axiom

of choice showing up here, and yet.) But we mostly don’t worry about that.

This also only works for p = 1 if your space X is “σ-finite”, meaning it’s a countable

union of finite-measure sets. But this will be true of most reasonable spaces you want to

deal with.

But this is most interesting in the case where p = 2. Then q = 2 as well, so we have

a canonical isomorphism L2(X)
∼−→  L2(X)∗. That is, for any g ∈ L2(X), we have a linear

functional that maps other L2 functions to R. This gives us something a bit better than just

a space of functionals.

Definition 5.36. Let f, g ∈ L2(X). We define the inner product of f and g to be the real

number

〈f, g〉 =

∫
x

fg dµ.

This makes L2(X) into a Hilbert space, which is a complete inner product space.

An inner product has to satisfy three (and a half) properties:

� (Positive Definite) 〈f, f〉 ≥ 0, and 〈f, f〉 = 0 if and only if f = 0 (almost everywhere).
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� (Symmetric) 〈f, g〉 = 〈g, f〉.

� (Bilinear) The maps f 7→ 〈f, g〉 and g 7→ 〈f, g〉 are linear functionals on L2.

Every inner product induces a norm
√
〈f, f〉. We note that this norm is in fact the L2

norm.

In the case of L2, the Hölder inequality specializes to become the Schwarz inequality :

|〈f, g〉| =
∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖2 ‖g‖2.

In this case that allows us to define the angle between two functions: we set

cos θ =
〈f, g〉
‖f‖2 ‖g‖2

.

Remark 5.37. It’s not hard to prove that none of the other Lp norms can possibly come from

inner products. In particular, a norm from an inner product has to satisfy the parallelogram

law :

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2.

The L2 norm satisfies this law. But it’s not too hard to find counterexamples for the Lp

norm when p 6= 2.

This inner product gives us the ability to do function independence and projection.

Definition 5.38. We say two functions f, g ∈ L2 are orthogonal if 〈f, g〉 = 0

For instance, if we take X = [0, 1], then the functions f(x) = 1 and g(x) = 2x − 1 are

orthgonal. But neither function is orthogonal to h(x) = x.

Example 5.39. Let X = [−π, π] with the Lebesgue measure. Then the set of functions

{1} ∪ {sin(nx) : n ∈ N} ∪ {cos(nx) : n ∈ N} are all orthogonal to each other. This is

probably the most important example in physics.

We can push this further, and define projection and orthogonal decomposition.

Proposition 5.40. Let H be a Hilbert space, and K a complete subspace. For any h ∈ H we

can find a unique h′ ∈ K such that the function h′′ = h− h′ is orthogonal to every function

in K.

It’s equivalent to require that ‖h− h′‖ = inf{‖h− k‖ : k ∈ K}.

Sketch of proof. Set δK = inf{‖h− k‖ : k ∈ K}. We can find h′ ∈ K with ‖h− h′‖ = δK by

choosing a sequence kn ∈ K such that ‖h − kn‖ → δK . Can prove this sequence is Cauchy

using the parallelogram law, so it converges to h′.
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We write K⊥ for the set of vectors orthogonal to every vector in K. Then this propsotion

shows that we can write h = h′ + h′′ where h′ ∈ K and h′′ ∈ K⊥, and furthermore that this

is unique. So we have H = K ⊕K⊥.

(In linear algebra, if K is the rowspace of some matrix, then K⊥ is the kernel, and vice

versa.)

We can even do a little better than this if we make things more concrete.

Definition 5.41. We define the projection of f onto g to be the function

p = Projg f =
〈f, g〉
〈g, g〉

g.

In this case f − p is orthogonal to g and p.

This is basically a way of finding the orthogonal decomposition when K is a one-

dimensional subspace.

Definition 5.42. A countable set {f1, f2, . . . } of functions is a separable basis for K if every

g ∈ K can be written uniquely in the form

∞∑
i=1

αifi

for some αi ∈ R.

The set is an orthogonal basis if 〈fi, fj〉 = 0 whenever i 6= j. It is an orthonormal basis

if we also have ‖fi‖2 = 1 for each i.

Example 5.43. The set {1, sin(nx), cos(nx) : n ∈ N} is an orthogonal basis for L2[−π, π].

(This is not trivial to prove.) We can make it into an orthonormal basis by dividing each

function by an appropriate constant.

Proposition 5.44. Let K ⊂ L2(X) be a complete subspace, and {f1, . . . } an orthonormal

basis for K. Let g ∈ L2. Then if we set

p =
∞∑
i=1

〈g, fi〉fi

then p ∈ K and g − p ∈ K⊥. If g ∈ K then g = p.

This gives us an effective way to compute the h′ and h′′ of proposition ??.

If we do this process with the orthonormal basis in example ?? then we get Fourier series.
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5.3 Independence and Correlation

Recall that two random variables X, Y : Ω → R are independent if P (X−1A ∩ Y −1(B)) =

P (X−1(A))P (Y −1(B)) for any Borel sets A,B.

Proposition 5.45. X and Y are independent if and only if E(f(X)g(Y )) = E(f(X))E(g(Y ))

for all measurable bounded f, g.

This is probably a simpler way of thinking about what independence means. As always,

the proof is to check the result for characteristic functions, and then extend up the chain

using linearity and monotone convergence. With a little bit of work (to deal with the

“boundedness” constraint), we get teh following result:

Proposition 5.46. Let X, Y be independent random variables. If E(X) = E(Y ) = 0 then

E(XY ) = 0.

But note that E(XY ) = 〈X, Y 〉 is an inner product; so this tells us that independent

random variables with zero mean are orthogonal. We really want to generalize this, but we

have to tweak some things first. For instance, if E(X) = E(Y ) = 1 then X and Y won’t be

orthogonal.

We can tweak the definition of inner product, however, to make this work better.

Definition 5.47. Let X be a random variable with E(X) = µ. We define the centered

random variable Xc = X − E(X); then E(Xc) = 0.

We can define an almost-inner-product on L2(Ω) as follows: the covariance of two random

variables X, Y is

Cov(X, Y ) = 〈Xc, Yc〉2 = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y ).

This is bilinear and symmetric, and positive semi -definite: Cov(X,X) ≥ 0, and the

covariance is zero if and only if X is constant almost everywhere. This is close enough to

an inner product that we still get the Schwarz inequality, and so we can define the cosine of

the “angle” between two distributions:

ρX,Y = cos θ =
Cov(X, Y )√

Cov(X,X) Cov(Y, Y )
.

This is the correlation between X and Y .

If ρ = 0 we say that X and Y are uncorrelated, and then we see that E(XY ) = E(X)E(Y ).

Thus it’s fairly clear that independent variables are uncorrelated. However, the converse isn’t

true.

This setup also makes it easy to prove assorted other facts about variances and correlation

(and notice the variance of a random variable is just its covariance with itself).

http://jaydaigle.net/teaching/courses/2020-spring-395/ 74

http://jaydaigle.net/teaching/courses/2020-spring-395/


Jay Daigle Occidental College Math 395: Real Analysis II

5.4 Conditional expectation

Let X ∈ L2(Ω,F, P ), and let G be a σ-algebra contained in F. Then L2(G) is a complete

vector subspace of L2(F), and so we can orthogonally decompose with respect to it. Let

Y ∈ L2(G) be the orthogonal projection of X; we can view Y as the best predictor of X if

we’re limited to G-measurable functions.

Then for any Z ∈ L2(G) we have

〈X − Y, Z〉 =

∫
Ω

(X − Y )Z dP = 0.

Since χG ∈ L2(G) for any G ∈ G, this means that∫
G

(Y ) dP =

∫
G

(X) dP

for any G-measureable event G.

Definition 5.48. Let (Ω,F, P ) be a probability space and G a sub-σ-algebra of F. If X :

Ω→ R is a random variable, we define E(X|G), the conditional expectation of X given G, to

be the unique G-measurable function such that∫
G

X dP =

∫
G

E(X|G) dP

for any G ∈ G.

Clearly there is a unique such random variable if X ∈ L2(Ω), which we can generate with

orthogonal projection.

Proposition 5.49. � E(E(X|G))

� If X is G-measurable, then E(X|G) = X

� If X is independent of G then E(X|G) = E(X).

� E(aX + bY |G) = aE(X|G) + bE(Y |G).

� If X ≥ 0 then E(X|G) ≥ 0 almost everywhere.

� If Xn are non-negative and monotonically converge to X, then E(Xn|G) monotonically

converge to E(X|G).

� If Y is G-measurable and XY ∈  L1 then E(XY |G) = Y E(X|G)
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