Math 395 Spring 2020 Real Analysis 2 HW 4 Due Friday, March 27

Linguistic precision is important for this problem. Submit this problem on a separate, detached sheet of paper.
\star Redo Problem: Prove that $P(A \mid B)$ is a probability measure on B.

1. Prove that if $A \subset \mathbb{R}^{n}$ is countable then A is measurable and $\lambda(A)=0$. Conclude that $\lambda(\mathbb{Q})=0$. Conclude that $\lambda([0,1] \backslash \mathbb{Q}$ is measurable and has measure 1. Demonstrate that there is a set with empty interior and positive measure.
2. Suppose $A \cup B$ is measurable, and $\lambda(A \cup B)=\lambda^{*}(A)+\lambda^{*}(B)<\infty$. Prove that A and B are measurable.
3. Let $X=\mathbb{R}$ and define $\mathcal{M} \subset 2^{\mathbb{R}}$ by $A \in \mathcal{M}$ if and only if either $A=\varnothing$, or A is a finite union of intervals of the form $[a, b)$ or the form $(-\infty, b)$. Prove that \mathcal{M} is an algebra, but not a σ-algebra.
4. Give an example of two σ-algebras whose union is not a σ-algebra.
5. Prove that the class of Borel sets is also the σ-algebra generated by the collection of special rectangles.
Hint: let \mathcal{M} be the σ-algebra generated by special rectangles. Prove that all open sets are in \mathcal{M}. Conclude that $\mathcal{B} \subseteq M$.
You cannot assume that every Borel set can be constructed from open sets by countably many set operations.
6. Prove that, if $E \subseteq A \in \overline{\mathcal{M}}$ and $\bar{\mu}(A)=0$, then $E \in \overline{\mathcal{M}}$ and $\bar{\mu}(E)=0$.
7. Prove the following facts about abstract measures:
(a) If $A, B \in \mathcal{M}$ and $A \subseteq B$, then $\mu(A) \leq \mu(B)$.
(b) If $A_{1}, A_{2}, \cdots \in \mathcal{M}$, then

$$
\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(A_{k}\right)
$$

(c) If $A_{1} \subseteq A_{2} \subseteq \ldots$ are in \mathcal{M} then

$$
\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\lim _{k \rightarrow \infty} \mu\left(A_{k}\right)
$$

8. Prove that, if $E \subseteq A \in \overline{\mathcal{M}}$ and $\bar{\mu}(A)=0$, then $E \in \overline{\mathcal{M}}$ and $\bar{\mu}(E)=0$.
9. Prove that $f: U \rightarrow V$ is affine if and only if there is a linear function $L: U \rightarrow V$ and a vector $v \in V$ such that $f(x)=v+L(x)$ for every $x \in U$. Further, this choice of L and v is unique.
10. Prove that a matrix is orthogonal if and only if the associated linear transformation is orthogonal.
11. Prove that if L is orthogonal, then $|\operatorname{det} L|=1$. Hint: use theorem 3.5 and use $A=B(0,1)$.
12. Prove that the translates of \mathbb{Q}^{n} partition \mathbb{R}^{n}. That is, if $x, y \in \mathbb{R}^{n}$, then either $x+\mathbb{Q}^{n}=$ $y+\mathbb{Q}^{n}$ or $\left(x+\mathbb{Q}^{n}\right) \cap\left(y+\mathbb{Q}^{n}\right)=\varnothing$.
