Math 395 Spring 2020 Real Analysis 2 HW 5 Due Friday, April 3

Linguistic precision is important for this problem. Submit this problem on a separate, detached sheet of paper.

* **Redo Problem:** Let $A \subset X$. Prove that the characteristic function χ_A is \mathcal{M} -measurable if and only if $A \in \mathcal{M}$.

- 1. Prove that $A \subset \mathbb{R}^n$ is measurable if and only if there is a $B \in F_{\sigma}$ and a $C \in G_{\delta}$ such that $B \subseteq A \subseteq C$ and $C \setminus B$ is null.
- 2. Prove that there are disjoint subsets $A, B \subseteq \mathbb{R}^n$ such that

$$\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$$

$$\lambda_*(A \cup B) > \lambda_*(A) + \lambda_*(B).$$

- 3. Let $A, B, C \subseteq \mathbb{R}^n$ such that $A \subseteq C$ and $\lambda(B \cap C) = 0$. Then A, B are not necessarily disjoint but they are separated in a measure theoretic sense. Prove that $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$.
- 4. Let $E \subseteq \mathbb{R}^n$ and $f: E \to \mathbb{R}$ be uniformly continuous. Prove that there is a unique function $F: \overline{E} \to \mathbb{R}$ such that F is continuous and F(x) = f(x) for all $x \in E$.
- 5. If f is the Lebesgue function associated to some Cantor set A, prove that f(1-x) + f(x) = 1 for any x.
- 6. Let $\mathcal{M} = \{ \emptyset, X \}$ and $\mathcal{N} = 2^X$. Describe explicitly the sets of \mathcal{M} -measurable functions and of \mathcal{N} -measurable functions.
- 7. If $f: X \to \mathbb{R}$ is a \mathcal{M} -measurable function and $f(x) \neq 0$ for any $x \in X$, prove that $\frac{1}{f}$ is \mathcal{M} -measurable.
- 8. Prove that a simple function s is measurable if and only if each set A_k is measurable.
- 9. Let $f: X \to \mathbb{R}$ be a measurable function. Prove that f_+ and f_- are measurable.