Math 395 Spring 2020 Real Analysis 2 HW 7 Due Friday, April 17

- 1. If f is measurable and f = 0 almost everywhere, prove that $f \in L^1$ and $\int f d\mu = 0$.
- 2. Suppose g(x) = h(x) almost everywhere. Prove that g is measurable if and only if h is measurable.

(This allows us to take a function f that is defined almost everywhere, and say it is measurable if an extension to all of X is measurable.)

- 3. Let f be an integrable function on a measure space X, \mathcal{M}, μ , and suppose that for any measurable set $E \in \mathcal{M}$ we have that $\int_E f d\mu = 0$. Prove that f(x) = 0 almost everywhere.
- 4. Suppose we have a sequence of non-negative functions $0 \le f_k \in L^1$, and set $f = \lim_{k\to\infty} f_k$. Prove that $\int_E f \, d\lambda = \lim_{k\to\infty} \int_E f_k \, d\lambda$.
- 5. Let X be a set, $\mathcal{M} = 2^X$, choose some $x_0 \in X$. Define a the Dirac delta measure $\delta_{x_0}(E) = \chi_E(x_0)$. Prove that any function $f: X \to \mathbb{R}$ is measurable. Prove that $f \in L^1$ if and only if $f(x_0) \in \mathbb{R}$, and in that case, that $\int f d\delta_{x_0} = f(x_0)$.
- 6. If $f: X \to [0, \infty]$, and $\sum_{x \in X} f(x) < \infty$, prove that $\{x | f(x) > 0\}$ is countable. (Hint: how big is the set $\{x: f(x) > 1/k\}$?)
- 7. Let X be any set, $\mathcal{M} = 2^X$, and μ be the counting measure. If $f: X \to \overline{\mathbb{R}}$, prove that $f \in L^1$ if and only if $\sum_{x \in X} |f(x)| < \infty$.
- 8. Let (X, \mathcal{M}, μ) be a measure space, and let $\overline{\mu}$ be the completion of μ . If $f : X \to \overline{\mathbb{R}}$ is μ -measurable, we know it must also be $\overline{\mu}$ -measurable. Prove that $\int f d\overline{\mu} = \int f d\mu$. (Conversely, if g is $\overline{\mathcal{M}}$ -measurable, it need not be \mathcal{M} -measurable. But there is a \mathcal{M} -measurable function f such that f(x) = g(x) almost everywhere, and then $\int g d\overline{\mu} = \int f d\mu$.)
- 9. Let $E \in \mathcal{M}$ and assume $\lambda(E) = 0$. Prove that every function defined on E is measurable, and that $\int_E f \, d\mu = 0$ for any f defined on E.