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6 Applications of Integrals

Now that we know how to compute integrals, we want to finish the course by talking about

why integrals are so useful. We’ll start with the idea of computing area, which was the

original motivation for integration; but we’ll see they also answer many other questions.

6.1 Finding Areas

Recall that we originally constructe the integral to find the area of some shape, in particular

of shapes that lie under the graph of some function. We can use the same tools to find the

area of a region that is not, properly speaking, the graph of one function.

The simplest (well, second-simplest) case is the case where we want the area of a region

that lies in between the graph of two functions. We can approximate area by drawing, as

before, a great many skinny rectangles which are approximately the right height to cover

our region. If our region lies in between two functions f and g, the combined area of our

rectangles is
n∑
i=1

(xi − xi−1)(f(x∗i )− g(x∗i ))

and as the number of rectangles increases this approximation gets increasingly good. We say

the area of the region is

A = lim
n→+∞

n∑
i=1

(xi − xi−1)(f(x∗i )− g(x∗i )).

You may recognize this formula as the integral of the function f − g; indeed, if we have a

region with x coordinates varying from a to b and y coordinates varying from g(x) to f(x),

then its area is
∫ b
a
(f(x)− g(x))x.

Remark 6.1. Remember that actual areas are always positive! The integral by itself computes

the “signed area”; if you want an actual area you must be careful to make sure you’re

integrating the correct function.

Example 6.2. Let’s start with a trivial example: what’s the area of a rectangle with base

3 and height 4? Well, this is
∫ 4

0
3 dx = 3x|40 = 12, as it should be.

Example 6.3. What is the area of the region between y = x3 and y = 1/x2 between x = 2

and x = 4?

We have∫ 4

2

x3 − (1/x2) dx =

(
x4

4
+

1

x

)∣∣∣∣4
2

= (64 + 1/4)− (4 + 1/2) = 60− 1/4 = 239/4.
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Sometimes (usually!) we need to have a visual idea of what our region looks like before

we can set up an appropriate integral.

Example 6.4. What is the area of the region bounded by y = x an y = x2?

After we draw a picture, we see that these two graphs enclose a region between x = 0

and x = 1, and that in that region, x ≥ x2. So we compute the integral∫ 1

0

x− x2 dx =

(
x2

2
− x3

3

)∣∣∣∣1
0

=
1

2
− 1

3
=

1

6
.

Example 6.5. Compute the total area of the “valley” between two peaks of the sine function.

We see that this area is the area of the region between y = 1 and y = sinx between π/2

and 5π/2. (There are other ways to set this up, but this way works). So we compute∫ 5π/2

π/2

1− sinx dx = x+ cos(x)|5π/2π/2 = (5π/2 + 0)− (π/2 + 0) = 2π.

Sometimes you have to break your region up into separate pieces/integrals

Example 6.6. What is the area of the region bounded by y = x2, y = 2− x, and y = 0?

We sketch the region and see that we get a sort of collapsed triangle. We compute

A =

∫ 1

0

x2 dx+

∫ 2

1

(2− x) dx =
x3

3
|10 +

(
2x− x2

2

)∣∣∣∣2
1

=
1

3
− 0 + (4− 2)− (2− 1/2) =

5

6
.

We can also do the same problem another way. Notice that we might as well write

x =
√
y, x = 2 − y. So we can just as well integrate with respect to y—that is, draw our

rectangles stretching horizontally instead of vertically. We have

A =

∫ 1

0

(2− y)−√y dy =

(
2y − y2

2
− 2

3
y3/2

)∣∣∣∣1
0

=

(
2− 1

2
− 2

3

)
− 0 =

5

6
.

As expected, we get the same answer.

Remark 6.7. In general, if you have straight line or point boundaries on opposite sides, you

should integrate between them. In general, if you can write something as the difference of

two functions one way and not the other way, you should do that.

Example 6.8. What is the area of the region between y2 = x+ 3 and y = x− 3?
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These curves intercept when y2 = y+ 6, which happens when y = 3 or y = −2, and thus

at (6, 3) and (1,−2). It’s more natural to integrate with respect to y, so we write

A =

∫ 3

−2

(y + 3)− (y2 − 3) dy =

∫ 3

−2

6 + y − y2 dy

=

(
6y +

y2

2
− y3

3

)∣∣∣∣3
−2

=

(
18 +

9

2
− 9

)
−
(
−12 + 2 +

8

3

)
=

27

2
+ 10− 8

3
=

125

6

Example 6.9. What is the area of the region bounded by y = x2 + 1, y = 17 − x2, and

y = 1?

We first draw the region, and see a sort of sideways triangle with a base at x = 1 and a

point at (
√

8, 9), with x varying from 1 to 17. We have two options: integrate with respect

to x, or with respect to y by writing x =
√
y − 1 and x =

√
17− y. The second involves

breaking our region into two integrals, and gives us

A =

∫ 9

2

√
17− y − 1 dy +

∫ 16

9

√
17− y − 1 dy,

which is doable but pretty ugly.

Instead, if we integrate with respect to x, we get

A =

∫ √8

1

(17− x2)− (x2 − 1) dx =

∫ √8

1

18− 2x2 dx

= 18x− 2

3
x3
∣∣√8

1
= 36

√
2− 32

√
2/3− 18 + 2/3 =

76
√

2− 52

3
.

6.1.1 Economic Application: Consumer and Producer Surplus

This sort of area computation often comes up in the context of computing consumer and

producer surpluses. Economists will often draw supply and demand curves to describe a

market. The market clears when the price

Example 6.10. Suppose the demand for a product is given by p = d(q) = 20 − .05q and

the supply for the same product is given by p = s(q) = 2 + .0002q2. For both functions, q is

the quantity and p is the price, in dollars.

Then demand when d(q) = s(q), so 20− .05q = 2 + .0002q2 and thus we have .0002q2 +

.05q − 18 = 0. Using the quadratic formula, we get the solutions −450 and 200, so the

equilibrium happens when 200 units are produced.
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What then is the surplus? The total surplus is∫ 200

0

d(q)− s(q) dq =

∫ 200

0

18− .05q − .0002q2 dq

= 18q − .025q2 − .0002

3
q3
∣∣∣0200

= 3600− 1000− 533.33 = 2066.67.

Thus the total surplus value created is a bit more than $2000.

But how is this surplus distributed? We can compute that the equilibrium price is $10,

so we have a consumer surplus of∫ 200

0

d(q)− p dq =

∫ 200

0

10− .05q dq

= 10q − .025q2
∣∣∣200

0

= 2000− 1000 = 1000.

Conversely we can compute the producer surplus of∫ 200

0

p− s(q) dq =

∫ 200

0

8− .0002q2 dq

= 8q − .0002

3
q3
∣∣∣200

0

= 1600− 533.33 = 1066.67

6.2 The Average Value of a Function

This is a convenient time to address the concept of “average value.” If we have some finite

collection of numbers, the average is what we get when we add them up, and divide by the

number of numbers:
1

n

n∑
i=1

ai.

A function gives us infinitely many numbers; but integration is in some sense a sensible way

to add infinitely many numbers up, and so hopefully to average them.

In particular, if we sample the function at n evenly spaced points, our average is

1

n

n∑
i=1

f(x∗i ) =
1

b− a

n∑
i=1

b− a
n

f(x∗i )

which you should recognize as a Riemann sum (times 1
b−a). If we take the limit—which rep-

resents taking the average value after “infinitely many” sample points—we get the following

definition:
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Definition 6.11. The average value of a function f over an interval [a, b] is

fave =
1

b− a

∫ b

a

f(t)dt.

Example 6.12. What is the average value of f(x) = x2 on [0, 1]? We have

fave =
1

1

∫ 1

0

x2 dx =
1

3
.

The biggest value is 1, the smallest is 0, and the one in the middle is 1
4
, but the “average”

value is 1
3
.

If I have a finite set of numbers and take the average, my average might not be anywhere

in the set; for instance, if I roll a six-sided die, the average output will be 3.5, which isn’t on

the die at all. When I average continuous quantities, however, this can’t happen.

Theorem 6.13 (Mean Value Theorem for Integrals). If f is continuous on [a, b], then there

is a number c in [a, b] such that

f(c) = fave =
1

b− a

∫ b

a

f(t) dt.

In other words, ∫ b

a

f(t) dt = f(c)(b− a).

Proof. This statement, as well as its name, might look familiar. In fact this is just the

mean value theorem from differential calculus repackaged. Let F (x) =
∫ x
a
f(t) dt. Then F

is continuous on [a, b] and differentiable on (a, b), and so by the Mean Value Theorem there

is some c such that F (b)− F (a) = F ′(c)(b− a).

But by the Fundamental Theorem of Calculus, F ′(c) = f(c). And it’s easy to see that

F (b) =
∫ b
a
f(t) dt, and F (a) =

∫ a
a
f(t) dt = 0. So we have∫ b

a

f(t) dt− 0 = f(c)(b− a).

Remark 6.14. Geometrically, this essentially tells us that there is some rectangle with the

same area as the region under the graph of f . In particular, we can take a rectangle with

width b− a, whose top edge intersects the graph of our function somewhere, and whose area

is the same as the area of the region under the curve.
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6.3 Applications to Physics

Now we should discuss some physical and other practical processes that are well-described

by integration—which is just a fancy way of saying that integrals let us solve these problems.

6.3.1 Multiplication and Units

The fundamental idea here reaches back to the Riemann sum. Recall that the integral

computes ∫ b

a

f(t) dt = lim
n→+∞

n∑
k=1

f

(
a+ k

b− a
n

)
b− a
n

= lim
n→∞

n∑
k=1

f(xk)∆xk.

So any time we have a computation that looks like
∑n

k=1 f
(
a+ k b−a

n

)
b−a
n

, we can approach

it using an integral.

In particular, the integral generalizes multiplication. There are a lot of physical quanties

that we can compute as the product of two other things, like distance as the product of

speed and time. As long as speed is constant, we can get distance by multiplying speed and

time. But if speed is changing, that doesn’t quite work.

Instead, we can split our big time interval up into a bunch of little time intervals, and pre-

tend that our speed is constant on each interval. So for a small time interval, we approximate

di ≈ v(ti)∆ti for the distance traveled in that interval, and we have total distance

D ≈
n∑
k=1

dk ≈
n∑
k=1

v(ti)∆ti.

This is of course a Riemann sum, so as we take an integral we get

D =

∫ b

a

v(t) dt.

Thus we see that total distance traveled is the integral of velocity. (This shouldn’t be a

surprise, since velocity is the derivative of distance.)

How do the units work out here? Well, velocity is in meters per second, and time is

in seconds. So we have di measured in (meters per second) times (seconds), which is just

meters. In general, if we are computing I =
∫ b
a
f(t) dt, then the units of I are the units of

f(t) times the units of t—output units times input units. (Compare to the derivative, where

the units of f ′(a) are output units divided by input units.)
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6.3.2 Work

In physics, force is the product of mass and acceleration; intuitively, force is what causes a

mass to accelerate, and the more acceleration/the more massive the object, the more force

is required. This is often written F = m · a, but in our context it is better to say that the

position of an object is given by the function s(t), and then F = m · d2s
dt2

, since acceleration

is the second derivative of position.

Remark 6.15. In the SI system, mass is measured in kilograms, and force is measured in

newtons, where N = kg ·m/s2. In the Imperial system most Americans use, the pound is a

unit of force; the unit of mass is the slug, and one pound is one slug-foot per second squared.

I bring this up primarily because the name “slug” is funny.

Intuitively, moving things aroudn takes work, and moving them faster takes more work.

Formally, we say that work is force times distance: the amount of force applied to an object,

times the distance the object is moved. The SI unit for work is the Newton-meter or joule,

which is J = kg ·m2/s2. The imperial unit for work is the foot-pound, which is about 1.36

joules.

If you lift a 2 kg object a meter, then you have to exert 2 · 9.8 newtons of force (since

acceleration due to gravity is 9.8m/s2, and thus do 19.6 joules of work. If a 20 pound weight

is lifted five feet, than 100 foot-pounds of work are done.

When force is constant, work is easy to calculuate–just multiply the force by the distance.

Things become more interesting when the force varies. As usual, we can approximate by

chopping the movement up into lots of little pieces, assuming the force is constant on each

small piece, and adding them up. That is, if the force at position x is F (x), then when an

object moves from a to b the work done is approximately

W ≈
n∑
i=1

F (xi)
b− a
n

.

This is a Riemann sum, so taking the limit gives an integral: the total work done is∫ b

a

F (x) dx.

Remark 6.16. Unlike most of the geometric integrals we’ve been doing for the past few weeks,

work can be a negative number; this just indicates that the force is in the opposite direction

of the motion.

Example 6.17. A particle is controlled by a force field such that the force on it is x3 + x

pounds when it is x feet away from the origin. How much work does it take to move the
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particle from x = 2 to x = 4?

W =

∫ 4

2

x3 + x dx =
x4

4
+
x2

2
|42 = 64 + 8− 4− 2 = 66.

Example 6.18. A physical law called Hooke’s Law says that the force exerted by a string

stretched x units beyond its natural length is kx, where k is the “spring constant” and

depends on the particular spring.

Suppose a spring is naturally 20 cm and it takes 50 N to stretch it to 30 cm. How much

work is needed to stretch the spring from 30cm to 35cm?

We have 50 = k · .1 and so k = 500. Thus the force when the spring is stretched x meters

beyond its normal length is kx, and the work done is

W =

∫ .15

.1

500x dx = 250x2|.15
.1 = 3.125J.

Example 6.19. A 50 meter cable has a mass of 50kg and hangs from the top of a cliff. How

much work does it take to raise the cable up the cliff?

The thing that makes this difficult is that the mass of the remaining rope depends on

how much mass we’ve lifted already. Conceptually, you can think about having to lift the

first meter of rope one meter, and the second meter of rope two meters, etc. Each meter of

rope masses 1 kg, so this would give us a Riemann sum

W ≈
50∑
i=1

1 · 9.8 · i

Or more generally

W ≈
n∑
i=1

∆x · 9.8 · xi.

Taking the limit gives the integral

W =

∫ 50

0

9.8x dx = 4.9x2|50
0 = 2500 · 4.9 = 12250J.

Example 6.20. A tank of water is shaped like an upside-down pyramid. (No, I don’t know

why people keep building tanks shaped like upside-down pyramids). The pyramid has a base

side length of 4m and a height of 12m, and it is filled with water to a depth of 8m. How

much work will it take to pump the water out of the top of the tank? (water has a density

of 1000kg / m3).

Again, to figure out our integral we may want to set up the Riemann sum, or at least

fake set it up. Let 0 be the point of the pyramid and 12 be the base (at the top). The
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volume of a small cross-sectional volume is A(h)∆h, thus the mass is 1000A(h)δh and the

force is 1000A(h)∆h · 9.8. The distance we have to pump the water is 12 − h, so the total

work on each cross-section is (12− h)9800A∆h Newtons.

Now we just have to work out area in terms of height. Using a similar triangles argument,

we see that s(h)
h

= 4
12

and thus s(h) = h/3, and A(h) = h2/9. We integrate from 0 to 8

becasue we’re integrating over the height that contains water. Then we have∫ 8

0

(12− h)9800 · h2/9 · dy =
9800

9

(
4h3 − h4

4

)
|80 =

9800

9
(2048− 1024− 0) =

10, 035, 200

9
J.

6.3.3 Hydrostatic Pressure

Another problem we can handle easily with these tools is the idea of water (or fluid) pressure.

If you imagine a flat surface submerged in some fluid with density ρ to a depth of d meters,

then the weight of the fluid over it is Aρdg where A is the area of the surface (and thus Adρ

is the mass of the fluid) and g = 9.8 is acceleration due to gravity. We define the pressure

to the be the force divided by the area, and thus P = F
A

= ρdg.

(In SI units we measure this in Newtons per square meter, otherwise known as Pascals.

In Imperial units there are a number of different units used, including “inches of mercury.”)

Fact 6.21. If an object is submerged in a fluid to a given depth, the pressure exerted by the

fluid is the same in all directions.

This means that fluid pressure is effectively a function of height/depth and nothing else.

If the pressure is varying and we want to find the total force acting on a surface, we can

effectively add up the pressure on each little patch of a surface to find the total force acting

on it.

Example 6.22. A 3 by 3 meter square is submerged in water until it is just covered, edge-

first. What is the total force the water exerts on the square?

We want to chop the square into strips that are all at roughly the same depth. If we slice

the square into three horizontal strips, then the ith strip is roughly at depth i meters and

has width 3, and thus has roughly the force 3 · 1 · i · ρ · g. Adding up the force on all thirty

strips gives

F ≈
3∑
i=1

3 · 1 · i · ρ · g =
3∑
i=1

3 · 1000 · 9.8 · h∆h

In the limit, we get the following integral:∫ 3

0

3 · ρ · g · h dh =

∫ 3

0

3000 · 9.8 · h dh = 29400(h2/2)|30 = 29400 · 9

2
= 132, 300.

http://jaydaigle.net/teaching/courses/2021-fall-1231-10/ 136

http://jaydaigle.net/teaching/courses/2021-fall-1231-10/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Example 6.23. A cylindrical drum is lying on its side underwater. The drum has radius of

5 feet and is submerged in 20 feet of water. What is the force exerted on one circular face

of the drum?

Let’s set 0 to be the center of the circle, so that the equation for the circle is x2 +y2 = 25.

Then the width of the object at height y is 2
√

25− y2. The depth at height y is 15 − y

(which ranges from 10 to 20), and the pressure due to water is 62.5 * depth. So we get the

integral

F =

∫ 5

−5

62.5(15− y)2
√

25− y2 dy = 125

∫ 5

−5

15
√

25− y2 dy − 125

∫ 5

−5

y
√

25− y2 dy.

The second integral is 0 because y
√

25− y2 is an odd function. The first integral can be

done by setting y = 5 sin θ, but we can also observe that it is the integral of a semicircle of

radius 5 and thus is equal to 12.5π. So we have

F = 125 · 15 · 12.5π = 23437.5lb.

6.3.4 Center of Mass

The center of mass of a two dimensional object is, conceptually, the point it can balance on.

It is in some sense the “average” location the region occurs.

If the mass of an object occurs in finitely many points, then the center of mass is the

weighted average of their locations, where the weighting is by the mass. So if we have

particles of mass m1,m2,m3 at points (x1, y1), (x2, y2), (x3, y3), with total mass m, then the

x-coordinate of the center of mass of the system is

x =
1

m

3∑
i=1

mixi = m1x1 +m2x2 +m3x3

and the y-coordinate is

y =
1

m

3∑
i=1

miyi = m1y1 +m2y2 +m3y3

As a vocabulary note, we say that each of these mixi or miyi is a moment of the mass, and

the sum
∑n

i=1 mixi is the moment of the system about the origin in the x-axis.

Example 6.24. We have particles of masses 1, 4, 5 at the poitns (0, 0), (3, 2), (4, 5). Then
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for the center of mass we have

x =
1

10
(1 · 0 + 4 · 3 + 5 · 4) =

32

10

y =
1

10
(1 · 0 + 4 · 2 + 5 · 5) =

33

10
.

We extend this study to calculus. Suppose we have a plate of “uniform density” (i.e.

it’s all the same material, so bits with the same area wil have the same mass/weight). For

concreteness, say the region is given by a ≤ x ≤ b and g(x) ≤ y ≤ f(x). We’d like to find

the center of mass, the point the plate balances perfectly. We can think about how to make

it balance in each direction, so we can find the x-coordinate and the y-coordinate separately.

To find the x coordinate of the center of mass, we add up the mass of each vertical

strip, weighted by its x-coordinate, just as we did before. The vertical strip has width dx

and height f(x) − g(x). Thus each strip has area (f(x) − g(x))dx, and we can assume the

density is 1 so that it has mass (f(x) − g(x))dx as well. Thus the moments of mass are

x(f(x)− g(x))dx, and the x-coordinate of the center of mass is

x =
1

A

∫ b

a

x(f(x)− g(x))dx.

To find the y-coordinate, we could do the same thing with respect to y. But if our region

is described in terms of a function of x, then this might be awkward. But we can still add

up the moment of each vertical strip. The strip at x still has area (f(x)− g(x))dx, and the

“average” position of the strip is the middle of the strip, which is at 1
2
(f(x) + g(x)). So the

moment is 1
2
(f(x)− g(x))2 dx and the y-coordinate is

y =
1

A

∫ b

a

1

2
(f(x)2 − g(x)2) dx.

Example 6.25. Find the center of mass of the region bounded by y = x2 and y =
√
x.

The area is

A =

∫ 1

0

√
x− x2 dx =

2

3
x3/2 − x3

3
|10 =

2

3
− 1

3
=

1

3
.

Then we have

x = 3

∫ 1

0

x(
√
x− x2) dx = 3

(
2

5
x5/2 − x4

4

)∣∣∣∣1
0

= 3

(
2

5
− 1

4

)
=

9

20
.

y = 3

∫ 1

0

1

2
(
√
x

2 − (x2)2) dx =
3

2

∫ 1

0

(
x− x4

)
dx =

3

2

(
x2

2
− x5

5

)∣∣∣∣1
0

=
3

2

(
1

2
− 1

5

)
=

9

20
.
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Example 6.26. Find the center of mass of the semicircle bounded by y =
√
r2 − x2 and

y = 0 between x = −r and x = r.

The area is half the area of a circle, and thus 1
2
πr2. Then we have

x =
2

πr2

∫ r

−r
x
√
r2 − x2 = 0 since x

√
r2 − x2 is odd.

y =
2

πr2

∫ r

−r

1

2
(
√
r2 − x2)2 dx =

1

πr2

∫ r

−r
r2 − x2 dx

=
1

πr2

(
r2x− x3

3

)∣∣∣∣r
−r

=
1

πr2

(
r3 − r3

3
−
(
−r3 − r3

3

))
=

1

πr2
· 4

3
r3 =

4r

3π
≈ .42.

Thus the center of mass is at about (0, .42). The fact that the x coordinate should be 0 is

geometrically obvious; the y coordinate is less so.

6.4 Finding Volumes by Cross-Sections

Area is fundamentally length times width, and we computed areas by integrating the length

against the width–by which I mean, we wrote the length at a point as a function of the width

at that point, and took the integral across the whole width.

Volume is area times height. (Or area times length, depending on your perspective). We

will compute volume by finding the area of a cross-section and integrating along the entire

length of our shape. Geometrically, the Riemann sum corresponds to slicing our shape into

many thin cylinders and adding their areas up.

Remark 6.27. In our terminology, a “cylinder” is any solid that has a flat base and an

identical flat top, connected by straight sides at right angles. A traditional circular cylinder

qualifies, but so does a rectangular box, and so do stranger shapes.

Definition 6.28. If S is a solid, we say the cross-sectional area at a point x is the area of

the intersection of our solid with the plane which passes through x and is perpendicular to

the x-axis (and thus parallel to the yz plane).

If S is a solid lying between x = a and x = b, and A(x) is a function giving the cross-

sectional area at x, then we say the volume V of S is

V = lim
max ∆xi→0

n∑
i=1

A(x∗i )∆xi =

∫ b

a

A(x) dx.

Example 6.29. What is the volume of a cone with height 2 and base radius 4?

We draw a picture. By a similar triangles argument, we see that when we are x distance

from the point, the radius is 2x and thus the area of the cross-section is 4πx2. Thus the
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volume is ∫ 2

0

4πx2 dx =
4πx3

3
|20 =

32

3
π.

This matches the formula for the volume of a cone, which is 1
3
πr2h.

In fact, we can also rederive that formula. If a cone has height h and base radius b, then

the radius at x distance from the height is x b
h

and the area is πx2b2/h2. So the volume of

the cylinder is ∫ h

0

πx2b2/h2 dx = πb2/h2x
3

3
|h0 =

b2hπ

3
.

Example 6.30. What is the volume of a solid with a circular base of radius one, where each

cross-section is an equilateral triangle?

Make the circle x2 + y2 = 1. Then the width of the base of the cross-section at x is

2
√

1− x2. Since sin 60◦ =
√

32, we know the height of each triangle is
√

3b/2, and thus the

area of the triangle is
√

3(1− x2). Thus the volume is∫ 1

−1

√
3(1− x2) dx =

√
3x−

√
3x3

3
|1−1 =

(
√

3−
√

3

3

)
−

(
−
√

3− −
√

3

3

)
=

4
√

3

3
.

These problems are sometimes known as volumes of “solids of rotation,” because this

technique is particularly good at solving problems like the following:

Example 6.31. What is the volume of the solid obtained by rotating the region bounded

by y = x2, x = 5, y = 0 about the x-axis?

We draw a picture, and see that the region has height x2 at a point x, and thus the solid

has a cross-section which is a circle of radius x2, and thus an area of π(x2)2. It’s clear that

x varies from 0 to 5. So

V =

∫ 5

0

πx4 dx =
πx5

5
|50 = 54π − 0 = 625π.

Example 6.32. What is the volume of the solid obtained by rotatin the region bounded by

y = x2, y = 25 with x ≥ 0 around the y-axis?

As before, we draw a picture. Our region has width
√
y at a point y, and thus has

cross-sectional area πy. Then y varies from 0 to 25, and the volume is

V =

∫ 25

0

πy dy =
πy2

2
|205 =

625π

2
.

Note that in these problems it’s easy to see which way to take our “slices”: we want to

get the circular cross-sections from the rotation, so we slice accordingly, and integrate along

the axis we rotate around.
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If our region touches the axis we rotate it around, these problems are straightforward:

the cross-sectional area is the height (or width!) of the region squared times π. The problem

is trickier if we have a hollow inside. We can still compute the cross-sectional area; it is the

area of a washer, a circle with a smaller circle cut out of the center.

Remark 6.33. If a washer has outer radius R and inner radius r, then the area is πR2− πr2,

the area of the outer circle minus the radius of the inner.

Example 6.34. What is the volume of the solid given by rotating the region bounded by

y = x2 and y = x around the x-axis.

At a point x, the cross-section of this solid is a washer. The outer circle has radius x and

the inner circle has radius x2, and thus the area of the cross-section is πx2 − πx4. So the

volume is

V =

∫ 1

0

(πx2 − πx4) dx =
πx3

3
− πx5

5
=
π

3
− π

5
=

2π

15
.

We often find ourselves rotating these regions around lines other than the x- or y-axes.

In this case we have to use our geometric intuition a bit more to sort out our cross-sectional

areas.

Example 6.35. Rotate the same region about y = 2. We draw a picture; we see that we

will get a solid whose cross-sections are washers centered at y = 2. The outer radius will be

2− x2 and the inner radius will be 2− x, so the volume is

V =

∫ 1

0

π(2− x2)2 − π(2− x)2 dx = π

∫ 1

0

4− 4x2 + x4 − 4 + 4x− x2 dx = π

∫ 1

0

x4 − 5x2 + 4x dx

= π

(
x5

5
− 5x3

3
+ 2x2

)∣∣∣∣1
0

= π(1/5− 5/3 + 2) =
4π

15
.

Example 6.36. Find the volume of the solid generated by rotating the region bounded by

y = x and y =
√
x about the line y = 1.

We will integrate with respect to x since we rotate about a line parallel to the x-axis. We

see that the curves intersect at x = y = 0 and x = y = 1. Our cross-sections are washers,

and we see the outer radius is 1− x and the inner radius is 1−
√
x. So the volume is

V = π

∫ 1

0

(1− x)2 − (1−
√
x)2 dx = π

∫ 1

0

x2 − 3x+ 2
√
x dx

= π

(
x3

3
− 3x2

2
+

4

3
x3/2

)∣∣∣∣1
0

= π

(
1

3
− 3

2
+

4

3

)
=
π

6
.
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6.5 Bonus material: Finding Volumes with Cylindrical Shells

Recall we want to find the volume of the solid obtained by rotating the region bounded by

x = 1, y = 2, y = lnx about the x-axis. Slicing it into washers as before generates a difficult

integral, so we will try to slice it a different way, by slicing it into cylindrical shells.

A cylindrical shell is what we get when we take a cylinder and remove a slightly smaller

cylinder from the inside. If the outer radius is r2 and the inner radius is r1, it’s not hard

to see that the volume of the shell is πr2
2h − πr2

1h = πh(r2
2 − r2

1). Less obviously, we factor

r2
2 − r2

1 = (r2 + r1)(r2 − r1) and write that the volume is 2π r1+r2
2
h(r2 − r1) ≈ 2πrh∆r.

In many solids of rotation, we can slice the solid into a collection of cylindrical shells to

approximate the volume, where the height of each cylinder is f(x) for some x. We get the

formula

V ≈
n∑
i=1

2πx∗i f(x∗i )∆x.

As before, our approximation gets better as we use more and thinner cylinders, and when

we take the limit, we get

V = lim
max ∆xi→0

n∑
i=1

2πx∗i f(x∗i )∆x =

∫ b

a

1πxf(x) dx,

where a is the inner radius of our entire solid, and b is the outer radius of the entire solid.

(Note that this formula is essentially the surface area of the cylinder; this isn’t an accident).

So for our earlier example, we can slice into cylinders whose height is in the x-direction.

We see that

V =

∫ 2

0

2πy(ey − 1) dy = 2π

(
yey − ey − y2

2

)∣∣∣∣2
0

= 2π(e2 − 1).

Remark 6.37. Unlike in the method of washers, this time we will typically integrate with

respect to x when we rotate around the y-axis, and vice versa.

Example 6.38. Find the volume of the solid obtained by rotating the region bounded by

y = 0 and y = x− x2 around the line x = 2.

Inverting the function y = x − x2 would be a huge pain; so we’d like to integrate with

respect to x, and thus use the cylinder method. Note that in this case the radius r is not x,

but is 2− x. So the volume is

V =

∫ 1

0

2π(2−x)(x−x2) dx = 2π

∫ 1

0

2x−3x2+x3 dx = 2π

(
x4

4
− x3 + x2

)∣∣∣∣1
0

= 2π(1/4−1+1) =
π

2
.
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Example 6.39. What is the volume of the solid obtained by rotating the region bounded

by y = x3, y = 0, x = 1 around the line x = 1?

V =

∫ 1

0

2π(1− x)x3 dx = 2π

(
x4

4
− x5

5

)∣∣∣∣1
0

= 2π

(
1

4
− 1

5

)
=

π

10
.

Example 6.40. What is the volume of the solid obtained by rotating the same region around

the line x = 4?

V =

∫ 1

0

2π(4− x)x3 dx = 2π

(
x4 − x5

5

)∣∣∣∣1
0

= 2π

(
1− 1

5

)
=

8π

5
.

Example 6.41. What is the volume of the solid obtained by rotating the region bounded

by xy = 1, x = 0, y = 1, y = 3 about the x-axis?

We draw a picture, and conclude that to use the method of washers we’d have to break

the region up into two pieces. Instead we integrate with respect to y and use cylindrical

shells. We have y varying from 1 to 3, and the “height” of each cylinder is 1/y − 0. So the

volume is

V =

∫ 3

1

2πy(1/y) dy =

∫ 3

1

2π dy = 2πy|31 = 4π.

Example 6.42. A word has to be said at this point about finding the volume of a sphere.

We can view the sphere as a solid of rotation and find its volume using cross-sections:

V =

∫ r

−r
π(
√
r2 − x2)2 dx = π

∫ r

−r
r2 − x2 dx = π

(
r2x− x3

3

)∣∣∣∣r
−r

= π
((
r3 − r3/3

)
−
(
−r3 + r3/3

))
= 4πr3/3.

But we can actually use another approach, similar in spirit to the method of cylindrical

shells. We can look at the sphere as being made up of a collection of spherical shells. Taking

inspiration from the cylindrical shells method, we see that the volume of each spherical shell

will be “about” the surface area of the sphere times thickness; so we integrate the surface

area of a sphere of radius x, as x varies from 0 to r. We get

V =

∫ r

0

4πx2 dx =
4πx3

3
|r0 =

4πr3

3
.

We haven’t entirely justified our argument, but with more care we certainly could.

http://jaydaigle.net/teaching/courses/2021-fall-1231-10/ 143

http://jaydaigle.net/teaching/courses/2021-fall-1231-10/

	Applications of Integrals
	 The Average Value of a Function
	Finding Areas
	Applications to Physics
	Work
	Hydrostatic Pressure
	Center of Mass

	Finding Volumes by Cross-Sections
	Bonus material: Finding Volumes with Cylindrical Shells


