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3 Differentiation

Now that we have a basic understanding of multivariable functions, we want to apply calculus

to them. Our goal in this section is to define and understand the derivative, which measures

the rate at which a function is changing.

3.1 The Partial Derivative

Already during this class, we have often talked about how quickly a function is changing

when you change one of the input variables. This is exactly the single-variable calculus

derivative and can be defined accordingly.

Definition 3.1. Let f be a function of two variables. Then we define the partial derivatives

at the point (a, b) by

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
= fx(a, b)

∂f

∂y
= lim

h→0

f(a, b+ h)− f(a, b)

h
= fy(a, b).

If we allow (a, b) to vary, we get functions fx(x, y) and fy(x, y).

We will sometimes write ∂z
∂x

and ∂z
∂y

. If we want to represent these derivatives evaluated

at a point, we will write ∂z
∂x

∣∣
(a,b)

and ∂z
∂y

∣∣∣
(a,b)

.

Remark 3.2. This isn’t just analogous to the single-variable calculus derivative; it is exactly

identical. If we have a function f : R2 → R and we hold the second variable fixed at y = b,

then we get a single-variable function defined by fb(x) = f(x, b). Then fx(a, b) = f ′b(a) is

just the single-variable derivative of this single-variable function.

The interesting part here is not that we can define the partial derivatives, which are

basically old news. The interesting thing is that we can get the answers to genuinely multi-

varaible questions out of these essentially single-variable tools.

Example 3.3. Suppose a differentiable function f(x, y) has the following values:

y \ x 0 1 2 3 4 5

0 120 135 155 160 160 150

1 125 128 135 160 175 160

2 100 110 120 145 190 170

3 85 90 110 135 155 180

http://jaydaigle.net/teaching/courses/2021-fall-2233-11/ 30

http://jaydaigle.net/teaching/courses/2021-fall-2233-11/


Jay Daigle The George Washington University Math 2233: Multivariable Calculus

Then we can estimate the partial derivatives off the chart. For instance, we can estimate

that fx(3, 1) is about 20: since f(4, 1) − f(3, 1) = 15 and f(3, 1) − f(2, 1) = 25. Similarly,

we can estimate fy(3, 1) ≈ −7.5 since f(3, 1)− f(3, 0) = 0 and f(3, 2)− f(3, 1) = −15.

One way to understand partial derivatives is to think about the units of the function.

For instance, in your homework (problem 12.3.26) you looked at a function H(x, t) that took

position and time as inputs, and had temperature as an output. Then Hx(x, t) has units

of degrees per meter—how quickly temperature changes when you move a foot away. And

Ht(x, t) has units of degrees per minute—how quickly temperature changes over time.

Partial derivatives are easy and quite boring to calculate. Since we’re looking at f(x, y)

as a function of a single variable, while holding the other constant, we can pretend it’s simply

a single-variable function, and treat the other variable like a constant.

Example 3.4. Let f(x, y) = x2 + y2. Then fx(x, y) = 2x and fy(x, y) = 2y.

Let g(x, y) = sin(xy). Then gx(x, y) = cos(xy) · y and gy(x, y) = cos(xy) · x.

Let h(x, y) = x2

y3−3y . Then hx(x, y) = 2x
y3−3y and hy(x, y) = −x2(3y2−3)

(y3−3y)2 .

We can graphically understand partial derivatives by thinking about the cross-section.

Example 3.5. Let f(x, y) = 16 − x2 − y2. Then fx(x, y) = −2x. Thus fx(2, 0) = −4, and

the cross-section at 0 is f(x, 0) = 16− x2 and has tangent line z − 12 = −4(x− 2).

Similarly, if we look at the point (2, 2), we see that the cross-section is f(x, 2) = 12− x2

and the derivative is fx(2, 2) = −4, so the tangent line is z − 8 = −4(x− 2).

Notice that the slopes of both lines are the same, since here fx(x, y) doesn’t depend on

y.

In section 1.2.4 we talked about reading contour diagrams and thinking about in which

directions the function was changing. We can interpret this in terms of partial derivatives.
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Example 3.6. Recall the contour diagrams we saw in figure 1.9:

We can ask questions like fx(1, 0) and gx(1, 0). Looking at the graph, we see that

fx(1, 0) ≈ −4 since it changes from 24 to 20 between (1, 0) and (2, 0). We can see that

fy(1, 0) is slightly smaller, since going from (1, 0) to (1, 1) doesn’t quite get us from 24 to 20.

Similarly, gx(−2, 0) is about −1, since g(−3, 0) = 3, g(−2, 0) = 2, and g(−1, 0) = 1.

gy(−2, 0) is positive but less than 1.

Example 3.7. In the picture below, is fx(0, 2) positive, negative, or zero? Is fy(0, 2) positive,

negative, or zero?

fx(0, 2) is zero, since the curve is flat there and moving to the left or right shouldn’t

increase or decrease the output.

fy(0, 2) is negative since the output gets lower as we go up away from the origin.

We can also define the partial derivatives in three (or more) dimensions; the only thing

that changes is that the picture becomes more difficult to draw.
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Example 3.8. Let f(x, y, z) = x2 + xyz + y/z. Then we have

fx(x, y, z) = 2x+ yz

fy(x, y, z) = zy + 1/z

fz(x, y, z) = xy − y/z2.

3.2 Local Linear Approximation

In many ways, the most important application of the derivative is the ability to approximate

a function with a linear function. The basic idea is the same as the idea from single-variable

calculus. If you zoom in enough on a 1-variable function, it will loook mostly like a line; if

you zoom in on a 2-variable function, it will look like a plane.

Definition 3.9. Roughly speaking, the tangent plane to a surface at the point (x, y, z) is a

plane that passes through the point (x, y, z), and touches the surface only at that point.

Proposition 3.10. If f(x, y) is differentiable at the point (a, b), then the equation of the

tangent plane to z = f(x, y) at the point (a, b) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

From the equation form, we see that this plane must pass through the point (a, b, f(a, b)).

Further, the slope in the x direction is fx(a, b), which is the rate at which f is changing when

you change x. Similarly, fy(a, b) is the slope in the y direction.

Example 3.11. Let’s find the tangent plane to the function f(x, y) = −x2 − 4y2 at the

point (2, 1,−8).

We compute

fx(x, y) = −2x fx(2, 1) = −4

fy(x, y) = −8y fy(2, 1) = −8.

Since f(2, 1) = −8, the equation for the tangent plane is

z = −8− 4(x− 2)− 8(y − 1)
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Example 3.12. Let’s find the tangent plane to the function g(x, y) = yex/y at the point

(1, 1).

We compute

gx(x, y) = yex/y
1

y
= ex/y

gx(1, 1) = e

gy(x, y) = ex/y + yex/y
−x
y2

= ex/y − x

y
ex/y

gy(1, 1) = e− e = 0.

Since g(1, 1) = e, the equation for the tangent plane is

z = e+ e(x− 1).

As with linear functions in single-variable calculus, we can use the tangent plane to

approximate the values of a funtion.

Example 3.13. Let’s estimate g(1.1, 1).
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We know that

g(x, y) ≈ e+ e(x− 1)

g(1.1, 1) ≈ e+ e(1.1− 1) = e+ .1e = 1.1e.

Using Mathematica, we compute that g(1.1, 1) ≈ 3.00417, and 1.1e ≈ 2.99011, so this is

pretty good.

Definition 3.14. The tangent plane approximation to a function f(x, y) near the point (a, b)

is given by

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The linear approximation to a function f(x, y, z) near the point (a, b, c) is given by

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c).

Sometimes this is phrased in terms of the differential.

Definition 3.15. The differential df of a function f at a point (a, b) is a linear function in

the variables dx and dy, given by

df = fx(a, b)dx+ fy(a, b)dy.

We will sometimes write df = fxdx+ fydy.

We can interpret the differential as being, for each point (a, b), a linear function that

takes in a change in the x and y coordinates and outputs a change in the z coordinate. Thus

f(a+ dx, b+ dy) ≈ f(a, b) + df(dx, dy) = fx(a, b)dx+ fy(a, b)dy.

3.3 Gradients and directional derivatives

In the previous sections we used the partial derivatives to tell us how f(x, y) will change as

we change the input variables x and y. We’d like to generalize this further, and see what

happens when we change the input in an arbitrary direction.

Definition 3.16. Let ~u = u1~i+ u2~j + u3~k be a unit vector. Then we define the directional

derivative of f in the direction ~u at the point (a, b, c) to be

f~u(a, b, c) = lim
h→0

f(a+ hu1, b+ hu2, c+ hu3)− f(a, b)

h

to be the rate of change of f in the direction ~u.

If ~v is a non-zero non-unit vector, then we say the directional derivative in the direction

of ~v is the directional derivative in the direction of ~v
‖~v‖ .
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Conceptually, here we’re seeing what happens if we change the input in the direction ~u

with a change of size h, and then letting the size of the change go to zero.

Remark 3.17. If ~u =~i, then f~u = fx. Similarly f~j = fy and f~k = fz.

Example 3.18. Let’s look at some of our contour plot from section 3.1 again.

We can ask for directional derivatives at a point. If we look at the point (1, 1), we can see

the derivative in the ~i direction is positive, and the derivative in the ~j direction is negative;

these are just the partial derivatives we’ve already discussed.

But we can also see that the derivative in the ~i + ~j direction is zero, since it follows

directly along the contour.

Now think about the point (1,−3). Is the directional derivative in the ~i + ~j direction

positive or negative? It should be positive, again, since we’re climing up past the −4 contour

towards the −1 contour.

What direction should we go to have a zero directional derivative? It’s hard to be exact,

but it looks like it should be down-right, and more right than down (following roughly parallel

to the blue contour). In fact, we can compute that the exact direction is 3~i−~j; we will see

how to compute this later in this section.

We can compute these directional derivatives directly from the definition.

Example 3.19. Let f(x) = x2 − y2 (the function whose contour plot is in example 3.18).

Let’s compute the directional derivative in the ~i+~j direction at the point (1,−3). Our unit
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vector in that direction is ~u = 1√
2
~i+ 1√

2
~j, and we compute

f~u(1,−3) = lim
h→0

f(1 + h/
√

2,−3 + h/
√

2)− f(1,−3)

h

= lim
h→0

(1 + h/
√

2)2 − (−3 + h/
√

2)2 − (12 − (−3)2)

h

= lim
h→0

1 +
√

2h+ h2/2− (9− 3
√

2h+ h2/2)− (−8)

h

= lim
h→0

4
√

2h

h
= lim

h→0
4
√

2 = 4
√

2.

Computing the directional derivative directly from the limit definition is completely pos-

sible, but it’s tedious. Just as we found easy ways to compute the single-variable derivative,

we would like easy ways to compute the directional derivative of a multivariable function.

Fortunately, the partial derivatives give us enough information to do this. By local

linearity, we see that

f(a+ hu1, b+ hu2) ≈ f(a, b) + hu1fx(a, b) + hu2fy(a, b)

f(a+ hu1, b+ hu2)− f(a, b)

h
≈ hu1fx(a, b) + hu2fy(a, b)

h
= u1fx(a, b) + u2fy(a, b).

Since this approximation should get increasingly good as h gets small, we conclude that

f~u(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
= u1fx(a, b) + u2fy(a, b).

Example 3.20. Let’s work out our previous example this way. If f(x, y) = x2 − y2, we see

that fx(x, y) = 2x and fy(x, y) = −2y. Thus fx(1,−3) = 2 and fy(1,−3) = 6. Then we have

f~u(1,−3) =
1√
2
· 2 +

1√
2
· 6 =

8√
2

= 4
√

2

as we got before.

In this computation, you may notice that we have something that looks like a dot product

of ~u with a vector containing the partial derivatives. This leads us to define an object that

we will use in almost all of our derivative calculations in the future.

Definition 3.21. If f(x, y) is differentiable at (a, b), then the gradient vector of f at (a, b)

is

grad f(a, b) = ∇f(a, b) = fx(a, b)~i+ fy(a, b)~j.

Similarly, if f(x, y, z) is differentiable at (a, b, c), then the gradient vector is

grad f(a, b, c) = ∇f(a, b, c) = fx(a, b, c)~i+ fy(a, b, c)~j + fz(a, b, c)~k.
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Remark 3.22. We sometimes say that

∇ =
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k.

This is just another way of writing the same definition, but is really notationally convenient.

Proposition 3.23. If f is differentiable at (a, b, c) and ~u is a unit vector, then

f~u(a, b, c) = ∇f(a, b, c) · ~u.

Example 3.24. Let f(x, y) = xy − sin(x). Then the gradient is

∇f(x, y) = (y − cos(x))~i+ x~j

and the gradient at the point (π, 1) is

∇f(π, 1) = 2~i+ π~j.

The directional derivative in the direction 3/5~i+ 4/5~j is

(2~i+ π~j) · (3/5~i+ 4/5~j) =
6 + 4π

5
.

The gradient tells us basically everything we want to know about the derivative of the

function f ; in many ways it “is” the derivative. (From a linear algebra perspective, ∇f is

the matrix corresponding to the local linearization of f).

Proposition 3.25. If f is differentiable at (a, b, c) and ∇f(a, b, c) 6= ~0, then:

� ∇f(a, b, c) is in the direction of maximum increase for f .

� ‖∇f(a, b, c)‖ is the maximum rate of increase of f in any direction.

� ∇f(a, b, c) is perpendicular to the level sets of f .

Proof. The rate of increase in the direction of a unit vector ~u is

∇f(a, b, c)̇~u = ‖∇f(a, b, c)‖ · ‖~u‖ cos θ = ‖∇f(a, b, c)‖ cos θ.

This is maximized when θ = 0, which is when ∇f(a, b, c) and ~u point in the same direction;

the maximum value is ‖∇f(a, b, c)‖.
∇f(a, b, c) is the normal vector to the tangent plane (or line) at (a, b, c), and thus is

perpendicular to the tangent plane. Thus it is perpendicular to the level set.
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Example 3.26. We can look at the contour diagram and the graph for the function f(x, y) =

xy − sin(x) from example 3.24.

We see in the contour diagram that the gradient vector is perpendicular to the contour, and

is in the direction of greatest increase. We can see the latter again in the three-dimensional

graph—but this is much harder to read and see what’s happening.

Example 3.27. Let’s do a three-variable example next. Let g(x, y, z) = xy + z. Then

∇g(x, y, z) = y~i+ x~j + 1~k.

At the point (−1, 0, 1), we have ∇g(x, y, z) = −~j+~k. Thus the direction of greatest increase

is −~j + ~k and the magnitude of the increase in that direction is
√

2.

What if we want the directional derivative in the direction of, say ~v = 2~i + ~k? Then we

have

~u =
~v

‖~v‖
=

2√
5
~i+

1√
5
~k

f~u(−1, 0, 1) = (−~j + ~k) · ~u = 0 · 2√
5
− 1 · 0 +

1√
5

=
1√
5
.
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3.4 The Chain Rule

We’d like an analogue of the single-variable chain rule for multivariable functions. In the

single-variable case, we ask how much f changes when you change x, and then how much g

changes when you change f(x), and multiply those together: d
dx
g(f(x)) = dg

dx
(f(x)) · df

dx
(x).

The intuition in the multivariable case is basically the same; we track what effect changing

each input has, and multiply them through. The expressions are more complicated pretty

purely because there are more levers we can push on to change things.

To build some intuition, we’ll start with the case where our composite isn’t really a

multivariable function: f depends on two variables, but each of those variables depends only

on some variable t. This corresponds to, say, the force acting on a particle over time, when

the force depends on position in space and the position in space depends on time.

Proposition 3.28 (Parametrized Chain Rule). If f, g, h are differentiable, and x = g(t) and

y = h(t), then
df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Conceptually, what’s happening here is that we look at every way that f can change, and

then see how t affects each of those factors; then we add all the separate changes together.

(This is making some implicit assumption that things are almost linear—but every time we

use the derivative, we’re making that assumption).

Sketch. We know that ∆f ≈ ∂f
∂x
·∆x+ ∂f

∂y
·∆y. But further we know that ∆x ≈ dx

dt
·∆t and

∆y ≈ dy
dt
·∆t. Putting this together gives us

∆f ≈ ∂f

∂x

dx

dt
∆t+

∂f

∂y

dy

dt
∆t

∆f

∆t
≈ ∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

and taking the limit as t goes to zero gives us what we want.

Example 3.29. Suppose z = y cos(x), where x = t2 and y = t3. Then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= (−y sin(x)) · 2t+ cos(y) · 3t2

= −t3 sin(t2) · 2t+ cos(t3) · 3t2.
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We can generalize this sort of chain rule behavior to chaining together functions of many

variables. In general, we have
∂z

∂t
=
∑
xi

∂z

∂xi
· ∂xi
∂t
.

That is, for each variable that z depends on, we multiply together the way z depends on the

variable and the way the variable depends on t, and then add these all together to get the

total change.

Example 3.30. Let f(x, y) = x2y where x = 4u+ v and y = u2 − v2. Compute ∂f
∂u

and ∂f
∂v

.

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
= 2xy · 4 + x2 · 2u

= 2(4u+ v)(u2 − v2)4 + (4u+ v)22u

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
= 2xy · 1 + x2(−2v)

= 2(4u+ v)(u2 − v2) + (4u+ v)2(−2v).

Example 3.31. Suppose we have a function f that can be expressed as a function of x and

y, or of u and v, where x = u+ v and y = u− v. (This is called a change of basis). We can

express the partial derivatives in terms of each other.

We have

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
=
∂f

∂x
· 1 +

∂f

∂y
· 1

=
∂f

∂x
+
∂f

∂y
∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
=
∂f

∂x
· 1 +

∂f

∂y
· (−1)

=
∂f

∂x
− ∂f

∂y
.

If we want to go the opposite way, and express ∂f
∂x

and ∂f
∂y

in terms of ∂f
∂u

and ∂f
∂v

, then we

have two options. One is to observe that u = x+y
2

and v = x−y
2

, and then use the chain rule

again:

∂f

∂x
=
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
=

1

2

∂f

∂u
+

1

2

∂f

∂v
∂f

∂y
=
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
=

1

2

∂f

∂u
− 1

2

∂f

∂v
.
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Alternatively, we could have taken the expressions we already had and rearranged them.

We knew that

∂f

∂u
+
∂f

∂v
= 2

∂f

∂x
∂f

∂u
− ∂f

∂v
= 2

∂f

∂y

and dividing by 2 gives us the same answer we got before.

3.5 Second Partials

So far we’ve spoken explicitly only about the first-order derivatives of f . But each derivative

gives us a new function, which we can also take the derivatives of. In single variable calculus

this gives us “the” second derivative. In multivariable calculus, just as there is more than

one first derivative, there is more than one second derivative.

Definition 3.32. We define the second-order partial derivatives of f(x, y) to be

∂2z

∂2x
= fxx = (fx)x

∂2z

∂x∂y
= fyx = (fy)x

∂2z

∂y∂x
= fxy = (fx)y

∂2z

∂2y
= fyy = (fy)y

Example 3.33. Let f(x, y) = xy2 + 3x2ey. Then

fx(x, y) = y2 + 6xey fy(x, y) = 2xy + 3x2ey

so we compute

fxx(x, y) = 6ey fyx(x, y) = 2y + 6xey

fxy(x, y) = 2y + 6xey fyy(x, y) = 2x+ 3x2ey.

You may have noticed a repetition here. Though there are four distinct mixed partials

to compute, we only got three separate answers. This isn’t an accident.

Theorem 3.34. If fxy and fyx are continuous at the point (a, b), and (a, b) is an interior

point of their domain, then

fxy(a, b) = fyx(a, b).
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These second-order partials measure how quickly the derivatives—the first partials—

change when we change our input. This is similar to your homework problem 14.1.24, which

asked how the partial derivatives changed as you moved from point A to point B.

For example, if fxx is positive, that means that the function gets steeper in the x direction

as you increase x. If fxy is positive, that means the function gets steeper in the x diretion

as you increase y.

Example 3.35. Consider the function f(x, y) = x2 + y2. We see that

fxx(x, y) = 2 fxy(x, y) = 0 fyy(x, y) = 2.

What does this tell us? Well, at any point, moving one unit in the x direction increases the

x slope by about two; and similarly, moving one unit in the y direction increases the y slope

by about two.

But moving in the y direction doesn’t affect the x slope at all, and vice versa. Geometri-

cally, this is because all the cross sections are identical parabolas at different heights: their

levels will be different, but their slopes will all be the same at the same x value. So changing

y doesn’t change the x slope at all.

We can use these second partial derivatives to improve our approximations. In section

3.2 we talked about linear approximation, which the linear function that best approximates

our function near a given point. With second partials, we can construct the second-degree

Taylor polynomial or quadratic approximation.

Definition 3.36. Let f : R2 → R be a function defined near (a, b). The Taylor polynomial

of degree 1 for f near (a, b) is

T1(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The Taylor polynomial of degree 2 is

T2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b) +

fyy(a, b)

2
(y − b)2.
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These approximations are used quite often in physics and in any other sort of numeric

approximation work. It’s possible to go to third-order and higher, and this works exactly

like you’d expect; but third-order approximations are rarely actually useful. If the quadratic

approximation isn’t good enough, you generally want to just use a better tool instead.

Example 3.37. Let’s find a quadratic approximation to cos(3x + 2y) + 2 sin(x − y) near

(0, 0).

f(x, y) = cos(3x+ 2y) + 2 sin(x− y) f(0, 0) = 1

fx(x, y) = −3 sin(3x+ 2y) + 2 cos(x− y) fx(0, 0) = 2

fy(x, y) = −2 sin(3x+ 2y)− 2 cos(x− y) fy(0, 0) = −2

fxx(x, y) = −9 cos(3x+ 2y) + 2 sin(x− y) fxx(0, 0) = −9

fxy(x, y) = −6 cos(3x+ 2y) + 2 sin(x− y) fxy(0, 0) = −6

fyy(x, y) = −4 cos(3x+ 2y)− 2 sin(x− y) fyy(0, 0) = −4

so the quadratic approximation is

T2(x, y) = 1 + 2x− 2y − 9x2/2− 6xy − 2y2.
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Suppose we want to find cos(.3− .2) + 2 sin(.1 + .1). Then we have

f(.1,−.1) ≈ T2(.1,−.1) = 1 + .2 + .2− .09/2 + .06− .02 = 1.395.

Plugging in, the true answer is ≈ 1.39234, so this is pretty good.

Example 3.38. Let’s find a quadratic approximation to exy near (0, 2).

We compute

f(x, y) = exy f(0, 2) = 1

fx(x, y) = yexy fx(0, 2) = 2

fy(x, y) = xexy fy(0, 2) = 0

fxx(x, y) = y2exy fxx(0, 2) = 4

fxy(x, y) = exy + xyexy fxy(0, 2) = 1

fyy(x, y) = x2exy fyy(0, 2) = 0

Thus we can compute the Taylor polynomial:

T2(x, y) = 1 + 2x+ 0(y − 2) + 4x2/2 + 1 · x(y − 2) + 0(y − 2)2/2

= 1 + 2x+ 2x2 + x(y − 2) = 1 + 4x2 + xy

(We can multiply it out like in that last step; we generally shouldn’t).
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We can see that the linear approximation is still trying but not quite there.

We can also estimate, say, e(−.1)·2.2 = e−.22. We have

e−.22 = f(−.1, 2.2) ≈ T2(−.1, 2.2) = 1 + .02− .22 = .80.

Alternatively, we could write

e−.22 = f(−.1, 2.2) ≈ T2(−.1, 2.2) = 1− .2 + .02− .1(.2) = .8.

The true answer is about .8025.
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