Math 1232 Practice Final

Instructor: Jay Daigle

- (a) These are the instructions you will see on the real test, next week. I include them here so you know what to expect.
- (b) You will have 120 minutes for this test.
- (c) You are not allowed to consult books or notes during the test, but you may use a one-page, two-sided, handwritten cheat sheet you have made for yourself ahead of time.
- (d) You may use a calculator, but don't use a graphing calculator or anything else that can do symbolic computations. Using a calculator for basic arithmetic is fine.
- (e) This test has 14 questions, over 9 pages. You should not answer all the questions.
 - (a) The first four problems are one page each, representing the four major topics. You should do all four of them, and they are worth 30?? points each.
 - (b) The remaining 10 problems represent topics S1 through S10. You will be graded on your best four, with a few possible bonus points if you also do well on further questions.
 - (c) But doing four secondary topics well is much better than doing six poorly.
 - (d) If you perform well on a question on this test it will update your mastery scores. Achieving a 27/30 on a major topic or 9/10 on a secondary topic will count as getting a 2 on a mastery quiz.

Name:

Recitation Section:

Major Topic 1. (a) Compute $\int \frac{x}{\sqrt{4-x^4}} dx$.

(b) Compute $\int 5^{3x} dx$.

(c) Write a tangent line to the curve $y^2 = x^{x \cos(x)}$ at the point $(\pi/2, -1)$.

Major Topic 2. (a) $\int \sin x \cos 2x \, dx$

(b)
$$\int_{\sqrt{7}}^{2\sqrt{7}} \frac{dx}{x\sqrt{x^2 - 7}}$$

(c) $\int \frac{4}{(x^2 + 1)(x + 1)(x - 1)} dx$

Major Topic 3. (a) Analyze the convergence of $\sum_{n=2}^{\infty} \frac{3(-1)^n}{n \ln(n)}$.

(b) Analyze the convergence of $\sum_{n=1}^{\infty} (-1)^n \left(\frac{5n+7}{8n-4}\right)^n$.

(c) Analyze the convergence of
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3 + n^2 + n + 1}{\sqrt{n^9}}$$
.

Major Topic 4. (a) Find a power series for $\frac{1}{x^3}(e^{2x^3}-1)$, and write down the first three non-zero terms explicitly.

- (b) Find a power series for $x^2 \arctan(x^2)$ centered at 0.
- (c) Find the degree-three Taylor polynomial for $f(x) = \frac{3}{x^3}$ centered at 3.

Secondary Topic 1. Let $g(x) = \sqrt[5]{x^9 + x^7 + x + 1}$. Find $(g^{-1})'(1)$. Secondary Topic 2. Compute $\lim_{x \to 0} \frac{e^x - \tan(x) - 1}{x^2}$ Secondary Topic 3. Approximate $\int_{1}^{5} 3^{x} dx$ with four intervals and Simpson's Rule. Secondary Topic 4. $\int_{1}^{+\infty} \frac{1}{x^{2} - 2x} dx$ Secondary Topic 5. Find the area of the surface obtained by rotating the curve $x = 1 + 2y^2$ for $1 \le y \le 2$ about the x-axis.

Secondary Topic 6. Find the (specific) solution to $y' = x^2 y^3$ if y(0) = 1.

Secondary Topic 7. Compute $\lim_{n \to \infty} \frac{2^n n!}{(2n)!}$.

Secondary Topic 8. Find the radius and interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-3)^n}{(2n)^2+1}$.

Secondary Topic 9. Use a second-degree Taylor polynomial to approximate $\sqrt[4]{82}$.

Secondary Topic 10. Find an equation for the tangent line to the curve defined by the polar equation $r = 2 + \sin(3\theta)$ at the point $\theta = \pi/4$.