Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle

Problem 1 (M1). Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x}
$$

(c)

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=
$$

(d)

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=
$$

Problem 2 (M2). Compute the derivatives of the following functions using methods we have learned in class. Show enough work to justify your answers.
(a) $f(x)=\sec \left(\frac{\sqrt{x^{2}+1}}{x+2}\right)$
(b) $g(x)=\sqrt[4]{\frac{x^{3}+\cos \left(x^{2}\right)}{\sin \left(x^{3}\right)+1}}$

Problem 3 (S1).
Suppose $f(x)=x^{2}-6 x$, and we want an output of approximately -9 . What input a should we aim for? Find a δ so that if our input is $a \pm \delta$ then our output will be -9 ± 2. Justify your answer.

Problem 4 (S2). Directly from the definition of derivative, compute the derivative of $f(x)=x^{2}+\sqrt{x}$ at $a=2$.

Problem 5 (S3). Give equation for the linear approximation of the function $f(x)=x \sin (x)$ near the point $a=\pi / 2$. Use it to estimate $f(1.5)$.

