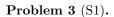
Math 1231 Practice Midterm

Instructor: Jay Daigle

Problem 1 (M1). Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.

$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{9 - x}$$

$$\lim_{x \to -\infty} \frac{3x^3 + \sqrt[3]{x}}{\sqrt{9x^6 + 2x^2 + 1} + x}$$


$$\lim_{x \to 1} \frac{\sin^2(x-1)}{(x-1)^2} =$$

$$\lim_{x \to 3} \frac{x - 5}{(x - 3)^2} =$$

Problem 2 (M2). Compute the derivatives of the following functions using methods we have learned in class. Show enough work to justify your answers.

(a)
$$f(x) = \sec\left(\frac{\sqrt{x^2+1}}{x+2}\right)$$

(b)
$$g(x) = \sqrt[4]{\frac{x^3 + \cos(x^2)}{\sin(x^3) + 1}}$$

Suppose $f(x) = x^2 - 6x$, and we want an output of approximately -9. What input a should we aim for? Find a δ so that if our input is $a \pm \delta$ then our output will be -9 ± 2 . Justify your answer.

Problem 4 (S2). Directly from the definition of derivative, compute the derivative of $f(x) = x^2 + \sqrt{x}$ at a = 2.

Problem 5 (S3). Give equation for the linear approximation of the function $f(x) = x \sin(x)$ near the point $a = \pi/2$. Use it to estimate f(1.5).