Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle

Problem 1 (M1). Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}
$$

Solution:

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}=\lim _{x \rightarrow 9} \frac{(3-\sqrt{x})(3+\sqrt{x})}{(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{9-x}{(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{1}{3+\sqrt{x}}=1 / 6
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x} & =\lim _{x \rightarrow-\infty} \frac{3 x^{3} / x^{3}+\sqrt[3]{x} / x^{3}}{\sqrt{9 x^{6}+2 x^{2}+1} /\left(-\sqrt{x^{6}}\right)+x / x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{3+x^{-8 / 3}}{-\sqrt{9+2 x^{-4}+x^{-6}}+x^{-2}} \\
& =\lim _{x \rightarrow-\infty} \frac{3}{-\sqrt{9}}=-1
\end{aligned}
$$

(c)

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=
$$

Solution:

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=\lim _{x \rightarrow 1}\left(\frac{\sin (x-1)}{x-1}\right)^{2}=\left(\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1}\right)^{2}=1^{2}=1
$$

by the small angle approximation.
(d)

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=
$$

Solution:

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=-\infty
$$

since the top approaches -2 and the bottom approaches zero and is always positive.
Problem 2 (M2). Compute the derivatives of the following functions using methods we have learned in class. Show enough work to justify your answers.
(a) $f(x)=\sec \left(\frac{\sqrt{x^{2}+1}}{x+2}\right)$

Solution:

$$
f^{\prime}(x)=\sec \left(\frac{\sqrt{x^{2}+1}}{x+2}\right) \cdot \tan \left(\frac{\sqrt{x^{2}+1}}{x+2}\right) \cdot \frac{\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} 2 x(x+2)-\sqrt{x^{2}+1}}{(x+2)^{2}}
$$

(b) $g(x)=\sqrt[4]{\frac{x^{3}+\cos \left(x^{2}\right)}{\sin \left(x^{3}\right)+1}}$

Solution:

$$
g^{\prime}(x)=\frac{1}{4}\left(\frac{x^{3}+\cos \left(x^{2}\right)}{\sin \left(x^{3}\right)+1}\right)^{-3 / 4} \cdot \frac{\left(3 x^{2}-\sin \left(x^{2}\right) 2 x\right)\left(\sin \left(x^{3}\right)+1\right)-\cos \left(x^{3}\right) 3 x^{2}\left(x^{3}+\cos \left(x^{2}\right)\right)}{\left(\sin \left(x^{3}\right)+1\right)^{2}}
$$

Problem 3 (S1).
Suppose $f(x)=x^{2}-6 x$, and we want an output of approximately -9 . What input a should we aim for? Find a δ so that if our input is $a \pm \delta$ then our output will be -9 ± 2. Justify your answer.

Solution: We want an input of about $a=3$. Our output error will be $\left|x^{2}-6 x+9\right|=|x-3|^{2}$. We want this to be less than 2 , so we need

$$
\begin{aligned}
& |x-3|^{2}<2 \\
& |x-3|<\sqrt{2},
\end{aligned}
$$

so we can take $\delta=\sqrt{2}$.
Problem 4 (S2). Directly from the definition of derivative, compute the derivative of $f(x)=x^{2}+\sqrt{x}$ at $a=2$.

Solution:

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}+\sqrt{2+h}-2^{2}-\sqrt{2}}{h} \\
& =\left(\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h}\right)+\left(\lim _{h \rightarrow 0} \frac{(\sqrt{2+h}-\sqrt{2})(\sqrt{2+h}+\sqrt{2})}{h(\sqrt{2+h}+\sqrt{2})}\right) \\
& =\left(\lim _{h \rightarrow 0} 4+h\right)+\left(\lim _{h \rightarrow 0} \frac{1}{\sqrt{2+h}+\sqrt{2}}\right) \\
& =4+\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

Problem 5 (S3). Give equation for the linear approximation of the function $f(x)=x \sin (x)$ near the point $a=\pi / 2$. Use it to estimate $f(1.5)$.

Solution: We calculate that $f(\pi / 2)=\pi / 2 \sin (\pi / 2)=\pi / 2$, and $f^{\prime}(x)=\sin (x)+x \cos (x)$, so $f^{\prime}(\pi / 2)=$ $\sin (\pi / 2)+\pi / 2 \cos (\pi / 2)=1$. So

$$
f(x) \approx \pi / 2+1(x-\pi / 2)=x
$$

Thus we have

$$
f(1.5) \approx 1.5
$$

(The true answer is $1.49624 \ldots$. .)

