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3 Optimization

Let’s step back and look at the big picture. In section 2 we defined the derivative, and we

also talked about one major application of the derivative: linear approximation, which we

saw from many perspectives. We took the algebraic approach of approximating a function,

the geometric approach of finding equations for tangent lines, and the physical approach of

studying rates of change. We then used implicit differentiation to extend these concepts,

and related rates was one more use of the rates-of-change understanding of the derivative.

In this section we’re going to look at the other major application of the derivative:

optimization. And while we’ll spend the bulk of this section (until 3.6) working abstractly

in the realm of functions and graphs, I want to convince you that we are dealing with a real

concrete physical question.

If you’re running a factory, you may want to ask how you can make as much money

as possible. Or you may want to keep your costs as low as possible. Or, if you’re feeling

pro-social, you may want to minimize the level of pollution you create.

If you’re a biologist studying an ecosystem, you may want to know what the maximum

population of wolves you can expect to see is. If you’re doing medical research, you may

want to know what drug dose will be most effective. If you’re a physicist studying the motion

of an object, you may want to see where the highest point of its trajectory is, or where it

reaches its fastest speed, or what the shortest path it can take is.

All of these questions are problems of optimization: we have some function or relationship,

and we want to find the maximum (or minimum) value it can take on. And so for the next

few sections we’ll talk about maximizing or minimizing a function, but we always want to

remember that this is potentially a very concrete, practical question.

3.1 Extreme Values and Critical Points

So what is it we’re looking for? We have a function f , and we want to find the greatest (or

least) number it can ever output. If L is the greatest value that f can output, two things

need to be true. First, L is actually an output of f ; there is some number c such that

f(c) = L. And second, f never outputs a number that’s bigger than that. We can combine

those two ideas with the following series of definition.

Definition 3.1. If f(c) ≥ f(x) for every x in the domain of f , then f(c) is an absolute

maximum or global maximum for f . We say that f has an absolute maximum at c.
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Similarly, if f(c) ≤ f(x) for every x in the domain of f , then f(c) is an absolute minimum

or global minimum for f , and f has a global minimum at c.

Absolute maxima and absolute minima are somtimes collectively called extreme values

or absolute extrema. (“Extremum” comes from “extreme value,” meaning a value that is

very big or small or otherwise unusual).

The graph of x
x2+1

. This function has a

maximum value of 1/2 which occurs at

x = 1, and a minimum value of −1/2

which occurs at x = −1.

The graph of sin(x). This function has

a maximum value of 1, which occurs at

−3π/2, π/2, 5π/2, . . . . Similarly, it has a

minimum value of −1, which occurs at

−π/2, 3π/2, 7π/2, . . . .

Very important note: the function has

one maximum value, which occurs in

many different places.
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The graph of 3 − x2. This function has

an absolute maximum of 3, which occurs

at zero. It has no absolute minimum: the

function goes to −∞

The graph of x2−1
x2+1

. This function has an

absolute minimum of −1, which occurs at

0. It has no absolute maximum. We see

that the function almost reaches a value

of 1, but it never actually outputs 1. So

1 can’t be the maximum, since it’s not

an output; but if you pick any number

smaller than 1, that can’t be the maxi-

mum either, because we can always get

closer to 1.

Note that absolute maxima and minima do not necessarily exist: the function f(x) = x

has no absolute maxima or minima on the real line, and tanx defined between −π/2 and

π/2 has no absolute extrema. Nor are they necessarily unique; if we define f(x) = c for

some constant c, then there is an absolute maximum and an absolute minimum at every

point–every point outputs both the largest possible value and the smallest possible value.

Theorem 3.2 (Extreme Value Theorem). If f is continuous on a closed interval [a, b], then

f has an absolute maximum f(c) at some point c in the interval [a, b], and an absolute

minimum f(d) at some point d in the interval [a, b].

Note that both the continuity and the closed-ness are important here. Also, this is

another “existence theorem”: it tells us that a global maximum and a global minimum exist,

but not anything about where. We can answer this question and find them, but it will

require a bit more setup.
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We can also look for places where the graph of our function has a peak or a valley, even

if it’s not the biggest or smallest possible point:

Definition 3.3. If f(c) ≥ f(x) for all x near c, we say that f(c) is a relative maximum or

a local maximum for, and that f has a relative maximum at c.

If f(c) ≤ f(x) for all x near c, we say that f(c) is a relative minimum or a local minimum

for f , and that f has a relative minimum at c.

Theorem 3.4 (Fermat’s Theorem/Critical Point Theorem). If f has a local extremum at c,

and c is not an endpoint of the domain of f , and f ′(c) exists, then f ′(c) = 0.

Proof. Intuitive idea: If f ′(c) > 0 then f is increasing, so f(c + h) > f(c) for some small

positive h. If f ′(c) < 0 then f is decreasing, so f(c+ h) > f(c) for some small negative h.

To keep things simple, let’s suppose f has a local maximum at c, and f ′(c) exists.

Since f(c) is a local maximum, we know that f(c) ≥ f(c + h) for small h, and thus that

f(c+ h)− f(c) ≤ 0.

If we take h to be positive, then we can divide both sides by h and we get

f(c+ h)− f(c)

h
≤ 0

lim
h→0+

f(c+ h)− f(c)

h
≤ 0.

But since f ′(c) exists, this limit must be f ′(c), so f ′(c) ≤ 0.

If we take h to be negative, then dividing both sides of our inequality by h flips the

inequality, and we get

f(c+ h)− f(c)

h
≥ 0

lim
h→0−

f(c+ h)− f(c)

h
≥ 0.

But since f ′(c) exists, this limit must be f ′(c), so f ′(c) ≥ 0.

But then f ′(c) ≥ 0 and f ′(c) ≤ 0, so f ′(c) = 0.

Remark 3.5. � The converse of this theorem isn’t true: you can have points where f ′(c) =

0 or f ′(c) does not exist that are not local extrema.
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� Your textbook uses its words slightly differently, and believes that you cannot have a

relative extremum at the endpoint of an interval. I think this is poor word choice, but

you should be aware of it when reading the textbook.

Definition 3.6. We say that c is a critical point of a function f if either f ′(c) = 0 or f ′(c)

does not exist.

Then Fermat’s theorem says specifically that if f has a local extremum at c, then c

is a critical point. (Again, remember that c can be a critical point without being a local

extremum).

Example 3.7. � Let f(x) = x3 − x. Then f ′(x) = 3x2 − 1; this is defined everywhere,

and f ′(x) = 0 when x = ±
√
3
3
. So the critical points are ±

√
3
3
.

� If f(x) = x2, then g′(x) = 2x and is 0 when x = 0. So the only critical point is 0.

� If h(x) = sin(x) then h′(x) = cos(x), which is 0 when x = (n + 1/2)π for any integer

n. Thus the critical points are π/2, 3π/2, 5π/2, . . . .

� If f(x) = x3 then f ′(x) = 3x2 which is 0 when x is 0. Thus the only critical point is

at 0.

� If g(x) = |x| then

g′(x) =


1 x > 0

−1 x < 0

DNE x = 0

and thus has a critical point at x = 0 since the derivative does not exist there.

� If f(x) = |x2 − 4| then we know that |x| isn’t differentiable at 0, so f(x) won’t be

differentiable at x2 − 4 = 0 and thus at x = ±2. We see the derivative of the inside is

2x, so f ′(x) = ±2x = 0 when x = 0, and thus the critical points are 0,±2.

The obvious next question is “how can we determine whether these critical points are a

maximum or a minimum or neither?” This is a bit tricky, so we’ll hold off for a bit. First

we will identify the absolute extrema of a continuous function on a closed interval.

Remember that if f is continuous on [a, b], it must have an absolute maximum and an

absolute minimum. By Fermat’s theorem, if the absolute extrema are in the interior they

must be at critical points. So we can find the absolute extrema by the following method:

(a) List all the critical points.
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(b) Evaluate f at each critical point, and at a and b.

(c) The largest value is the maximum and the smallest is the minimum.

Example 3.8. � If f(x) = x3 − x, we saw the critical points are ±
√
3/3. If we want

the absolute maximum on [0, 2], we compute that f(0) = 0, f(2) = 6, and f(
√
3/3) =

−2
√
39. Thus the absolute maximum is 6 at 2 and the absolute minimum is −2

√
3/9

at
√
3/3.

� Let h(x) = 2 cos t + sin(2t) on [0, π/2]. Then h′(x) = −2 sin(t) + 2 cos(2t) = 0 when

sin(t) = cos(2t). On [0, π/2] this happens precisely when x = π/6, so this is the only

critical point. We compute h(0) = 2, h(π/2) = 0, h(π/6) = 3
√
3/2, so the absolute

maximum is 3
√
3/2 at π/6 and the absolute minimum is 0 at π/2.

� Let f(x) = x2+3
x−1

on [−2, 0]. Then we see that

f ′(x) =
2x(x− 1)− 1(x2 + 3)

(x− 1)2
=

x2 − 2x− 3

(x− 1)2

does not exist at 1. To test when f ′(x) = 0 we need only consider the numerator, so

we have 0 = x2 − 2x − 3 = (x − 3)(x + 1) and thus x = 3 or x = −1. So the critical

points are −1, 1, 3.

f is continuous on [−2, 0] and so must have global extrema. To find them we only

need to look at the critical points in [−2, 0], and thus only at −1. So we compute

f(0) = −3, f(−1) = −2, f(−2) = −7/3. Thus the maximum is −2 (at −1) and the

minimum is −3 (at 0).

� What about the global extrema of that same function on [0, 2]? We already know the

critical points, so we need to check 0, 1, 2. We have f(0) = −3 and f(2) = 7, but

f(1) is not defined. In fact the function is not defined everywhere on [0, 2] and so not

continuous; it has an asymptote at x = 1 and thus no minimum or maximum.

We’d still like to determine what each critical point is like, but for that we will need more

tools.

3.2 The Mean Value Theorem

We begin with a theorem called Rolle’s Theorem:
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Theorem 3.9 (Rolle). If f is continuous on [a, b] and differentiable on (a, b), and f(a) =

f(b), then there is a point c in (a, b) where f ′(c) = 0.

Proof. If f is constant everywhere, then the derivative is 0 everywhere.

By the Extreme Value theorem, f has a global maximum on [a, b]. If there is some x

in (a, b) with f(x) > f(a), then the maximum is in the interior at some point c, and by

Fermat’s theorem, since f ′(c) must exist, we have f ′(c) = 0.

If f is not constant, and there is no x with f(x) > f(a), then there is some f with

f(x) < f(a). Then f has an absolute minimum in the interior at some point c. By Fermat’s

theorem f ′(c) = 0.

Remark 3.10. We need f to be continuous at the endpoints, but it doesn’t have to be

differentiable there. Rolle’s theorem does guarantee a derivative of zero somewhere in the

interior–not just at the endpoints.

Example 3.11. If f(x) represents the height of an object, f ′(x) represents its speed. If I

throw an object up and wait for it to fall back down to the ground, at some point during

the process (at the top of its arc) it’s instantaneous velocity will be 0.

Example 3.12. We can prove that f(x) = x3 + x− 1 has exactly one real root.

First we use the Intermediate Value Theorem to show that a root exists at all. f is

continuous because it’s a polynomial. We see that f(0) = −1 < 0 and f(1) = 1 > 0, so by

the Intermediate Value Theorem there’s some a in (0, 1) with f(a) = 0. Thus f has at least

one real root.

Now suppose f(b) = 0 and b ̸= a. Then f is continuous and differentiable everywhere,

and f(a) = f(b), so by Rolle’s theorem there’s some c in between a and b with f ′(c) = 0.

But f ′(c) = 3c2 + 1, and since c2 ≥ 0, we know that f ′(c) ≥ 1 for every c. Thus there’s

no c with f ′(c) = 0, so there’s no b ̸= a with f(b) = 0. Thus f has exactly one real root.

Rolle’s theorem can be useful, but it’s very limited by the need for f(a) = f(b). The

Mean Value Theorem lets us lift that restriction.

Theorem 3.13 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on

(a, b), then there’s a c in (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.
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Proof. We prove this using Rolle’s theorem, by writing an altered version of f that satisfies

the hypotheses of Rolle’s theorem. Define

h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

This is basically just taking f(x) and then subtracting off the line from (a, f(a)) to (b, f(b)).

It’s clear that

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0− f(b)− f(a)

b− a
0 = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = (f(b)− f(a))− (f(b)− f(a)) = 0

so h(a) = h(b). h is continuous on [a, b] because f is continuous on [a, b], polynomials are

continuous, and the sum of two continuous functions is continuous. h is differentiable on

(a, b) because f is differentiable on (a, b), polynomials are differentiable, and the sum of two

differentiable functions is differentiable.

Thus h satisfies the hypotheses of Rolle’s theorem. Then there’s some c in (a, b) with

h′(c) = 0. But

h′(x) = f ′(x)− f(b)− f(a)

b− a
(1− 0)

0 = f ′(c)− f(b)− f(a)

b− a

f ′(c) =
f(b)− f(a)

b− a

as we desired.

Example 3.14. Earlier in the class, we talked about driving to San Diego. That’s about

120 miles, so if it takes me two hours to get there, my average speed is 60 mph. That doesn’t

mean my speed at each point is 60 mph, though; I might go 90 part of the way and then

20 part of the way while I’m stuck in traffic. But the Mean Value Theorem tells me that at

some point during that drive the needle on my speedometer pointed at the 60–which makes

sense, since it will do that while I’m accelerating up to 90.

Example 3.15. We can also use the mean value theorem to constrain the possible values

for a function. For instance, suppose I have a function f , and all I know is that f(1) = 10

and f ′(x) ≥ 2 for every x. Then if I want to know about f(4), I can conclude that there is
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some c in (1, 4), such that:

f ′(c) =
f(4)− f(1)

4− 1

3f ′(c) = f(4)− 10

f(4) = 10 + 3f ′(c) ≥ 10 + 3 · 2 = 16.

Thus f(4) ≥ 16.

Example 3.16. Suppose |f ′(x)| ≤ 2 for all x, and f(0) = 7. What do we know about f(5)?

We know that for any x, −2 ≤ f(x) ≤ 2. By the mean value theorem, we have

f ′(c) =
f(5)− f(0)

5− 0

−2 ≤ f(5)− f(0)

5− 0
≤ 2

−10 ≤ f(5)− 7 ≤ 10

−3 ≤ f(5) ≤ 17.

This corresponds to the intuition that if you’re travelling less than 2 miles per hour, you

won’t get more than ten miles in five hours; and if you start at 7, you’ll wind up between

−3 and 17.

Example 3.17. Show f(x) = x5 + x3 + x has exactly one root.

It’s pretty clear that f has a root; we could use the intermediate value theorem, but we

can also observe that f(0) = 0.

Suppose f(a) = f(b) = 0. Then by Rolle’s Theorem there is some c with f ′(c) = 0. But

f ′(x) = 5x4 + 3x2 + 1 ≥ 1 and thus f ′(c) is never zero; so f has at most one root, and thus

exactly one root.

More intuitively, f(x) has at most one root because it’s always increasing, and so one it

gets above zero it can’t come back down and hit zero again. Which leads us to discuss the

idea of increasing or decreasing functions.

3.3 Increasing or Decreasing Functions and Finding Relative Ex-

trema

We now want to use the Mean Value Theorem to answer our original question, about which

critical points are maxima or minima. We start with a defnition:
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Definition 3.18. We say that f is (strictly) increasing on an interval (a, b) if, whenever x1

and x2 are points in (a, b) and x2 > x1, then f(x2) > f(x1).

We say that f is (strictly) decreasing on an interval (a, b) if, whenever x1 and x2 are

points in (a, b) and x2 > x1, then f(x2) < f(x1).

Notice that these definitions make sense if you assume we’re moving to the right; an

increasing function is one where f(x) increases as x increases.

Proposition 3.19. � If f ′(x) = 0 for all x in (a, b), then f is constant on (a, b).

� If f ′(x) > 0 for all x in (a, b), then f is increasing on (a, b).

� If f ′(x) < 0 for all x in (a, b), then f is decreasing on (a, b).

Proof. Let x1, x2 be two points in (a, b) with x2 > x1. Then since f is differentiable (and thus

continuous) everywhere in (a, b), it is continuous and differentiable everywhere on [x1, x2],

and by the mean value theorem there is some c with

f ′(c) =
f(x2)− f(x1)

x2 − x1

(x2 − x1)f
′(c) = f(x2)− f(x1).

� Now, if f ′(x) = 0 for all x, then f ′(c) = 0 and thus f(x2)− f(x1) = 0. This is true for

any points x1 and x2, and thus f is constant.

� If f ′(x) > 0 for all x, then f ′(c) > 0. Since x2−x1 > 0, this implies that f(x2)−f(x1) >

0. This is true for any points x1 < x2 and thus f is increasing.

� If f ′(x) < 0 for all x, then f ′(c) < 0. Since x2−x1 < 0, this implies that f(x2)−f(x1) <

0. This is true for any points x1 < x2 and thus f is decreasing.

Remark 3.20. This theorem doesn’t say anything about intervals where f isn’t always differ-

entiable. It also doesn’t say anything about intervals where f ′ switches sign in the middle.

In practice, we split the domain of our function up into intervals on which exactly one of

these things is happening and study each interval separately.

Example 3.21. Let f(x) = 3x4 − 4x3 − 12x2 + 5. Where is f increasing or decreasing?
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f ′(x) = 12x3−12x2−24x = 12x(x−2)(x+1) is 0 when x = 0,−1, 2. These three points

are the critical points. f ′(x) has three factors, and it will be positive when one or all three

factors are positive. We make a chart:

12x x− 2 x+ 1 f ′(x)

x < −1 − − − −
−1 < x < 0 − − + +

0 < x < 2 + − + −
2 < x + + + +

Thus f ′(x) is positive when −1 < x < 0 or 2 < x, so f is increasing on (−1, 0) and on

(2,+∞). f ′(x) is negative when x < −1 or 0 < x < 2, so f is increasing on (−∞,−1) and

(0, 2).

Can we use this information about increasing and decreasing functions to say something

about relative maxima and minima? In fact, assuming f is continuous at c, if f is increasing

to the left of a point c and decreasing to the right of c, then it must have a maximum at c.

Similarly, if f is decreasing to the left and increasing to the right, it must have a minimum.

If it increases on both sides or decreases on both sides, then c is neither a maximum nor a

minimum. Therefore:

Proposition 3.22 (First derivative test for extrema). If c is a critical point of f and f is

continuous at c, then

� If f ′ changes from positive to negative at c then f has a relative maximum at c.

� If f ′ changes from negative to positive at c then f has a relative minimum at c.

� If f ′ “changes” from positive to positive or negative to negative at c then f has neither

a relative maximum nor a relative minimum at c.

Remark 3.23. If f ′ is continuous, the sign of f ′ actually only can change at a critical point

by the intermediate value theorem. So we just have to check the sign of f ′ at one point in

between each critical point.

So what does this say about our previous example? We had three critical points, at

−1, 0, 2. At −1 we saw that f ′ changed from negative to positive, so f has a relative

minimum f(−1) = 0 at −1. Similarly, at 0 f ′ changed from positive to negative and at 2

f ′ changed from negative to positive, so f has a relative maximum of f(0) = 5 at 0 and a

relative minimum of f(2) = −27 at 2.
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Example 3.24. Let g(x) = x + sin(x). Then g′(x) = 1 + cos(x) is zero precisely when

x = (2n + 1)π for some integer n. Since we only need to check the sign of g′ at one point

between each critical point, we check that g′(2nπ) = 1 + cos(2nπ) = 2. Thus g′ is positive

everywhere except at the critical points, so g is increasing everywhere except at the critical

points. Thus g has no relative maxima or minima.

Now let h(x) = x+ 2 sin(x). We have h′(x) = 1 + 2 cos(x) = 0 when x = 2nπ + 4π/3 or

x = 2nπ+2π/3. We compute that h′(0) == 3, h′(π) = −1, and h′(2π) = 3. Thus h′ changes

from positive to negative at 2π/3, so this is a relative maximum. h′ changes from negative

to positive at 4π/3, so this is a relative minimum.

But we’d like to find relative maxima and minima with even less work, which brings us

to the subject of concavity.

3.4 Concavity and the Second Derivative Test

Definition 3.25. We say a function f is concave upward on an interval (a, b) if every tangent

line to a point in (a, b) lies below the graph of f .

We say a function f is concave downard on (a, b) if every tangent line to a point in (a, b)

lies above the graph of f .

We say a point c is an inflection point for a function f if the graph of f changes from

concave up to concave down, or concave down to concave up, at c.

Remark 3.26. Functions that are concave upward are curving up, like a bowl. Functions

that are concave downward are curving down, like an umbrella.

Example 3.27. Looking at graphs, we can see:

� x2 is concave upward everywhere. −x2 is concave downward everywhere.

� x3 is concave downward when x < 0 and is concave upward when x > 0.

�
3
√
x is concave upward when x < 0 and concave downward when x > 0.

� sin(x) is concave downward when 0 < x < π and concave upward when π < x < 2π.

We see that when a function is concave upward, the slopes of its tangent lines are

increasing–which means the derivative is increasing. Similarly, a function is concave down-

ward when its derivative is decreasing. But we just showed that we can determine whether

a function is increasing or decreasing by looking at its derivative. So we need to study the

derivative of the derivative–the second derivative.
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Proposition 3.28 (Concavity Test). � If f ′′(x) > 0 for all x in (a, b), then the graph of

f is concave upward on (a, b).

� If f ′′(x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b).

Remark 3.29. It’s not necessarily true that f has an inflection point whenever f ′′(x) = 0.

But it often is.

Example 3.30. �
d
dx
x2 = 2x, so d2

dx2x
2 = 2 > 0, so x2 is concave upward everywhere.

Similarly, d2

dx2 − x2 = −2, 0, so −x2 is concave downward everywhere. Neither function

has an inflection point.

�
d2

dx2x
3 = 6x is positive if x > 0 and negative if x < 0, so the function is concave upward

when x > 0 and concave downward when x < 0. It has an inflection point when x = 0.

�
d2

dx2
3
√
x = −2

9
3√
x5

is negative when x > 0 and positive when x < 0, so the function is

concave upward when x < 0 and concave downward when x > 0. It has an inflection

point when x = 0.

�
d2

dx2 sin(x) = − sin(x), so sin(x) is concave upwards precisely when it is positive, and

concave downwards when it is negative. It has an inflection point at 0, π, 2π, and in

general at nπ for any integer n.

� Consider f(x) = x4. f ′′(x) = 12x2 is positive everywhere except at 0, so the function is

concave upwards everywhere except at 0. f ′′(0) = 0, so the second derivative concavity

test doesn’t tell us anything. But this isn’t an inflection point, because the concavity

doesn’t change on either side–in fact the function is concave at x = 0 as well, as you

can see from a graph.

Why do we care? Notice that if f is concave upward then the first derivative is increasing;

so if f ′(c) = 0 and f is concave upwards at c, the derivative is changing from negative to

positive, and f has a local minimum at c. A similar argument works for local maxima, and

thus:

Proposition 3.31 (The Second Derivative Test). If f ′′ is continuous near c, then

� If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

� If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
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Remark 3.32. � If f ′′(c) = 0 this theorem tells us nothing; almost anything could happen.

We can use the increasing/decreasing function test, or we can use the third and fourth

derivatives to give us information.

� This rule only works if f ′(c) = 0; if f ′(c) doesn’t exist, then f ′′(c) certainly doesn’t

exist and this proposition is not helpful.

Example 3.33. We looked at the function f(x) = 3x4 − 4x3 − 12x2 + 5 in example 3.21.

We computed that f ′(x) = 12x3− 12x2− 24x = 12x(x− 2)(x+1) , so the critical points are

x = −1, 0, 2.

Then f ′′(x) = 36x2 − 24x− 24 = 12(3x2 − 2x− 2). We can compute

f ′′(−1) = 12(3 + 2− 2) = 36 > 0

f(0) = −24 < 0

f(2) = 12(12− 4− 2) = 72 > 0

so by the second derivative test, f has a local maximum at 0 and local minima at −1 and 2.

This was a little faster and easier than the way we original classified the maxima and

minima of this function. But sometimes the second derivative test just isn’t very helpful.

Example 3.34. Let f(x) = x2/3(6−x)1/3. Where does f have relative maxima and minima?

Where is it increasing or decreasing?

f ′(x) =
4− x

x1/3(6− x)2/3

f ′′(x) =
−8

x4/3(6− x)5/3
.

Then f ′(x) = 0 when x = 4, and f ′(x) does not exist when x = 0 or x = 6, so these are the

three critical points.

We can use the second derivative test—or try to. We see that f ′′(4) = −8
213/3

= −2−4/3 < 0

so f has a maximum at 4. But at 0 and at 6, the second derivative isn’t defined, so the

second derivative test isn’t useful there.

But we can still use the first derivative test. We get a table:

4− x x−1/3 (6− x)−2/3 f ′(x)

x < 0 + − + −
0 < x < 4 + + + +

4 < x < 6 − + + −
6 < x − + + −
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This tells us that f has a minimum of f(0) = 0 at 0 and a maximum of f(4) = 25/3 at 4. It

doesn’t have a local maximum or minimum at 6.

But now we can do one more thing. Our table tells us that f is increasing for 0 < x < 4,

and it’s decreasing for x > 0 or x > 4. And further, we can do the same thing for the second

derivative. The second derivative is zero, or undefined, at 0 and at 6. So we get

−8 x−4/3 (6− x)−5/3 f ′(x)

x < 0 − + + −
0 < x < 6 − + + −
6 < x − + − +

So the function is concave down for x < 6 and concave up for x > 6. We say that x = 6

is a point of inflection for this function, where the concavity changes. And we can use this

information to sketch an effective graph of the function.

Figure 3.1: The graph of f(x) = x2/3(6− x)1/3 with critical points

3.5 Curve sketching

And now we’re ready to approach the task of sketching the graph of a function in an organized

way. What follows is a good checklist, though not every point is relevant to every function.

(a) Find the domain of the function. If it has holes, what happens near them? Does it go

to infinity, or jump, or just skip a point?

(b) Find the roots–where does the function hit the x-axis?

(c) Find the limits as x goes to ±∞–what happens to the function “far away” from 0?

(d) Compute f ′ and find the critical points. It can be helpful to evaluate f at the critical

points.
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(e) Find intervals of increase or decrease. Identify local maxima and minima.

(f) Compute f ′′ if you haven’t already. Determine where the function is concave, and find

inflection points.

(g) Use all this information to sketch a graph of the function.

Example 3.35. Let f(x) = x(x− 4)3 = x4 − 12x3 + 48x2 − 64x. Then:

(a) The function is a polynomial, so its domain is all real numbers.

(b) The function has roots at 0 and 4.

(c) limx→+∞ f(x) = limx→−∞ f(x) = +∞.

(d) f ′(x) = (x− 4)3+3x(x− 4)2 = (x− 4)2(4x− 4) = 4(x− 1)(x− 4)2. So f ′(x) = 0 when

x = 1 or x = 4. These are the critical points. f(1) = −27 and f(0) = 0.

(e) Looking at our factorization, it’s clear that f ′(x) < 0 when x < 1 and f ′(x) > 0 when

x > 1, except f ′(x) = 0 when x = 4. So f is decreasing when x < 1 and is increasing

when x > 1 except at 4. Thus f has a minimum of −27 at 1.

(f) f ′′(x) = (x− 4)2 + 2(x− 1)(x− 4) = (x− 4)(3x− 6) = 3(x− 2)(x− 4). We see that

f ′′(x) > 0 is x < 2 or x > 4, and f ′′(x) < 0 if 2 < x < 4. Thus f is concave up on

(−∞, 2) and (4,+∞), is concave down on (2, 4), and has inflection points at 2 and 4.

Figure 3.2: The graph of f(x) = x(x− 4)3

Example 3.36. Let g(x) = x tan(x). Then

(a) The domain of g is real numbers except nπ + π/2. For simplicity we’ll just look at x

between −π/2 and π/2. limx→−π/2+ g(x) = +∞ and limx→π/2− g(x) = +∞.

(b) The function is 0 when x = 0 (and when x = nπ if we look farther out).
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(c) This isn’t applicable since we’re not looking out to ±∞.

(d) g′(x) = tan(x)+x sec2(x) = sin(x) cos(x)+x
cos2(x)

. It’s not hard to see that when −π/2 < x < 0

then g′(x) < 0, and when 0 < x < π/2 then g′(x) > 0, and g′(0) = 0. So the only

critical point is at 0.

(e) And we saw that g is decreasing on (−π/2, 0) and increasing on (0, π/2). Thus g has

a local minimum at 0. g(0) = 0.

(f) g′′(x) = sec2(x)+sec2(x)+2x sec(x) sec(x) tan(x) = 2 sec2(x)(1+x tan(x)). x tanx ≥ 0

on (−π/2, π/2), so the function is concave up everywhere.

Figure 3.3: The graph of g(x) = x tan(x)

Example 3.37. Let h(x) = x+2
x−1

.

(a) The domain of h is all real numbers except 1. We see that limx→1− h(x) = −∞ and

limx→1+ h(x) = +∞.

(b) The function has a root at x = −2.

(c) We have limx→+∞ h(x) = limx→−∞ h(x) = 1. (We can use L’Hôpital’s rule or divide

the top and bottom by x).

(d) We have h′(x) = (x−1)−(x+2)
(x−1)2

= −3(x− 1)−2. This has no roots and fails to exist when

x = 1. Thus there are no “real” critical points.

(e) We make a chart for increase and decrease:

−3 (x− 1)−2 h′(x)

x < 1 − + −
1 < x − + −

Thus h is decreasing everywhere. It has no local maxima or minima.

(f) h′′(x) = 6(x − 1)−3 is positive when x > 1 and negative when x < 1, so it is concave

down on the left, and concave up on the right.
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Figure 3.4: The graph of h(x) = x+2
x−1

3.6 Physical Optimization Problems

Through most of this section we’ve been finding the minimum and maximum values of

functions purely to understand the functions. But the techniques used to maximize a function

are extremely useful in finding optimum inputs to real world processes.

In other words, we’re going to do more word problems.

Example 3.38. Suppose we have 2400 feet of fencing and we’d like to build a rectangular

fence that encloses the most possible area. How can we do this?

If we have a rectangular fence, then one side will have a length L and another will have

a width W . We know that the area A = W · L and that 2W + 2L = 2400. So we can write

W = 1200− L and see that A = L(1200− L). We’d like to maximize area.

We observe that our L has to be between 0 and 1200, so we’re maximizing the function A

on the closed interval [0, 1200]. By the extreme value theorem there must be some absolute

maximum.

A′ = 1200− 2L. We see that the only critical point is L = 600. A(0) = A(1200) = 0 and

A(600) = 6002 = 360, 000. A(600) is the largest of these values, and so is the absolute max.

But what if we build the fence against a river, so we only need to build three sides? Then

A = W ·L but W +2L = 2400, and thus W = 2400− 2L. Then we have A = L(2400− 2L).

A is still a function of L defined on [0, 1200], and we compute A′ = 2400− 4L and the only

critical point is L = 600, again. A(0) = A(1200) = 0, and A(600) = 600 · 1200 = 720, 000.

This last is the largest of the values, and the absolute max.

Example 3.39. Suppose we want to construct a cylindrical can that holds one liter of liquid,

and we want to use the least possible metal to construct the can—and thus build the can

with the least possible surface area. We have A = 2πr2 + 2πrh.

To eliminate the h, we note that the can holds one liter or 1000 cm3, and thus πr2h = 1000

and h = 1000
πr2

. (We also could have written it as one cubic decimeter, but nobody ever works

in decimeters). Thus we have A = 2πr2 + 2000
r
.
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A′ = 4πr − 2000
r2

= 4πr3−2000
r2

= 0 when πr3 = 500, or when r = 3
√

500/π. So this is the

only critical point. Our function A has domain (0,+∞) so we can’t use the extreme value

theorem here. But we can see that A′ is negative when r < 3
√
500/π and positive when

r > 3
√

500/π, so that must be a global minimum.

(Alternatively: A′′ = 4π + 4000
r3

is always positive, so A is concave upwards everywhere,

and has a unique minimum at its critical point).

But now what if the curved material for the sides costs more than the flat material for

the ends, and we want to minimize cost? Say the material for the sides costs twice as much

as material for the base. Then we have C = 2πr2 + 4000
r
, and C ′ = 4πr − 4000

r2
= 0 when

πr3 = 1000, when r = 10/ 3
√
π. This is the only critical point, and a similar argument to

before shows it must be a global minimum.

We can break down our approach to these problems just as we did for related rates.

(a) Draw a picture of the setup.

(b) Create notation. Give names to all the quantities involved in the problem. Write down

any equations that relate them.

(c) Express the quantity you want to maximize or minimize as a function of the other

quantities in the problem. Rewrite it so it’s a function of a single variable.

(d) Take the derivative and find the critical points.

(e) Determine the absolute maximum or minimum.

(f) Do a sanity check! Does your answer make sense?

Example 3.40. If we have 1200 cm2 of cardboard to make a box with a square base and

an open top, what is the largest possible volume of the box?

Well, we know that the total surface area of the box is A = 1200, and we also know that

if the height of the box is h and the length of one of the base sides is b, then the area is

A = b2 + 4bh. So we can write h = 1200−b2

4b
. We also know that the volume of the box is
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V = b2h, so we have

V = b2h = b2
1200− b2

4b

= 300b− b3/4

V ′ = 300− 3b2/4

300 = 3b2/4

400 = b2

20 = b

so the only critical point occurs at 20. We see that V (20) = 400 · 10 = 4000, so this is the

largest possible volume of the box. (We can see that this is the absolute maximum via the

Extreme Value Theorem, and observing that V (0) = V (
√
1200) = 0.

Example 3.41. Suppose a man wishes to cross a 20 m river and reach a house on the other

side that is 48m downstream. The man can walk at 5 m/s or swim at 3 m/s. What is the

optimal path for him to take to reach the house?

The man will swim for some point on the bank of the river, and then walk the other

way. Let b be a number in [0, 48] representing how far he travels towards the house. Then

he travels
√
400 + b2 meters in the river, at a speed of 3 m/s, and thus spends 1

3

√
400 + b2

seconds in the river. He then spends (48− b)/5 seconds walking.

So total time spent is

T =

√
400 + b2

3
+

48− b

5

T ′ =
b

3
√
400 + b2

− 1

5

1

5
=

b

3
√
400 + b2

3
√
400 + b2 = 5b

3600 + 9b2 = 25b2

225 = b2

15 = b

so we have a critical point at b = 15. On this path we have T = 25/3+33/5 = (125+99)/15 =

224/15 ≈ 14.9 seconds.

What about the two other paths? If we head straight to the house, we travel
√
482 + 202 =

52 meters at a speed of 3 m/s, for a total time of 17.3 seconds. If instead we head straight
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across the river to begin walking as soon as possible, we travel 20 m at 3 m/2 and then 48

m at 5 m/s, for a total time of 20/3 + 48/5 = (100 + 144)/15 = 244/15 ≈ 16.3 seconds. So

the shortest path has us swim 25 m and deposits us 33 m from the house.

Example 3.42. A piece of wire 10 m long is going to be cut into two pieces. WE will fold

one piece into a square and the other into an equilateral triangle. What is the largest joint

area we can enclose? What is the smallest?

Let L be the length of the wire bent into a triangle (so that 10 − L is the length of

the wire bent into a square). Then the area of the square is A1 = (10 − L)2/16. The

area of the triangle is bh/2; the length of the base is L/3 and the height of the triangle

is sin(π/3) · L/3 = (1/2) · (
√
3/2) · L/3 =

√
3L/12. So the area of the triangle is A2 =

(1/2)(L/3)(
√
3L/6) = L2

√
3/36. Then we have

A = A1 + A2 = (100− 20L+ L2)/16 + L2
√
3/36

A′ = −5/4 + L/8 + L
√
3/18

5/4 = L/8 + L
√
3/18

90 = 9L+ 4
√
3L

L = 90/(9 + 4
√
3)

This is the only critical point. At that point,

A ≈ 1.2 + 1.5 = 2.7.

But checking the endpoints, if we use all the wire for the square, we have area A = 100/16 =

6.25 and if we use all the wire for the triangle we have A = 100
√
3/36 ≈ 4.8. So we get the

biggest area when we use all the wire for the square, and the smallest if we use 90/(9+4
√
3)

m of wire for the triangle.
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