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Common Notation

Symbol Meaning Reference
R the set of real numbers Jl|_
€ is an element of 1.1
Q the set of rational numbers E
Z the set of integers ﬁ
N the set of natural numbers ﬁ

Z/nZ the set of integers modulo n ﬁ
F, the finite field of order p 1.1
C the set of complex numbers E
z complex conjugation E
|| complex modulus or absolute value 1.2

ﬁ vector from A to B E
@) Origin E
R? The Cartesian plane ;
R3 Euclidean Threespace o 1]
R™ Real n-dimensional space 5
™ The space of n-dimensional vectors over F ﬁ
V a vector space 2_3
0 The zero vector 5
vV, W vectors E
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1 Fields

From calculus we should be used to working with the real numbers, which we denote R.
We're used enough to them that we don’t really think about them a lot, honestly. But the
real numbers aren’t the only kind of numbers out there, and we want flexibility to consider
other kinds as well. So we want to describe the important properties of the real numbers

that we use frequently, and then see what else has those properties.

1.1 Introduction to Fields

Definition 1.1. Suppose F is a set with two binary operations, + and x. We say F is a

field if it satisfies the following axioms:
(a) (Closure) If z,y € F then x +y,zy € F.
(b) (Commutativity) x +y =y + x and zy = yz for all z,y € F.
(c) (Associativity) (x +y) + 2z =2+ (y + 2) and (zy)z = z(yz) for all x,y,z € F.

(d) (Identities) There is an element 0 € F such that x + 0 = x for all x € F. There is an
element 1 € [F such that 1z = x for all x € F.

(e) (Inverses) For every z € F there is a —z € F such that x + (—z) = 0. For every

non-zero x € F there is an element 2~ ! € F such that zz=! = 1.
(f) (Distributivity) z(y + 2) = zy + zz for all x,y,z € F.

Remark 1.2. The real numbers, of course, have more properties than this—barely. The real
numbers are the unique complete ordered field. “Ordered” means that if we have two distinct
real numbers, we can say which one is bigger. “Complete” means that it’s good for doing
calculus. Neither of those properties will be important in this course very often, so we will

be able to do almost everything over “fields” in general.

Example 1.3. The set QQ of rational numbers is a field. The sets R and C of real and
complex numbers are fields.

The set Z of integers is not a field, because it does not have multiplicative inverses. (We
call this set a ring).

The set N of natural numbers is not a field. It does not have multiplicative or additive

inverses.
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The set Z/nZ of integers modulo n is is a field if n is prime, and is not a field if n is
composite. We sometimes call these the finite fields Z/pZ or F,. These may come up from

time to time in this course.

Example 1.4. Consider specifically the set Fo = Z/27Z = {0,1}, the integers mod 2. We

have the operations

0+0=0 0+1=1+0=1 1+1=0
0x0=0 O0x1=1x0=0 1x1=1.

We can check the field axioms and see this is a field.
Proposition 1.5. Let F be a field. For all a,b,c € F, we have
(a) (Cancellation of addition) If a +b=a + ¢, then b= c.
(b) (Cancellation of multiplication) If a -b=a-c and a # 0, then b = c.
(¢c) a-0=0.
(@) (~a)-b=a-(~b) = —(a-b).
(e) (—a)- (~b) = a-b.

But the two main examples we will see in this course are the real numbers and the complex
numbers. We'll assume you’re familiar with the real numbers from calculus, so we won’t talk
to much more about their specific properties. But we do need to do a quick overview of the

complex numbers.

1.2 The complex numbers

Definition 1.6. A complex number is a number z = a + bi where a,b € R. We say that
a = R(z) is the real part and b = J(2) is the imaginary part. The set of all complex numbers

is C = {a + bi : a,binR}.

We can add complex numbers in the obvious way. We can also multiply them, once we

take the rule that i = —1.
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(a+bi)+ (c+di)=(a+c)+ (b+d)i
(a+ bi)(c+ di) = ac + adi + bei + bdi®
= ac + adi + bci + bd(—1)
= (ac — bd) + (ad + be)i

Example 1.7. Let 2 =3 —¢ and w = 7+ 4¢. Then z 4+ w = 3 + pi + 3¢, and
2w = (3—1)(m+4i) =37 +4+ (12 — n)i.

We want to check that C is also a field, which means we need to check the six properties
in definition We just showed that addition and multiplication are closed; most of the
properties are very easy to check, given that we know that the real numbers have those

properties.

Proposition 1.8 (Commutativity of complex numbers). If z,w € C, then z +w = w + z

and zw = wz.

Proof. Let z =a+ bi and w = ¢+ di. Then

z4+w=(a+bi)+ (c+di)=(a+c)+ (b+d)
wHz=(c+di)+ (a+bi)=(c+a)+ (d+0b)i
=(a+c)+ (b+d)i by additive commutatitivity

Similarly,

2w = (a+ bi)(c+ di) = (ac — bd) + (ad + bc)i
wz = (c+di)(a+bi) = (ca — db) + (cb+ da)i

= (ac — bd) + (bc + ad)i by multiplicative commutativity
= (

ac — bd) + (ad + be)i by additive commutativity.
[l

The important thing to notice about this proof, as a matter of proof technique, is that
we don’t need to do anything weird and fancy, or special to the complex numbers, to check
these properties. We're just using the fact that the complex numbers are made up of real
numbers, and we know the real numbers are a field. We’ll use this approach constantly

throughout the semester.
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But there’s one property that isn’t trivial: multiplicative inverses. How do we divide by

a complex number? We can start by defining a useful operation:

Definition 1.9. Let z = a + bi. Then the complex conjugate of z is the complex number

Z=a — bi.

This complex conjugate has a number of useful properties, but the one we're interested

in here is that
2z = (a+ bi)(a — bi) = a*> + b* + (ab — ab)i = a* + V?,

which is a real number. And we know how to divide by real numbers!

So if z =a + bi € C is not zero, then we can define a new number

z a— bi a b

= = — 1.
2z a?4+b?  a?4+b2  a? 4 b2

w =

This is a complex number since 34, ﬁ € R, and we can check that

zw:(a—l—bi)< a __ b )

2+ At b

_ a? N b2 N ab ab ,
S \a2+ b a2 2+ a2+2)’
a’® + b . .

Example 1.10. We'll still take 2 =3 — ¢ and w = m + 4i. Then z = 3 + 4, and
1 2 3+t 34_ i
zZz 3+11 10 10

So we can compute

SHRS
I
)
+
IS
=
VRS
Sl
+
S
N———

a4 (2T,
10 10 10 10

_sr—d4 12—
~ 10 0 "

Proposition 1.11 (Properties of the complex conjugate). Let z,w € C. Then:
(a) Z = z.
(b) z+w=7Z+w.
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(wzgjzi#w#Q

w

(e) z is a real number if and only if Z = z.
Proof. The proofs of (b) and (c) are in the book, so we’ll prove the other parts.
(a) Let z=a+bi. Thenz=a—biand soz =a — (=b)i = a + bi = z.
(d) Let z =a+ bi and w = ¢+ di where w # 0. Then we can compute
(i>_ a+bi\ [ (a+bi)(c—di)
w/  \c+di) c + d?

ac+bd —ad+ bc

+ {
Ct+d2

ac+bd+ad—bc,
R e

But we can also compute out the other side, and see

Z a—0bi  (a—0bi)(c+ di)
T c—di  A+d

_ (ac+bd) + (ad — be)i

B c? + d? '

and so @ =

w

(e) If z is real, then z = a + 0i for some ¢ € R. Then Z=a — 0i = a+ 0i = z.

Conversely, suppose z = a + bi and z = zZ. We know that Z = a — bi, so we have
a + bt = a — bi. This implies that b1 = —bi and thus that b = —b, so b = 0. Thus
z=a+0i € R,

[]

One of the lenses this course will keep returning to is the idea of geometry, and a little
of that can help us right now. If we have a pair of real numbers, we can graph it on a plane,
using the first number for the horizontal coordinate and the second number for the vertical
coordinate. But a complex number z = a 4 bi is a pair of real numbers. And that means
that, just like we can think of the real numbers as forming a line:

we can think of the complex numbers as forming a plane:
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-4 -3 -2 -1 0 1 2 3 4

4+2i

-3+

We’ll return to this geometric picture soon, but for right now I want to think about
distance. You can see each complex number implies a right triangle, so we can find the
distance from the origin 0 4+ 0¢ with the Pythagorean Theorem. If z = a + bi the lengths of

these sides are just a and b, so we have
Definition 1.12. Let z = a + bi where a,b € R. The absolute value or modulus of z is
|z| = Va? + b2

Conveniently we can compute this in terms of more fundamental operations, because we
saw that z - Z = a® + b%. Thus |z| = V2Z.

We can derive the following properties for the complex absolute value:
Proposition 1.13. Let z,w € C. Then
(a) zw| = |2] - uw].
() |2| = ifw#0.
(c) |z +w| < |z| + |w| (Triangle Inequality).

(d) |z| — |w| < |z +w| (Reverse Triangle Inequality).
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2 Vector Spaces

In this course we want to study “high-dimensional spaces” and “vectors”. That’s not very
specific, though, until we explain exactly what we mean by those things.

An important idea of this course is that it is helpful to study the same things from more
than one perspective; sometimes a question that is difficult from one perspective is easy from
another, so the ability to have multiple viewpoints and translate between them is extremely
useful.

In this course we will take three different perspectives, which I am calling “geometric”,
“algebraic”, and “formal”. The first involves spatial reasoning and pictures; the second
involves arithmetic and algebraic computations; the third involves formal definitions and
properties.

A common definition of a vector is “something that has size and direction.” This is a
geometric viewpoint, since it calls to mind a picture. We can also view it from an algebraic
point of view by giving it a set of coordinates. For instance, we can specify a two-dimensional
vector by giving a pair of real numbers (x,y), which tells us where the vector points from
the origin at (0,0).

The formal perspective is the most abstract and sometimes the most confusing, but often
the most fruitful. This is the approach we took in section when we defined a field: there,
we took the properties the real numbers satisfy, and looked for other types of numbers that
work the same way. Here we’re going to start with the “ordinary” types of vectors we see in
physics or in multivariable calculus, and abstract out their properties.

In the table below I have several concepts, and ways of thinking about them in each
perspective. It’s fine if you don’t know what some of these things mean, especially in the

“formal” column; if you knew all of this already you wouldn’t need to take this course.

Geometric Algebraic Formal
size and direction n-tuples vectors
consecutive motion pointwise addition vector addition
stretching, rotations, reflections matrices linear functions
number of independent directions number of coordinates dimension
plane system of linear equations subspace
angle dot product inner product
Length magnitude norm
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2.1 Motivation: Geometric Vectors

You should be familiar with the Cartesian plane from high school geometry. (It is named
after the French mathematician René Descartes, who is credited with inventing the idea of
putting numbered cordinates on the plane.)

As probably looks familiar from high school geometry, given two points A and B in the
plane, we can write E for the vector with initial point A and terminal point B.

Since a vector is just a length and a direction, the vector is “the same” if both the initial
and terminal points are shifted by the same amount. If we fix an origin point O, then any
point A gives us a vector O_,Zl Any vector can be shifted until its initial point is O, so each
vector corresponds to exactly one point. We call this standard position.

We represent points algebraically with pairs of real numbers, since points in the plane
are determined by two coordinates. We use R* = {(z,y) : =,y € R} to denote the set of
all ordered pairs of real numbers; thus R? is an algebraic description of the Cartesian plane.
(We use R to denote the set of real numbers, and the superscript ? tells us that we need two

of them). We define the origin O to be the “zero” point (0, 0).
x
Y

Definition 2.2. We define Fuclidean threespace to be the three-dimensional space described

s
Definition 2.1. If A = (z,y) is a point in R?, then we denote the vector OA by

We can do something very similar with threespace.

by three real coordinates. We notate it R3. The point (0,0, 0) is called the origin and often

notated O.
T

—
If A= (z,y,z2) is a point, then the vector OA is denoted |y

z

There are two operations we can do on these vectors:

(a) We can add two vectors together. Geometrically, this corresponds to following one
vector and then the other; you can picture this as laying them tip-to-tail. Algebraically,

we just add the coordinates.

(b) We can multiply a vector by a scalar. Geometrically corresponds to stretching a vector

by some factor. Algebraically we just multiply each coordinate by the scalar.
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1 4
Example 2.3. Let v= [2| and w = | —2| . Then
3 3
[ 3 -8
v+w= |0, 3-v=16]|,and (—=2)-w= |4
9 —6

2.2 An Algebraic Generalization

There are two straightforward ways we can generalize our Cartesian space R3. The most
obvious is just to replace the 3 with a 4, or a 5, or a 6. If R? is ordered pairs of real numbers,

and R? is ordered triples, then R" is ordered n-tuples.
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Definition 2.4. We define real n-dimensional space to be the set of n-tuples of real numbers,
R™ = {(x1,29,...,2,) : & € R}.
By “abuse of notation” we will also use R" to refer to the set of vectors in R". We define

scalar multiplication and vector addition by

1 Xy 1 Y1 1+
T2 T P Y2 Ta + Y2
r = + = :
Tn Ty Tp Yn T + Yn
1 5
3 — o
Example 2.5. Let v = 5 and w = 5 be vectors in R*. Then
4
1 5 -3
3 —1 -9
V+w= + = , —3-v=
2 2 —6
4 8 12 —12

The other way we can generalize this is to not work over the real numbers. The real

numbers are a good model for every-day geometry, so we started there. But algebraically we

could do all of these same operations with any other field.

Definition 2.6. Let F be any field. Then F"* = {(z1,z9,...,2,) : 2; € F} is the set of

ordered n-ples over F. We then define scalar multiplication and vector addition by

1 Ty 1 Y1 r1+
T2 Ty T Yo To + Yo
r = + = )

Notice that definition [2.6fs ezactly the same as definition 2.4 except we don’t specify
what the field is.

Example 2.7. Let v = (3 +1,1,2i) and w = (2,5i,4 — 2i) be vectors in C3. Then

v+w=(5+1i,1+5i,4)
(2—i)v=(7—14,2—14,2+ 4).

Notice that the scalar is a complex number, because we’re working over C.
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Example 2.8. Let v = (1,2,3) and w = (3,4, 1) be vectors in F5. Then

v+w=(4,1,4)
ov = (2,4, 1).

Our scalar is indeed an element of F5, and all the arithmetic is being done mod 5.

2.3 Defining Vector Spaces

We want to figure out what properties we're actually using to work with these sets of vectors.
Obviously, we have a set of vectors, and a set of scalars; and we have two operations, addition
and scalar multiplication. These operations also behave “nicely”, following all of the rules

in this long and tedious definition:
Definition 2.9. Let F be a field, and V' be a set, together with two operations:

e A vector addition which allows you to add two elements of V' and get a new element

of V. If v,w € V then the sum is denoted v + w and must also be an element of V.

e A scalar multiplication which allows you to multiply an element of V' by a “scalar”
element of F and get a new element of V. If a € F and v € V then the scalar multiple

is denoted a - v and must also be an element of V.
Further, suppose the following axioms hold for any u,v,w € V, and any a,b € F:
(a) (Closure under addition) u+v € V
(b) (Closure under scalar multiplication) au € V
(¢) (Additive commutativity) u+v =v+u
(d) (Additive associativity) (u+v)+w=u+ (v+w)

(e) (Additive identity) There is an element 0 € V called the “zero vector”, such that

u + 0 = u for every u.

(f) (Additive inverses) For each u € V there is another element —u € V such that u +
(—u) =0.

(g) (Distributivity) a(u+ v) = au + av
(h) (Distributivity) (a + b)u = au + bu
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(i) (Multiplicative associativity) a(bu) = (ab)u
(j) (Multiplicative Identity) 1u = u.
Then we say V is a Vector Space over F, and we call its elements vectors.

Remark 2.10. Technically, those first two axioms are superfluous; if you can add two elements,
you can add two elements and also get something. But they still need to be true: if adding
two vectors doesn’t give you another vector, you don’t have a vector space. And we have to

check them to make sure our vector space definition makes sense.

Example 2.11. F” is a vector space, with the previously defined vector addition and scalar
multiplication. We check:
Let u = (uy,...,uy).v=(v1,...,0,),Ww = (wy,...,w,) € F" 1 s € F. Then, knowing

the usual rules of commutativity and associativity of basic arithmetic, we can compute:

(a) u+v=(ur,...,u,) + (v1,...,0,) = (ug +v1,...,u, +v,) € F".

ra =1y, . .., Uy) = (rug,...,ru,) € F.

U+ V= (Up, . Un) + (V1 U) = (U v, U )

= (v + Ut Uy Up) = (V1 .., 0) + (U, ... uy) =V +u

(u+v)+w=(u+v1,...,U, +0,) + (w1,...,w,) = (V1 + Uy + w1, ...,0, + Up + wy,)
= (v1,...,0n) F (U +wy, . Uy +wy) = V4 (U4 W)

(e) We have 0 = (0,...,0). Then
0+v=>04vy,....,.04v,) = (v1,...,0,) = V.
(f) Set —u = (—uy,...,—u,). Then

u+ (—u) = (ug + (—u1), ..., up + (—uy)) = (0,...,0) = 0.
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(g)
rla+v) =r(u; + v, ... uy +v,) = (r(ug +v1), ..., (U, + vy))
= (ruy +rvy, ..., 1u, +10,) = (TUt, ... TUR) + (T, ..., TU,) = TU ATV,
(h)
(r+syu=(r+s)(uy,...,u,) = ((r+s)uy,...,(r+s)uy,)

= (ruy + suy, ..., ru, + su,) = (ruyg, ..., ru,) + (suq, ..., Su,) = ru+ su.
(i)
r(su) =r(suy,...,su,) = (rsug, ..., rsu,) = rs(uy, ..., uy,).
()
Tlu=1(ug,...,u,) =1 up, ..., 1 uy) = (ug,...,u,) =u.

So what else is a vector space and “looks like R™”? The most important example in this

course will be matrices.

Definition 2.12. A matriz over a field F is a rectangular array of elements of F. A matrix
with m rows and n columns is @ m X n matriz, and we notate the set of all such matrices
by Mnsen(F), or just M,,x, if the field is clear from context. .

A m x n matrix is square if m = n, that is, it has the same number of rows as columns.
We will sometimes represent the set of n x n square matrices by M,,.

We will generally describe the elements of a matrix with the notation

a1 a12 ce Q1n

921 929 ... Qop
(aiy) =

m1 Am2 ... Gmp

We can define operations on these matrices:

o If A = (a;;)is an m x n matrix over a field F, and r € F, then we can multiply each

entry of the matrix A by the r. This is called scalar multiplication and we say that r

is a scalar. ~ _
rai Ta12 ... Traip
rasy TQ929 ... Taop
rA = (ra;) =
rami Tamo ... TQmp
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o If A= (a;;) and B = (b;;) are two m x n matrices over a field I, we can add the two

matrices by adding each individual pair of coordinates together.

a1 +by anp+bi2 ... ap+biy,

21 + b21 a92 + b22 e Aoy, + an
A+B: (Clij—i‘b,;j) =

Am1 + bml Am2 + me s Qmp + bmn

Example 2.13. The set M,,«,(F) of m x n matrices is a vector space under the addition

and scalar multiplication defined above, with zero vector given by

0=(0)=

00 ... 0

I'm not going to prove this, but you can see that it should be true for the same reason
FR™ is a vector space: they're both just lists of numbers, but one is arranged in a column

and the other in a rectangle. The operations are the same.

Example 2.14. Pick a field F, and let Pp(z) = {ag + a1+ --- + a,2" : n € N,a; € F} be
the set of polynomials with coefficients in F. Define addition by

(ap+ a1z + -+ -+ apx™) + (bo + byxz + - - - + b, z") = (ag + by) + (a1 + b1)x + - - + (a, + b,)z"
and define scalar multiplication by

r(ap +ayx + -+ ap,x™) = rag + ragx + - - + rax”.
Then Pr(z) is a vector space.

Example 2.15. Fix a field F, and let S be the space of all doubly infinite sequences
{ue} = { - y—2,¥-1,%,Y1,Y2, -+ : y; € F}. We call this the space of (discrete) signals:
it represents a sequence of measurements taken at regular time intervals. These sorts of
regular measurements are common in engineering and digital information applications (such
as digital music).

We define addition and scalar multiplication on the space of signals componentwise, so
that

{..,z_1,z0,x1,... Y+ {  y_1,%,%1,--- } ={ .21+ y_1, 20+ Yo, 21 + y1,... }
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and
Y- Y0 Y, =4 Y-, Yo, Ty, - )

(In essence, S is composed of vectors that are infinitely long in both directions). Then S is

a vector space.

Example 2.16. Let F(R,R) = F be the set of functions from R to R—that is, functions
that take in a real number and return a real number, the vanilla functions of single-variable
calculus. Define addition by (f + g)(x) = f(x) + g(z) and define scalar multiplication by
(rf)(x) =r- f(x). Then F is a vector space. You will prove this is a vector space in your

homework.

Example 2.17. The integers Z are not a vector space (under the usual definitions of addition
and multiplication). For instance, 1 € Z but .5-1=.5 ¢ Z.
(We only need to find one axiom that doesn’t hold to show that a set is not a vector

space, since a vector space must satisfy all the axioms).

Example 2.18. The closed interval [0,5] is not a vector space (under the usual operations)
, since 3,4 € [0,5] but 34+4=7¢[0,5].

Example 2.19. Let V = R with scalar multiplication given by r -z = rz and addition given
by x ®y = 2x +y. Then V is not a vector space, since t @y =2r+y #2y+x =y D x; in
particular, we see that 3@ 5 =11 but 56 3 = 13.

There are many more examples of vector spaces, but as you can see it’s fairly tedious to
prove that any particular thing is a vector space. In section we’ll develop a much easier
way to establish that something is a vector space, so we won’t develop any more examples

now.

2.3.1 Properties of Vector Spaces

The great thing about the formal approach is that we can show that anything that satisfies
the axioms of a vector space must aso follow some other rules. We’ll establish a few of those
rules here, though of course, there’s a sense in which the entire rest of this course will be
spent establishing those rules.

As before, you shouldn’t think of these rules as new facts; all of them are “obvious”. The
point is that if we get the list of properties from definition then all of these other things
still have to occur. It’s a guarantee that vector spaces behave how we expect—that they all

do behave like F", or indeed like R3, in all the ways we will expect.
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Proposition 2.20 (Cancellation). Let V' be a vector space and suppose u,v,w € V are

vectors. Ifu+w =v+w, thenu=1v.

Remark 2.21. We stated this law for fields earlier; now we're also claiming it holds for vector
spaces. But the proof is essentially the same in both cases. (This is the shadow of something
called “universal algebra”; there are many other algebraic structures we could define, which

will all have this same cancellation law for the same reason.)

Proof. By axiom we know that w has an additive inverse —w. Then we have

ut+w=v+w

(u+w) + (=w) = (v +w)+ (-w)

u+ (w+(—w)) =v+ (w+(—w)) Additive associativity
u+0=v+0 Additive inverses
u=v Additive identity.

]

Proposition 2.22. The additive inverse —v of a vector v is unique. That is, if v+u =0,

then u = —v.

Proof. Suppose v +u = 0. By the additive inverses property we know that v + (—v) = 0,

and thus v +u = v + (—v). By cancellation we have u = —v. O

Remark 2.23. In our axioms we asserted that every vector has an inverse, but didn’t require

that there be only one.

Proposition 2.24. Suppose V' is a vector space with u € V a vector and r € R a scalar.

Then:
(a) Ou=0
(b) 10 =0

(¢c) (—)u= —u.

Remark 2.25. We would actually be pretty sad if any of those statements were false, since it
would make our notation look very strange. (Especially the last statement). The fact that

these statements are true justifies us using the notation we use.
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Proof.  (a)
u=1-u=(0+1)u Multiplicative identity
=0u+1u Distributivity
=0u+u Multiplicative identity
O+u=0u+u Additive identity
0=0u Cancellation

(b) We know that 0 = 040 by additive identity, so 70 = (04-0) = r0+r0 by distributivity.

Then we have

0+70=r0+1r0 additive identity
0=r0 cancellation.
(c) We have
v+ (=1)v=11+(=1)v multiplicative inverses
=14+ (=1)v distributivity
=0v=0.
Then by uniqueness of additive inverses, we have (—1)v = —v.

]

Example 2.26. We’ll give one last example of a vector space, which is both important and
silly.
We define the zero vector space to be the set {0} with addition given by 0+ 0 = 0 and

scalar multiplication given by r -0 = 0. It’s easy to check that this is in fact a vector space.

Notice that we didn’t ask what “kind” of object this is; we just said it has the zero vector
and nothing else. As such, this could be the zero vector of any vector space at all. In section

2.4 we will talk about vector spaces that fit inside other vector spaces, like this one.

2.4 Vector Space Subspaces

Our very first two examples of a vector space were the Cartesian plane and Euclidean three-
space. But we see that while we can think of them as totally distinct vector spaces, the plane
sits inside threespace, as a subset. In fact it sits inside it in a number of different ways; we

can start by taking the xy plane, the zz plane, or the yz plane.
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Definition 2.27. Let V be a vector space. A subset W C V' is a subspace of V if W is also

a vector space with the same operations as V.

Example 2.28. The Cartesian plane R? is a subset of threespace R3. Similarly the line R!
is a subset of the plane R%. (And we can stack this up as high as we want; R” C R®.

In general, if n < m then F" is a subspace of F™.
Example 2.29.

Example 2.30. Let V = R? and let W = {(x,y,z + y) € R3}. Geometrically, this is a
plane (given by z = = + y). We could in fact write W = {(z,y,2) : z = x + y}; this is a
more useful way to write it for multivariable calculus, but less useful for lienar algebra. W
is certainly a subset of V', so we just need to figure out if W is a subspace.

We could do this by checking all ten axioms, but that would take a very long time; we
want a better tool. And it seems like we should be able to avoid a lot of that work since we

already know many of the axioms hold in R3.

In fact, one major reason to care about subspaces is that it allows us to avoid a lot of
work. If W C V, it seems like most of the vector space axioms should hold automatically.
After all, if elements of V' add commutatively, and elements of W are in V', then the elements

of W must add commutatively. And in fact there’s very little we have to check.

Proposition 2.31. Let V' be a vector space over a field F and W C V. Then W 1is a subspace
of V if and only if the following three “subspace” conditions hold:

(a) 0 € W (zero vector);
(b) Whenever u,v € W then u+v € W (Closed under addition); and
(¢) Whenever r € F and u € W then ra € W (Closed under scalar multiplication).

Proof. Suppose W is a subspace of V. Then W is a vector space, so it contains a zero vector
and is closed under addition and multiplication by the definition of vector spaces.

Conversely, suppose W C V' and the three subspace conditions hold. We need to check
the ten axioms of a vector space. But most of these properties are inherited from the fact
that any element of W is also an element of V', and W has the same operations as V. The
only really non-trivial one is that the additive inverse exists.

Let u,v,w € W (and thus u,v,w € V), and r,s € F.

(a) W is closed under addition by hypothesis.
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(b) W is closed under scalar multiplication by hypothesis.

(c) u+v=v+usince V is a vector space.

(d) (u+v)+w=u+ (v+w)since V is a vector space.

(e) 0 € W by hypothesis, and u + 0 = u since V' is a vector space.
(f) —u = (—1)u € W by closure under scalar multiplication.

(g) r(u+v) =ru+rvsince V is a vector space.

(h) (r+ s)u =ru+ susince V is a vector space.

(i) (rs)u =r(su) since V is a vector space.

(j) 1u = usince V is a vector space.
Thus W satisfies the axioms of a vector space, and is itself a vector space. O

Example 2.32 (Continued). Let’s continute to take V =R3 and W = {(z,y,z +y) € R3}.
To show that W is a subspace of V' we only need to check three things.
If (1,91, 21 + Y1), (T2, Y2, T2 + y2) € W then

T To T1+ 2o
(1 + Y2 = Y1+ Y2 cW.
T+ | T2+ Y2 (21 +22) + (y1 + v2)
If r € R, then
] [ re
Tl oy = ry cW.
T+y (rz) + (ry)
And the zero vector is ) -_ -_
0 0
0f = 0 eW.
0 0+0

Thus W is a subspace of V.

Example 2.33. If V is a vector space, then 0 and V' are both subspaces of V. We don’t
actually need to check anything here, since both are clearly subsets of V', and both are
already known to be vector spaces.

(When we want to ignore this possibility we will refer to “proper” or “nontrivial” sub-

spaces, which are neither the trivial space nor the entire space).
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Example 2.34. Let V =R? and let W = {(z,2%)} = {(x,y) : y = 2*} C V. Then W is not
a subspace.

W does in fact contain the zero vector (0,0) = (0,0%). But we see that (1,1) € W, and
(1,1)+ (1,1) = (2,2) ¢ W. Thus W is not a subspace.

Example 2.35. Let V =2 and let W = {(0,0), (1,2),(2,1)} C V. Is W a subspace?
It’s easy to see that 0 = (0,0) € W. We just need to check it’s closed under addition
and scalar multiplication.

It’s a little hard to check this without just testing elements. But we compute:

(0,0) + (0,0) = (0,0) € W (0,0)+ (1,2) = (1,2) e W
(0,0)+ (2,1) = (2,1) e W (1,2)+(1,2) = (2,1) e W
(1,2) + (2,1) = (0,0) € W (2,1)+ (2,1) = (1,2) e W.

So W is closed under addition and scalar multiplication, so it’s a subspace.

Example 2.36. Let V = P(z) and let W = {ajz + --- + a,2"} = zP(x) be the set of

polynomials with zero constant term. Is W a subspace of V7

(a) The zero polynomial 0 4 0z + - - - + 0z = 0 certainly has zero constant term, so is in
W.

(b) If a1z + -+ + aya™ and byx + - - - + b,z™ € W, then
(a1x+ - 4 apa™) + (byx + - -+ bpa™) = (a1 + b))z + - + (a, + by)a" € W.

Alternatively, we can say that if we add two polynomials with zero constant term, their

sum will have zero constant term.
(c) f reR and a1z + -+ + a2 € W, then
r(az+ -+ apx") = (ray)r + - - + (ra,)z"
has zero constant term and is in W.
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Thus W is a subspace of V.

Example 2.37. Let V = P(z) and let W = {ay + a1z} be the space of linear polynomials.
Then W is a subspace of V.

(a) The zero polynomial 0 + O0x € W.
(b) If ag + ayx,by + bz € W, then (ag + ar1x) + (by + brx) = (ap + by) + (a1 + by)z € W.
(c) If r € R and ag + ayz € W, then r(ag + a1x) = rag + (ra;)z € W.

Example 2.38. Let V = P(z) and let W = {1 + ax} be the space of linear polynomials
with constant term 1. Is W a subspace of V7
No, because 0 =0+ 0z ¢ W.

Exercise 2.39. Fiz a natural number n > 0. Let V = P(x) and let W = P, (x) = {ao +

a1z + -+ -+ a,z™} be the set of polynomials with degree at most n. Then P,(x) is a subspace

of P(x).

Example 2.40. Let V = F(R,R) be the space of functions of one real variable, and let
W = D(R,R) be the space of differentiable functions from R to R. Is W a subspace of V7

(a) The zero function is differentiable, so the zero vector is in W.

(b) From calculus we know that the derivative of the sums is the sum of the derivatives; thus

the sum of differentiable functions is differentiable. That is, (f +g¢)'(z) = f'(x)+¢'(z).

Soif f,g € W, then f and g are differentiable, and thus f + g is differentiable and thus
in W.

(c¢) Again we know that (rf)'(z) =rf'(x). If fisin W, then f is differentiable. Thus rf
is differentiable and therefore in W.

Example 2.41. Let V = F(R,R) and let W = F([a, b],R) be the space of functions from
the closed interval [a,b] to R. We can view W as a subset of V' by, say, looking at all the

functions that are zero outside of [a, b]. Is W a subspace of V7
(a) The zero function is in W.
(b) If f and g are functions from [a,b] — R, then (f + g) is as well.
(c) If f is a function from [a,b] — R, then rf is as well.
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Example 2.42. Let V = F(R, R). Then C(R,R) the space of continuous real-valued func-
tions is a subspace of V. So iare D(R, R) the space of differentiable functions and C*(RR, R)

the space of infinitely differentiable functions.

Example 2.43. Let V = F(R,R) and let W = {f : f(z) = f(—x)Vx € R} be the set of even
real-valued functions, the functions that are symmetric around 0. Then W is a subspace of
V.

Example 2.44. Let V = F(R,R) and let W = F(R, [a, b]) be the space of functions from R
to the closed interval [a, b]. Is W a subspace of V7
No! The simplest condition to check is scalar multiplication. Let f(z) = b be a function

in V. Let r = (b+1)/b. Then (rf)(z) = fb=>b+1 and thus rf ¢ W.

Example 2.45. Let V = S be the space of signals, and let W be the space of signals that are
eventually zero. That is, W = {{yx} : In such that y,, = 0¥m > n}. Then W is a subspace
of V.

The space {{yx} : yo = 0} is a subspace of V. But the space {{yx} : yo = 1} is not.
Theorem 2.46. Any intersection of subspaces of a vector space V is a subspace of V.

Proof. Let € be any collection of subspaces of V' (there might be two, or three, or infinitely
many subspaces in C). Let W be the intersection of all subspaces in C.

Since every subspace contains 0, therefore, zero € W. Now let ¢ € F and z,y € W. Since
x and y are in the intersection of every subspace of C, they are contained in each subspace
in €. Because each subspace is closed under addition, therefore x + y is contained in each
subspace in € and so z +y € W.

Similarly, each subspace in € is closed under scalar multiplication, so each subspace
contains ax. Hence ax € W. Since W contains zero and is closed under addition and scalar

multiplication, by our subspace theorem, W is a subspace of V. O

2.5 Linear Combinations and Linear Equations

We have defined many vector spaces, but we started by looking at R™, which is much easier
to think about. One of the nicest and most helpful things about R" is the existence of
coordinates. Rather than, say, just drawing a point on a graph, or perhaps giving an angle
and a distance, we can specify a point in R3 by giving its z-coordinate, its y-coordinate, and
its z-coordinate. And similarly, we can 