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Common Notation

Symbol Meaning Reference

R the set of real numbers 1

∈ is an element of 1.1

Q the set of rational numbers 1.1

Z the set of integers 1.1

N the set of natural numbers 1.1

Z/nZ the set of integers modulo n 1.1

Fp the finite field of order p 1.1

C the set of complex numbers 1.2

z complex conjugation 1.2

|z| complex modulus or absolute value 1.2
−→
AB vector from A to B 2.1

O Origin 2.1

R2 The Cartesian plane 2.1

R3 Euclidean Threespace 2.1

Rn Real n-dimensional space 2.2

Fn The space of n-dimensional vectors over F 2.2

V a vector space 2.3

0 The zero vector 2.3

v,w vectors 2.3
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1 Fields

From calculus we should be used to working with the real numbers, which we denote R.
We’re used enough to them that we don’t really think about them a lot, honestly. But the

real numbers aren’t the only kind of numbers out there, and we want flexibility to consider

other kinds as well. So we want to describe the important properties of the real numbers

that we use frequently, and then see what else has those properties.

1.1 Introduction to Fields

Definition 1.1. Suppose F is a set with two binary operations, + and ×. We say F is a

field if it satisfies the following axioms:

(a) (Closure) If x, y ∈ F then x+ y, xy ∈ F.

(b) (Commutativity) x+ y = y + x and xy = yx for all x, y ∈ F.

(c) (Associativity) (x+ y) + z = x+ (y + z) and (xy)z = x(yz) for all x, y, z ∈ F.

(d) (Identities) There is an element 0 ∈ F such that x + 0 = x for all x ∈ F. There is an

element 1 ∈ F such that 1x = x for all x ∈ F.

(e) (Inverses) For every x ∈ F there is a −x ∈ F such that x + (−x) = 0. For every

non-zero x ∈ F there is an element x−1 ∈ F such that xx−1 = 1.

(f) (Distributivity) x(y + z) = xy + xz for all x, y, z ∈ F.

Remark 1.2. The real numbers, of course, have more properties than this—barely. The real

numbers are the unique complete ordered field. “Ordered” means that if we have two distinct

real numbers, we can say which one is bigger. “Complete” means that it’s good for doing

calculus. Neither of those properties will be important in this course very often, so we will

be able to do almost everything over “fields” in general.

Example 1.3. The set Q of rational numbers is a field. The sets R and C of real and

complex numbers are fields.

The set Z of integers is not a field, because it does not have multiplicative inverses. (We

call this set a ring).

The set N of natural numbers is not a field. It does not have multiplicative or additive

inverses.
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The set Z/nZ of integers modulo n is is a field if n is prime, and is not a field if n is

composite. We sometimes call these the finite fields Z/pZ or Fp. These may come up from

time to time in this course.

Example 1.4. Consider specifically the set F2 = Z/2Z = {0, 1}, the integers mod 2. We

have the operations

0 + 0 = 0 0 + 1 = 1 + 0 = 1 1 + 1 = 0

0× 0 = 0 0× 1 = 1× 0 = 0 1× 1 = 1.

We can check the field axioms and see this is a field.

Proposition 1.5. Let F be a field. For all a, b, c ∈ F, we have

(a) (Cancellation of addition) If a+ b = a+ c, then b = c.

(b) (Cancellation of multiplication) If a · b = a · c and a ̸= 0, then b = c.

(c) a · 0 = 0.

(d) (−a) · b = a · (−b) = −(a · b).

(e) (−a) · (−b) = a · b.

But the two main examples we will see in this course are the real numbers and the complex

numbers. We’ll assume you’re familiar with the real numbers from calculus, so we won’t talk

to much more about their specific properties. But we do need to do a quick overview of the

complex numbers.

1.2 The complex numbers

Definition 1.6. A complex number is a number z = a + bi where a, b ∈ R. We say that

a = R(z) is the real part and b = I(z) is the imaginary part. The set of all complex numbers

is C = {a+ bi : a, binR}.

We can add complex numbers in the obvious way. We can also multiply them, once we

take the rule that i2 = −1.
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(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2

= ac+ adi+ bci+ bd(−1)

= (ac− bd) + (ad+ bc)i

Example 1.7. Let z = 3− i and w = π + 4i. Then z + w = 3 + pi+ 3i, and

zw = (3− i)(π + 4i) = 3π + 4 + (12− π)i.

We want to check that C is also a field, which means we need to check the six properties

in definition 1.1. We just showed that addition and multiplication are closed; most of the

properties are very easy to check, given that we know that the real numbers have those

properties.

Proposition 1.8 (Commutativity of complex numbers). If z, w ∈ C, then z + w = w + z

and zw = wz.

Proof. Let z = a+ bi and w = c+ di. Then

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

w + z = (c+ di) + (a+ bi) = (c+ a) + (d+ b)i

= (a+ c) + (b+ d)i by additive commutatitivity

Similarly,

zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

wz = (c+ di)(a+ bi) = (ca− db) + (cb+ da)i

= (ac− bd) + (bc+ ad)i by multiplicative commutativity

= (ac− bd) + (ad+ bc)i by additive commutativity.

The important thing to notice about this proof, as a matter of proof technique, is that

we don’t need to do anything weird and fancy, or special to the complex numbers, to check

these properties. We’re just using the fact that the complex numbers are made up of real

numbers, and we know the real numbers are a field. We’ll use this approach constantly

throughout the semester.
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But there’s one property that isn’t trivial: multiplicative inverses. How do we divide by

a complex number? We can start by defining a useful operation:

Definition 1.9. Let z = a + bi. Then the complex conjugate of z is the complex number

z = a− bi.

This complex conjugate has a number of useful properties, but the one we’re interested

in here is that

zz = (a+ bi)(a− bi) = a2 + b2 + (ab− ab)i = a2 + b2,

which is a real number. And we know how to divide by real numbers!

So if z = a+ bi ∈ C is not zero, then we can define a new number

w =
z

zz
=

a− bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

This is a complex number since a
a2+b2

, −b
a2+b2

∈ R, and we can check that

zw = (a+ bi)

(
a

a2 + b2
− b

a2 + b2
i

)
=

(
a2

a2 + b2
+

b2

a2 + b2

)
+

(
ab

a2 + b2
− ab

a2 + b2

)
i

=
a2 + b2

a2 + b2
+ 0i = 1 + 0i.

Example 1.10. We’ll still take z = 3− i and w = π + 4i. Then z = 3 + i, and

z−1 =
z

zz
=

3 + i

32 + 11
=

3

10
+

i

10
.

So we can compute

w

z
= (π + 4i)

(
3

10
+

i

10

)
=

3π

10
− 4

10
+

(
12

10
+

π

10

)
i

=
3π − 4

10
+

12− π

10
i.

Proposition 1.11 (Properties of the complex conjugate). Let z, w ∈ C. Then:

(a) z = z.

(b) z + w = z + w.

http://jaydaigle.net/teaching/courses/2023-fall-2185/ 4

http://jaydaigle.net/teaching/courses/2023-fall-2185/


Jay Daigle George Washington University Math 2185: Linear Algebra

(c) zw = z · w.

(d)
( z
w

)
=

z

w
if w ̸= 0.

(e) z is a real number if and only if z = z.

Proof. The proofs of (b) and (c) are in the book, so we’ll prove the other parts.

(a) Let z = a+ bi. Then z = a− bi and so z = a− (−b)i = a+ bi = z.

(d) Let z = a+ bi and w = c+ di where w ̸= 0. Then we can compute

( z
w

)
=

(
a+ bi

c+ di

)
=

(
(a+ bi)(c− di)

c2 + d2

)
=

(
ac+ bd

c2 + d2
+

−ad+ bc

c2 + d2
i

)
=

ac+ bd

c2 + d2
+

ad− bc

c2 + d2
i.

But we can also compute out the other side, and see

z

w
=

a− bi

c− di
=

(a− bi)(c+ di)

c2 + d2

=
(ac+ bd) + (ad− bc)i

c2 + d2
.

and so
( z
w

)
=

z

w
.

(e) If z is real, then z = a+ 0i for some c ∈ R. Then z = a− 0i = a+ 0i = z.

Conversely, suppose z = a + bi and z = z. We know that z = a − bi, so we have

a + bi = a − bi. This implies that bi = −bi and thus that b = −b, so b = 0. Thus

z = a+ 0i ∈ R.

One of the lenses this course will keep returning to is the idea of geometry, and a little

of that can help us right now. If we have a pair of real numbers, we can graph it on a plane,

using the first number for the horizontal coordinate and the second number for the vertical

coordinate. But a complex number z = a + bi is a pair of real numbers. And that means

that, just like we can think of the real numbers as forming a line:

we can think of the complex numbers as forming a plane:
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We’ll return to this geometric picture soon, but for right now I want to think about

distance. You can see each complex number implies a right triangle, so we can find the

distance from the origin 0 + 0i with the Pythagorean Theorem. If z = a+ bi the lengths of

these sides are just a and b, so we have

Definition 1.12. Let z = a+ bi where a, b ∈ R. The absolute value or modulus of z is

|z| =
√
a2 + b2.

Conveniently we can compute this in terms of more fundamental operations, because we

saw that z · z = a2 + b2. Thus |z| =
√
zz.

We can derive the following properties for the complex absolute value:

Proposition 1.13. Let z, w ∈ C. Then

(a) |zw| = |z| · |w|.

(b)
∣∣ z
w

∣∣ = |z|
|w| if w ̸= 0.

(c) |z + w| ≤ |z|+ |w| (Triangle Inequality).

(d) |z| − |w| ≤ |z + w| (Reverse Triangle Inequality).
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2 Vector Spaces

In this course we want to study “high-dimensional spaces” and “vectors”. That’s not very

specific, though, until we explain exactly what we mean by those things.

An important idea of this course is that it is helpful to study the same things from more

than one perspective; sometimes a question that is difficult from one perspective is easy from

another, so the ability to have multiple viewpoints and translate between them is extremely

useful.

In this course we will take three different perspectives, which I am calling “geometric”,

“algebraic”, and “formal”. The first involves spatial reasoning and pictures; the second

involves arithmetic and algebraic computations; the third involves formal definitions and

properties.

A common definition of a vector is “something that has size and direction.” This is a

geometric viewpoint, since it calls to mind a picture. We can also view it from an algebraic

point of view by giving it a set of coordinates. For instance, we can specify a two-dimensional

vector by giving a pair of real numbers (x, y), which tells us where the vector points from

the origin at (0, 0).

The formal perspective is the most abstract and sometimes the most confusing, but often

the most fruitful. This is the approach we took in section 1.1 when we defined a field: there,

we took the properties the real numbers satisfy, and looked for other types of numbers that

work the same way. Here we’re going to start with the “ordinary” types of vectors we see in

physics or in multivariable calculus, and abstract out their properties.

In the table below I have several concepts, and ways of thinking about them in each

perspective. It’s fine if you don’t know what some of these things mean, especially in the

“formal” column; if you knew all of this already you wouldn’t need to take this course.

Geometric Algebraic Formal

size and direction n-tuples vectors

consecutive motion pointwise addition vector addition

stretching, rotations, reflections matrices linear functions

number of independent directions number of coordinates dimension

plane system of linear equations subspace

angle dot product inner product

Length magnitude norm
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2.1 Motivation: Geometric Vectors

You should be familiar with the Cartesian plane from high school geometry. (It is named

after the French mathematician René Descartes, who is credited with inventing the idea of

putting numbered cordinates on the plane.)

As probably looks familiar from high school geometry, given two points A and B in the

plane, we can write
−→
AB for the vector with initial point A and terminal point B.

Since a vector is just a length and a direction, the vector is “the same” if both the initial

and terminal points are shifted by the same amount. If we fix an origin point O, then any

point A gives us a vector
−→
OA. Any vector can be shifted until its initial point is O, so each

vector corresponds to exactly one point. We call this standard position.

We represent points algebraically with pairs of real numbers, since points in the plane

are determined by two coordinates. We use R2 = {(x, y) : x, y ∈ R} to denote the set of

all ordered pairs of real numbers; thus R2 is an algebraic description of the Cartesian plane.

(We use R to denote the set of real numbers, and the superscript 2 tells us that we need two

of them). We define the origin O to be the “zero” point (0, 0).

Definition 2.1. If A = (x, y) is a point in R2, then we denote the vector
−→
OA by

[
x

y

]
.

We can do something very similar with threespace.

Definition 2.2. We define Euclidean threespace to be the three-dimensional space described

by three real coordinates. We notate it R3. The point (0, 0, 0) is called the origin and often

notated O.

If A = (x, y, z) is a point, then the vector
−→
OA is denoted


x

y

z

 .

There are two operations we can do on these vectors:

(a) We can add two vectors together. Geometrically, this corresponds to following one

vector and then the other; you can picture this as laying them tip-to-tail. Algebraically,

we just add the coordinates.

(b) We can multiply a vector by a scalar. Geometrically corresponds to stretching a vector

by some factor. Algebraically we just multiply each coordinate by the scalar.
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Example 2.3. Let v =


1

2

3

 and w =


4

−2

3

 . Then

v +w =


5

0

6

 , 3 · v =


3

6

9

 , and (−2) ·w =


−8

4

−6

 .

−5 −4 −3 −2 −1
1 2 3 4 5

−4

−2

2

4

−6

−4

−2

2

4

6

v

w

v +w

x

yz

2.2 An Algebraic Generalization

There are two straightforward ways we can generalize our Cartesian space R3. The most

obvious is just to replace the 3 with a 4, or a 5, or a 6. If R2 is ordered pairs of real numbers,

and R3 is ordered triples, then Rn is ordered n-tuples.
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Definition 2.4. We define real n-dimensional space to be the set of n-tuples of real numbers,

Rn = {(x1, x2, . . . , xn) : xi ∈ R}.
By “abuse of notation” we will also use Rn to refer to the set of vectors in Rn. We define

scalar multiplication and vector addition by

r ·


x1

x2

...

xn

 =


rx1

rx2

...

rxn




x1

x2

...

xn

+


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

Example 2.5. Let v =


1

3

2

4

 and w =


5

−1

2

8

 be vectors in R4. Then

v +w =


1

3

2

4

+


5

−1

2

8

 =


6

2

4

12

 , −3 · v =


−3

−9

−6

−12

 .

The other way we can generalize this is to not work over the real numbers. The real

numbers are a good model for every-day geometry, so we started there. But algebraically we

could do all of these same operations with any other field.

Definition 2.6. Let F be any field. Then Fn = {(x1, x2, . . . , xn) : xi ∈ F} is the set of

ordered n-ples over F. We then define scalar multiplication and vector addition by

r ·


x1

x2

...

xn

 =


rx1

rx2

...

rxn




x1

x2

...

xn

+


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

Notice that definition 2.6is exactly the same as definition 2.4, except we don’t specify

what the field is.

Example 2.7. Let v = (3 + i, 1, 2i) and w = (2, 5i, 4− 2i) be vectors in C3. Then

v +w = (5 + i, 1 + 5i, 4)

(2− i)v = (7− i, 2− i, 2 + 4i).

Notice that the scalar is a complex number, because we’re working over C.
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Example 2.8. Let v = (1, 2, 3) and w = (3, 4, 1) be vectors in F5. Then

v +w = (4, 1, 4)

2v = (2, 4, 1).

Our scalar is indeed an element of F5, and all the arithmetic is being done mod 5.

2.3 Defining Vector Spaces

We want to figure out what properties we’re actually using to work with these sets of vectors.

Obviously, we have a set of vectors, and a set of scalars; and we have two operations, addition

and scalar multiplication. These operations also behave “nicely”, following all of the rules

in this long and tedious definition:

Definition 2.9. Let F be a field, and V be a set, together with two operations:

� A vector addition which allows you to add two elements of V and get a new element

of V . If v,w ∈ V then the sum is denoted v +w and must also be an element of V .

� A scalar multiplication which allows you to multiply an element of V by a “scalar”

element of F and get a new element of V . If a ∈ F and v ∈ V then the scalar multiple

is denoted a · v and must also be an element of V .

Further, suppose the following axioms hold for any u,v,w ∈ V , and any a, b ∈ F:

(a) (Closure under addition) u+ v ∈ V

(b) (Closure under scalar multiplication) au ∈ V

(c) (Additive commutativity) u+ v = v + u

(d) (Additive associativity) (u+ v) +w = u+ (v +w)

(e) (Additive identity) There is an element 0 ∈ V called the “zero vector”, such that

u+ 0 = u for every u.

(f) (Additive inverses) For each u ∈ V there is another element −u ∈ V such that u +

(−u) = 0.

(g) (Distributivity) a(u+ v) = au+ av

(h) (Distributivity) (a+ b)u = au+ bu
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(i) (Multiplicative associativity) a(bu) = (ab)u

(j) (Multiplicative Identity) 1u = u.

Then we say V is a Vector Space over F, and we call its elements vectors.

Remark 2.10. Technically, those first two axioms are superfluous; if you can add two elements,

you can add two elements and also get something. But they still need to be true: if adding

two vectors doesn’t give you another vector, you don’t have a vector space. And we have to

check them to make sure our vector space definition makes sense.

Example 2.11. Fn is a vector space, with the previously defined vector addition and scalar

multiplication. We check:

Let u = (u1, . . . , un).v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Fn, r, s ∈ F. Then, knowing
the usual rules of commutativity and associativity of basic arithmetic, we can compute:

(a) u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) ∈ Fn.

(b)

ru = r(u1, . . . , un) = (ru1, . . . , run) ∈ F.

(c)

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

= (v1 + u1, . . . , vn + un) = (v1, . . . , vn) + (u1, . . . , un) = v + u

(d)

(u+ v) +w = (u1 + v1, . . . , un + vn) + (w1, . . . , wn) = (v1 + u1 + w1, . . . , vn + un + wn)

= (v1, . . . , vn) + (u1 + w1, . . . , un + wn) = v + (u+w)

(e) We have 0 = (0, . . . , 0). Then

0+ v = (0 + v1, . . . , 0 + vn) = (v1, . . . , vn) = v.

(f) Set −u = (−u1, . . . ,−un). Then

u+ (−u) = (u1 + (−u1), . . . , un + (−un)) = (0, . . . , 0) = 0.
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(g)

r(u+ v) = r(u1 + v1, . . . , un + vn) = (r(u1 + v1), . . . , r(un + vn))

= (ru1 + rv1, . . . , run + rvn) = (ru1, . . . , run) + (rv1, . . . , rvn) = ru+ rv.

(h)

(r + s)u = (r + s)(u1, . . . , un) = ((r + s)u1, . . . , (r + s)un)

= (ru1 + su1, . . . , run + sun) = (ru1, . . . , run) + (su1, . . . , sun) = ru+ su.

(i)

r(su) = r(su1, . . . , sun) = (rsu1, . . . , rsun) = rs(u1, . . . , un).

(j)

1u = 1(u1, . . . , un) = (1 · u1, . . . , 1 · un) = (u1, . . . , un) = u.

So what else is a vector space and “looks like Rn”? The most important example in this

course will be matrices.

Definition 2.12. A matrix over a field F is a rectangular array of elements of F. A matrix

with m rows and n columns is a m × n matrix, and we notate the set of all such matrices

by Mm×n(F), or just Mm×n if the field is clear from context. .

A m× n matrix is square if m = n, that is, it has the same number of rows as columns.

We will sometimes represent the set of n× n square matrices by Mn.

We will generally describe the elements of a matrix with the notation

(aij) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .

We can define operations on these matrices:

� If A = (aij) is an m × n matrix over a field F, and r ∈ F, then we can multiply each

entry of the matrix A by the r. This is called scalar multiplication and we say that r

is a scalar.

rA = (raij) =


ra11 ra12 . . . ra1n

ra21 ra22 . . . ra2n
...

...
. . .

...

ram1 ram2 . . . ramn

 .
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� If A = (aij) and B = (bij) are two m× n matrices over a field F, we can add the two

matrices by adding each individual pair of coordinates together.

A+B = (aij + bij) =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Example 2.13. The set Mm×n(F) of m × n matrices is a vector space under the addition

and scalar multiplication defined above, with zero vector given by

0 = (0) =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 .

I’m not going to prove this, but you can see that it should be true for the same reason

FRmn is a vector space: they’re both just lists of numbers, but one is arranged in a column

and the other in a rectangle. The operations are the same.

Example 2.14. Pick a field F, and let PF(x) = {a0 + a1x + · · · + anx
n : n ∈ N, ai ∈ F} be

the set of polynomials with coefficients in F. Define addition by

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n

and define scalar multiplication by

r(a0 + a1x+ · · ·+ anx
n) = ra0 + ra1x+ · · ·+ ranx

n.

Then PF(x) is a vector space.

Example 2.15. Fix a field F, and let S be the space of all doubly infinite sequences

{yk} = {. . . , y−2, y−1, y0, y1, y2, · · · : yi ∈ F}. We call this the space of (discrete) signals :

it represents a sequence of measurements taken at regular time intervals. These sorts of

regular measurements are common in engineering and digital information applications (such

as digital music).

We define addition and scalar multiplication on the space of signals componentwise, so

that

{. . . , x−1, x0, x1, . . . }+ {. . . , y−1, y0, y1, . . . } = {. . . x−1 + y−1, x0 + y0, x1 + y1, . . . }
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and

r{. . . , y−1, y0, y1, . . . } = {. . . , ry−1, ry0, ry1, . . . }.

(In essence, S is composed of vectors that are infinitely long in both directions). Then S is

a vector space.

Example 2.16. Let F(R,R) = F be the set of functions from R to R—that is, functions

that take in a real number and return a real number, the vanilla functions of single-variable

calculus. Define addition by (f + g)(x) = f(x) + g(x) and define scalar multiplication by

(rf)(x) = r · f(x). Then F is a vector space. You will prove this is a vector space in your

homework.

Example 2.17. The integers Z are not a vector space (under the usual definitions of addition

and multiplication). For instance, 1 ∈ Z but .5 · 1 = .5 ̸∈ Z.
(We only need to find one axiom that doesn’t hold to show that a set is not a vector

space, since a vector space must satisfy all the axioms).

Example 2.18. The closed interval [0, 5] is not a vector space (under the usual operations)

, since 3, 4 ∈ [0, 5] but 3 + 4 = 7 ̸∈ [0, 5].

Example 2.19. Let V = R with scalar multiplication given by r ·x = rx and addition given

by x⊕ y = 2x+ y. Then V is not a vector space, since x⊕ y = 2x+ y ̸= 2y + x = y ⊕ x; in

particular, we see that 3⊕ 5 = 11 but 5⊕ 3 = 13.

There are many more examples of vector spaces, but as you can see it’s fairly tedious to

prove that any particular thing is a vector space. In section 2.4 we’ll develop a much easier

way to establish that something is a vector space, so we won’t develop any more examples

now.

2.3.1 Properties of Vector Spaces

The great thing about the formal approach is that we can show that anything that satisfies

the axioms of a vector space must aso follow some other rules. We’ll establish a few of those

rules here, though of course, there’s a sense in which the entire rest of this course will be

spent establishing those rules.

As before, you shouldn’t think of these rules as new facts; all of them are “obvious”. The

point is that if we get the list of properties from definition 2.9, then all of these other things

still have to occur. It’s a guarantee that vector spaces behave how we expect—that they all

do behave like Fn, or indeed like R3, in all the ways we will expect.
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Proposition 2.20 (Cancellation). Let V be a vector space and suppose u,v,w ∈ V are

vectors. If u+w = v +w, then u = v.

Remark 2.21. We stated this law for fields earlier; now we’re also claiming it holds for vector

spaces. But the proof is essentially the same in both cases. (This is the shadow of something

called “universal algebra”; there are many other algebraic structures we could define, which

will all have this same cancellation law for the same reason.)

Proof. By axiom we know that w has an additive inverse −w. Then we have

u+w = v +w

(u+w) + (−w) = (v +w) + (−w)

u+ (w + (−w)) = v + (w + (−w)) Additive associativity

u+ 0 = v + 0 Additive inverses

u = v Additive identity.

Proposition 2.22. The additive inverse −v of a vector v is unique. That is, if v+ u = 0,

then u = −v.

Proof. Suppose v + u = 0. By the additive inverses property we know that v + (−v) = 0,

and thus v + u = v + (−v). By cancellation we have u = −v.

Remark 2.23. In our axioms we asserted that every vector has an inverse, but didn’t require

that there be only one.

Proposition 2.24. Suppose V is a vector space with u ∈ V a vector and r ∈ R a scalar.

Then:

(a) 0u = 0

(b) r0 = 0

(c) (−1)u = −u.

Remark 2.25. We would actually be pretty sad if any of those statements were false, since it

would make our notation look very strange. (Especially the last statement). The fact that

these statements are true justifies us using the notation we use.
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Proof. (a)

u = 1 · u = (0 + 1)u Multiplicative identity

= 0u+ 1u Distributivity

= 0u+ u Multiplicative identity

0+ u = 0u+ u Additive identity

0 = 0u Cancellation

(b) We know that 0 = 0+0 by additive identity, so r0 = r(0+0) = r0+r0 by distributivity.

Then we have

0+ r0 = r0+ r0 additive identity

0 = r0 cancellation.

(c) We have

v + (−1)v = 11+ (−1)v multiplicative inverses

= (1 + (−1))v distributivity

= 0v = 0.

Then by uniqueness of additive inverses, we have (−1)v = −v.

Example 2.26. We’ll give one last example of a vector space, which is both important and

silly.

We define the zero vector space to be the set {0} with addition given by 0+ 0 = 0 and

scalar multiplication given by r · 0 = 0. It’s easy to check that this is in fact a vector space.

Notice that we didn’t ask what “kind” of object this is; we just said it has the zero vector

and nothing else. As such, this could be the zero vector of any vector space at all. In section

2.4 we will talk about vector spaces that fit inside other vector spaces, like this one.

2.4 Vector Space Subspaces

Our very first two examples of a vector space were the Cartesian plane and Euclidean three-

space. But we see that while we can think of them as totally distinct vector spaces, the plane

sits inside threespace, as a subset. In fact it sits inside it in a number of different ways; we

can start by taking the xy plane, the xz plane, or the yz plane.
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Definition 2.27. Let V be a vector space. A subset W ⊆ V is a subspace of V if W is also

a vector space with the same operations as V .

Example 2.28. The Cartesian plane R2 is a subset of threespace R3. Similarly the line R1

is a subset of the plane R2. (And we can stack this up as high as we want; R7 ⊆ R8.

In general, if n < m then Fn is a subspace of Fm.

Example 2.29.

Example 2.30. Let V = R3 and let W = {(x, y, x + y) ∈ R3}. Geometrically, this is a

plane (given by z = x + y). We could in fact write W = {(x, y, z) : z = x + y}; this is a

more useful way to write it for multivariable calculus, but less useful for lienar algebra. W

is certainly a subset of V , so we just need to figure out if W is a subspace.

We could do this by checking all ten axioms, but that would take a very long time; we

want a better tool. And it seems like we should be able to avoid a lot of that work since we

already know many of the axioms hold in R3.

In fact, one major reason to care about subspaces is that it allows us to avoid a lot of

work. If W ⊆ V , it seems like most of the vector space axioms should hold automatically.

After all, if elements of V add commutatively, and elements of W are in V , then the elements

of W must add commutatively. And in fact there’s very little we have to check.

Proposition 2.31. Let V be a vector space over a field F and W ⊆ V . Then W is a subspace

of V if and only if the following three “subspace” conditions hold:

(a) 0 ∈ W (zero vector);

(b) Whenever u,v ∈ W then u+ v ∈ W (Closed under addition); and

(c) Whenever r ∈ F and u ∈ W then ru ∈ W (Closed under scalar multiplication).

Proof. Suppose W is a subspace of V . Then W is a vector space, so it contains a zero vector

and is closed under addition and multiplication by the definition of vector spaces.

Conversely, suppose W ⊆ V and the three subspace conditions hold. We need to check

the ten axioms of a vector space. But most of these properties are inherited from the fact

that any element of W is also an element of V , and W has the same operations as V . The

only really non-trivial one is that the additive inverse exists.

Let u,v,w ∈ W (and thus u,v,w ∈ V ), and r, s ∈ F.

(a) W is closed under addition by hypothesis.
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(b) W is closed under scalar multiplication by hypothesis.

(c) u+ v = v + u since V is a vector space.

(d) (u+ v) +w = u+ (v +w) since V is a vector space.

(e) 0 ∈ W by hypothesis, and u+ 0 = u since V is a vector space.

(f) −u = (−1)u ∈ W by closure under scalar multiplication.

(g) r(u+ v) = ru+ rv since V is a vector space.

(h) (r + s)u = ru+ su since V is a vector space.

(i) (rs)u = r(su) since V is a vector space.

(j) 1u = u since V is a vector space.

Thus W satisfies the axioms of a vector space, and is itself a vector space.

Example 2.32 (Continued). Let’s continute to take V = R3 and W = {(x, y, x+ y) ∈ R3}.
To show that W is a subspace of V we only need to check three things.

If (x1, y1, x1 + y1), (x2, y2, x2 + y2) ∈ W then
x1

y1

x1 + y1

+


x2

y2

x2 + y2

 =


x1 + x2

y1 + y2

(x1 + x2) + (y1 + y2)

 ∈ W.

If r ∈ R, then

r


x

y

x+ y

 =


rx

ry

(rx) + (ry)

 ∈ W.

And the zero vector is 
0

0

0

 =


0

0

0 + 0

 ∈ W.

Thus W is a subspace of V .

Example 2.33. If V is a vector space, then 0 and V are both subspaces of V . We don’t

actually need to check anything here, since both are clearly subsets of V , and both are

already known to be vector spaces.

(When we want to ignore this possibility we will refer to “proper” or “nontrivial” sub-

spaces, which are neither the trivial space nor the entire space).
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Example 2.34. Let V = R2 and let W = {(x, x2)} = {(x, y) : y = x2} ⊆ V . Then W is not

a subspace.

W does in fact contain the zero vector (0, 0) = (0, 02). But we see that (1, 1) ∈ W , and

(1, 1) + (1, 1) = (2, 2) ̸∈ W . Thus W is not a subspace.

Example 2.35. Let V = F2
3 and let W = {(0, 0), (1, 2), (2, 1)} ⊂ V . Is W a subspace?

It’s easy to see that 0 = (0, 0) ∈ W . We just need to check it’s closed under addition

and scalar multiplication.

It’s a little hard to check this without just testing elements. But we compute:

(0, 0) + (0, 0) = (0, 0) ∈ W (0, 0) + (1, 2) = (1, 2) ∈ W

(0, 0) + (2, 1) = (2, 1) ∈ W (1, 2) + (1, 2) = (2, 1) ∈ W

(1, 2) + (2, 1) = (0, 0) ∈ W (2, 1) + (2, 1) = (1, 2) ∈ W.

And similarly

0 · (0, 0) = (0, 0) ∈ W 0 · (1, 2) = (0, 0) ∈ W 0 · (2, 1) = (0, 0) ∈ W

1 · (0, 0) = (0, 0) ∈ W 1 · (1, 2) = (1, 2) ∈ W 1 · (2, 1) = (2, 1) ∈ W

2 · (0, 0) = (0, 0) ∈ W 2 · (1, 2) = (2, 1) ∈ W 2 · (2, 1) = (1, 2) ∈ W

So W is closed under addition and scalar multiplication, so it’s a subspace.

Example 2.36. Let V = P(x) and let W = {a1x + · · · + anx
n} = xP(x) be the set of

polynomials with zero constant term. Is W a subspace of V ?

(a) The zero polynomial 0 + 0x+ · · ·+ 0xn = 0 certainly has zero constant term, so is in

W .

(b) If a1x+ · · ·+ anx
n and b1x+ · · ·+ bnx

n ∈ W , then

(a1x+ · · ·+ anx
n) + (b1x+ · · ·+ bnx

n) = (a1 + b1)x+ · · ·+ (an + bn)x
n ∈ W.

Alternatively, we can say that if we add two polynomials with zero constant term, their

sum will have zero constant term.

(c) If r ∈ R and a1x+ · · ·+ anx
n ∈ W , then

r (a1x+ · · ·+ anx
n) = (ra1)x+ · · ·+ (ran)x

n

has zero constant term and is in W .
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Thus W is a subspace of V .

Example 2.37. Let V = P(x) and let W = {a0 + a1x} be the space of linear polynomials.

Then W is a subspace of V .

(a) The zero polynomial 0 + 0x ∈ W .

(b) If a0 + a1x, b0 + b1x ∈ W , then (a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x ∈ W .

(c) If r ∈ R and a0 + a1x ∈ W , then r(a0 + a1x) = ra0 + (ra1)x ∈ W .

Example 2.38. Let V = P(x) and let W = {1 + ax} be the space of linear polynomials

with constant term 1. Is W a subspace of V ?

No, because 0 = 0 + 0x ̸∈ W .

Exercise 2.39. Fix a natural number n ≥ 0. Let V = P(x) and let W = Pn(x) = {a0 +
a1x+ · · ·+ anx

n} be the set of polynomials with degree at most n. Then Pn(x) is a subspace

of P(x).

Example 2.40. Let V = F(R,R) be the space of functions of one real variable, and let

W = D(R,R) be the space of differentiable functions from R to R. Is W a subspace of V ?

(a) The zero function is differentiable, so the zero vector is in W .

(b) From calculus we know that the derivative of the sums is the sum of the derivatives; thus

the sum of differentiable functions is differentiable. That is, (f+g)′(x) = f ′(x)+g′(x).

So if f, g ∈ W , then f and g are differentiable, and thus f +g is differentiable and thus

in W .

(c) Again we know that (rf)′(x) = rf ′(x). If f is in W , then f is differentiable. Thus rf

is differentiable and therefore in W .

Example 2.41. Let V = F(R,R) and let W = F([a, b],R) be the space of functions from

the closed interval [a, b] to R. We can view W as a subset of V by, say, looking at all the

functions that are zero outside of [a, b]. Is W a subspace of V ?

(a) The zero function is in W .

(b) If f and g are functions from [a, b] → R, then (f + g) is as well.

(c) If f is a function from [a, b] → R, then rf is as well.
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Example 2.42. Let V = F(R, R). Then C(R,R) the space of continuous real-valued func-

tions is a subspace of V . So iare D(R,R) the space of differentiable functions and C∞(R,R)
the space of infinitely differentiable functions.

Example 2.43. Let V = F(R, R) and let W = {f : f(x) = f(−x)∀x ∈ R} be the set of even

real-valued functions, the functions that are symmetric around 0. Then W is a subspace of

V .

Example 2.44. Let V = F(R,R) and let W = F(R, [a, b]) be the space of functions from R
to the closed interval [a, b]. Is W a subspace of V ?

No! The simplest condition to check is scalar multiplication. Let f(x) = b be a function

in V . Let r = (b+ 1)/b. Then (rf)(x) = fb = b+ 1 and thus rf ̸∈ W .

Example 2.45. Let V = S be the space of signals, and let W be the space of signals that are

eventually zero. That is, W = {{yk} : ∃n such that ym = 0∀m > n}. Then W is a subspace

of V .

The space {{yk} : y0 = 0} is a subspace of V . But the space {{yk} : y0 = 1} is not.

Theorem 2.46. Any intersection of subspaces of a vector space V is a subspace of V .

Proof. Let C be any collection of subspaces of V (there might be two, or three, or infinitely

many subspaces in C). Let W be the intersection of all subspaces in C.

Since every subspace contains 0, therefore, zero ∈ W . Now let a ∈ F and x, y ∈ W . Since

x and y are in the intersection of every subspace of C, they are contained in each subspace

in C. Because each subspace is closed under addition, therefore x + y is contained in each

subspace in C and so x+ y ∈ W .

Similarly, each subspace in C is closed under scalar multiplication, so each subspace

contains ax. Hence ax ∈ W . Since W contains zero and is closed under addition and scalar

multiplication, by our subspace theorem, W is a subspace of V .

2.5 Linear Combinations and Linear Equations

We have defined many vector spaces, but we started by looking at Rn, which is much easier

to think about. One of the nicest and most helpful things about Rn is the existence of

coordinates. Rather than, say, just drawing a point on a graph, or perhaps giving an angle

and a distance, we can specify a point in R3 by giving its x-coordinate, its y-coordinate, and

its z-coordinate. And similarly, we can specify a point in R7 by specifying seven real-number

coordinates.
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In contrast, it’s not really clear what it means to talk about coordinates for F(R,R). But
if we had coordinates there, it would make our life much easier. (In particular, physicists

often want to talk about subspaces of F(R,R) and then put coordinates on them and treat

them like Rn). So we would like to find a way to put coordinates on any vector space V .

There are a few ideas that will mix in here, but the first one is that coordinate let us

express a vector as a sum of simple vectors. If I have a vector (1, 3, 2), one way I can think

of this is 
1

3

2

 = 1 ·


1

0

0

+ 3 ·


0

1

0

+


0

0

1

 .

Definition 2.47. If V is a vector space S = {v1,v2, . . . ,vn} is a list of vectors in V , then

a linear combination of of the vectors in S is a vector of the form
n∑

i=1

aivi = a1v1 + a2v2 + · · ·+ anvn

where ai ∈ R are (real number) scalars.

A linear combination of vectors in V will always itself be an element of V , since V is

closed under scalar multiplication and under vector addition.

Geometrically, a linear combination of vectors represents some destination you can reach

only going in the directions of your chosen vectors (for any distance. So if I can go north or

west, any distance“northwest” will be a linear combination of those vectors. And “southeast”

will as well, since we can always go in the “opposite” direction. But “up” will not be.

Remark 2.48. This is a “linear” combination because it combines the vectors in the same

way a line or plane does—adding all the vectors together, but with some coefficient. We will

revisit this terminology in the next section when we discuss linear functions.

It’s totally possible to have a linear combination of infinitely many vectors. But studying

these requires some sense of convergence, and thus calculus/analysis. So we won’t talk about

it in this class, except for the occasional aside.

Example 2.49. Here is a table of the number of grams of protein, fats, and carbohydrates

in 10g portions of certain foods (rounded to give us easier numbers):1

Food (10g) Protein (g) Fats (g) Carbs (g)

ground beef 4 4 0

lentils 2 1 3

rice (brown) 1 0 5

cauliflower 1 0 1
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We could record each different food as a vector in R3. So we have

g =


4

4

0

 , ℓ =


2

1

3

 , r =


1

0

5

 , c =


1

0

1

 .

Then if we prepare a meal consisting of 100g of ground beef, 150g of rice, and 200g of

cauliflower, the macronutrient content is the linear combination

10g + 15r + 20c = 10


4

4

0

+ 15


1

0

5

+ 20


1

0

1

 =


75

40

95

 .

A very reasonable question to ask here is: if we have a fixed vector b, and a set of vectors

u1,u2, . . . ,un, can we express b as a linear combination of the other vectors?

Example 2.50. Can we write (1, 3, 2) as a linear combination of (1, 0, 0) and (1, 1, 1)?

In this case it’s pretty easy to see that we can’t, because any linear combination of these

two vectors would have the same second and third coordinate. In other words, if we had
1

3

2

 = a


1

0

0

+ b


1

1

1



=


a+ b

b

b


which implies 3 = b = 2.

Example 2.51. Is it possible to prepare a meal using the four ingredients if we want to get

exactly 70g of protein, 30g of fat, and 40g of carbs? This is asking if the vector (70, 30, 40)

is a linear combination of the vectors g, ℓ, r, c.

In other words, we must determine if there are scalars a1, a2, a3, a4 such that
70

30

40

 = a1


4

4

0

+ a2


2

1

3

+ a3


1

0

5

+ a4


1

0

1



=


4a1 + 2a2 + a3 + a4

4a1 + a2

3a2 + 5a3 + a4


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And that means we need to solve the following system of linear equations :

4a1 + 2a2 + a3 + a4 = 70

4a1 + a2 = 30

3a2 + 5a3 + a4 = 40.

Definition 2.52. A system of linear equations is a system of the form

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

with the aij and bis all real numbers. We say this is a system of m equations in n unknowns.

Importantly, these equations are restricted to be relatively simple. In each equation

we multiply each variable by some constant real number, add them together, and set that

equal to some constant real number. We aren’t allowed to multiply variables together, or

do anything else fancy with them. This means the equations can’t get too complicated, and

are relatively easy to work with.

Thus our question about vectors became a question about linear equations. (Or maybe

originally our question about linear equations became a question about vectors; they’re two

ways of seeing the same thing. As the course develops we’ll see a few other ways we can

think of the same questions.)

There are a few ways to approach solving systems of equations like this. One is by

substitution: solve for one variable in terms of the other variables, and substitute into

another equation. But this gets quite cumbersome. A better way is to add copies of one

equation to another.

Example 2.53 (Continued). We have the system of equations

4a1 + 2a2 + a3 + a4 = 70

4a1 + a2 = 30

3a2 + 5a3 + a4 = 40.

We can eliminate the a1 terms from all but the first equation by subtracting the first

equation from the second, giving:
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4a1 + 2a2 + a3 + a4 = 70

− a2 − a3 − a4 = −40

3a2 + 5a3 + a4 = 40.

We might flip the second equation to make it easier to look at:

4a1 + 2a2 + a3 + a4 = 70

a2 + a3 + a4 = 40

3a2 + 5a3 + a4 = 40.

Now we can get rid of most of the a2 terms. We subtract 2 times the second equation from

the first and 3 times the second equation from the third to obtain

4a1 − a3 − a4 = −10

a2 + a3 + a4 = 40

2a3 − 2a4 = −80.

Divide the third equation by 2 (or multiply by 1/2) to get

3a1 − a3 − a4 = −10

a2 + a3 + a4 = 40

a3 − a4 = −40.

Then add it to the first equation and subtract it from the second equation to yield

4a1 − 2a4 = −50

a2 + 2a4 = 80

a3 − a4 = −40.

And now we still have a system of three equations in four unknowns. But it should be clear

now that if we pick any real number for a4, that will give us exactly one solution to the

whole system:

(
−50 + 2a4

4
, 80− 2a4,−40 + a4, a4

)
=

(
−25 + a4

2
, 80− 2a4,−40 + a4, a4

)
.

We want a general approach to solving these equations. We say that two systems of

equations are equivalent if they have the same set of solutions. Thus the process of solving a
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system of equations is mostly the process of converting a system into an equivalent system

that is simpler.

There are three basic operations we can perform on a system of equations to get an

equivalent system:

(a) We can write the equations in a different order.

(b) We can multiply any equation by a nonzero scalar.

(c) We can add a multiple of one equation to another.

All three of these operations are guaranteed not to change the solution set; proving this is a

reasonable exercise. Our goal now is to find an efficient way to use these rules to get a useful

solution to our system.

But, it’s possible for us to be lazy about this by encoding our system in a matrix.

Right now, we will just use this as a convenient notational shortcut; we will see later on

in the course that this has a number of theoretical and practical advantages.

Definition 2.54. The coefficient matrix of a system of linear equations given by

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

is the matrix 
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


and the augmented coefficient matrix is

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm

 .
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Example 2.55. Suppose we have a system

4x+ 2y + 2z = 8

3x+ 2y + z = 6.

Then the coefficient matrix is [
4 2 2

3 2 1

]
and the augmented coefficient matrix is[

4 2 2 8

3 2 1 6.

]

Earlier we listed three operations we can perform on a system of equations without

changing the solution set: we can reorder the equations, multiply an equation by a nonzero

scalar, or add a multiple of one equation to another. We can do analogous things to the

coefficient matrix.

Definition 2.56. The three elementary row operations on a matrix are

I Interchange two rows.

II Multiply a row by a nonzero real number.

III Replace a row by its sum with a multiple of another row.

Example 2.57. What can we do with our previous matrix? We can[
4 2 2

3 2 1

]
I→

[
3 2 1

4 2 2

]
II→

[
3 2 1

2 1 1

]
III→

[
1 1 0

2 1 1

]
.

So how do we use this to solve a system of equations? The basic idea is to remove variables

from successive equations until we get one equation that contains only one variable—at which

point we can substitute for that variable, and then the others. To do that with this matrix,

we have[
4 2 2 8

3 2 1 6

]
III→

[
1 0 1 2

3 2 1 6

]
III→

[
1 0 1 2

0 2 −2 0

]
II→

[
1 0 1 2

0 1 −1 0

]
.
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What does this tell us? That our system of equations is equivalent to the system

x+ z = 2

y − z = 0.

This gives us the answer: z = 2− x and y = z = 2− x. So the set of solutions is the set of

triples {(x, 2− x, 2− x)}.

Example 2.58. In P3(R), we claim that the polynomial

f = 2x3 − 2x2 + 12x− 6

is a linear combination of the polynomials

g1 = x3 − 2x2 − 5x− 3 and g2 = 3x3 − 5x2 − 4x− 9

but that the polynomial

h = 3x3 − 2x2 + 7x+ 8

is not.

To show that f is a linear combination of g1 and g2, we need to find scalars a1, a2 ∈ R
such that f = a1g1 + a2g2, that is

2x3 − 2x2 + 12x− 6 = a1(x
3 − 2x2 − 5x− 3) + a2(3x

3 − 5x2 − 4x− 9)

= (a1 + 3a2)x
3 + (−2a1 − 5a2)x

2 + (−5a1 − 4a2)x+ (−3a1 − 9a2).

Therefore, we want to solve the following system of linear equations for a1 and a2:

a1 + 3a2 = 2

−2a1 − 5a2 = −2

−5a1 − 4a2 = 12

−3a1 − 9a2 = −6.

We write this as a matrix:
1 3 2

−2 −5 −2

−5 −4 12

−3 −9 −6

→


1 3 2

0 1 2

0 11 22

0 0 0

→


1 0 −4

0 1 2

0 0 0

0 0 0


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which corresponds to the system

a1 = −4

a2 = 2

0 = 0

0 = 0

and thus we have a single solution. And indeed we can verify that f = −4g1 + 2g2.

Now let’s show that h is not a linear combination of g1 and g2? If it were, then there

would be scalars a1, a2 ∈ R such that

3x3 − 2x2 + 7x+ 8 = a1(x
3 − 2x2 − 5x− 3) + a2(3x

3 − 5x2 − 4x− 9)

= (a1 + 3a2)x
3 + (−2a1 − 5a2)x

2 + (−5a1 − 4a2)x+ (−3a1 − 9a2).

In other words, there would be a solution to the following system:

a1 + 3a2 = 3

−2a1 − 5a2 = −2

−5a1 − 4a2 = 7

−3a1 − 9a2 = 8.

This becomes the matrix 
1 3 3

−2 −5 −2

−5 −4 7

−3 −9 8

→


1 3 3

0 1 4

0 11 22

0 0 17


and we can already see this system will have no solutions, because the fourth line gives us

0 = 17, which is false.

Definition 2.59. A matrix is in row echelon form if

� Every row containing nonzero elements is above every row containing only zeroes; and

� The first (leftmost) nonzero entry of each row is to the right of the first nonzero entry

of the above row.

Remark 2.60. Some people require the first nonzero entry in each nonzero row to be 1. This

is really a matter of taste and doesn’t matter much, but you should do it to be safe; it’s an

easy extra step to take by simply dividing each row by its leading coefficient.
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Example 2.61. The following matrices are all in Row Echelon Form:
1 3 2 5

0 3 −1 4

0 0 −2 3



5 1 3 2 8

0 0 1 1 1

0 0 0 0 −7



1 1 5

0 −2 3

0 0 7

 .

The following matrices are not in Row Echelon Form:


1 1 1 1

1 1 1 1

1 1 1 1



3 2 5 1

0 0 1 3

0 5 1 2



1 3 5

0 1 2

0 0 3

0 0 1

 .

A system of equations sometimes has a solution, but does not always. We say a system

is inconsistent if there is no solution; we say a system is consistent if there is at least one

solution.

Definition 2.62. A matrix is in reduced row echelon form if it is in row echelon form, and

the first nonzero entry in each row is the only entry in its column.

This means that we will have some number of columns that each have a bunch of zeroes

and one 1. Other than that we may or may not have more columns, which can contain

basically anything; we’ve used up all our degrees of freedom to fix those columns that contain

the leading term of some row.

Note that the columns we have fixed are not necessarily the first columns, as the next

example shows.

Example 2.63. The following matrices are all in reduced Row Echelon Form:
1 0 0 5

0 1 0 4

0 0 1 3



1 17 0 2 8

0 0 1 1 0

0 0 0 0 1



1 0 5

0 1 3

0 0 0

 .

The following matrices are not in reduced Row Echelon Form:
1 1 1 1

0 1 1 1

0 0 1 1



3 0 0 1

0 3 0 3

0 0 2 2



1 0 15 3

0 0 1 2

0 0 0 1

 .
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2.6 Spanning and Linear Independence

Recall we want to put a set of “coordinates” on our vector spaces. Any “coordinate system”

will need to have two basic properties: first, we want it to represent any vector in our vector

space; second, we want it to represent each vector only once. So we first want to talk about

the vectors that can be represented by a given collection of vectors.

Definition 2.64. Let V be a vector space S = {v1, . . . ,vn} be a set of vectors in V . We

say the span of S is the set of all linear combinations of vectors in S, and write it span(S)

or span(v1, . . . ,vn).

For notational consistency, we define the span of the empty set span({}) to be the trivial

vector space 0 = {0}.

Example 2.65. As before, take V = R3 and S = {(1, 0, 0), (0, 1, 0)}. Then

span(S) = {a(1, 0, 0) + b(0, 1, 0)} = {(a, b, 0)} .

Now let T = {(3, 2, 0), (13, 7, 0)}. Then

span(T ) = {a(3, 2, 0) + b(13, 7, 0)} = {(3a+ 13b, 2a+ 7b, 0)} .

Spans are really convenient to work with because the span of any set will always be a

subspace.

Proposition 2.66. If V is a vector space over a field F and S = {u1,u2, . . . ,un} ⊂ V , then

span(S) is a subspace of V .

Proof. If S = ∅ then span(S) = {0} by definition, so it is the trivial subspace of V .

So now suppose S is non-empty. We know that S ⊂ V , and since any linear combination

of vectors in V is itself a vector in V , we know that span(S) ⊂ V . So we just need to check

the three subspace conditions.

(a) Because S ̸= ∅, there is some vector v ∈ S, and then 0 · v = 0. This is a linear

combination of vectors in S, so it is in span(S).

(b) Suppose v1,v2 ∈ span(S). This implies that we can write

v1 = a1u1 + · · ·+ anvn v2 = b1w1 + · · ·+ bmwm

for some ai, bj ∈ F, and some vi,wj ∈ S. Thus

v + v2 =
(
a1u1 + · · ·+ anvn

)
+
(
b1w1 + · · ·+ bmwm

)
= a1u1 + · · ·+ anvn + b1w1 + · · ·+ bmwm

is a linear combination of vectors in S, and thus an element of span(S).
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(c) Suppose r ∈ F and v ∈ span(S). Then we can write

v = a1u1 + · · ·+ anun

for some ai ∈ F. Then

rv = r (a1u1 + · · ·+ anvn) = (ra1)u1 + · · ·+ (ran)un ∈ span(S).

Thus we see that span(S) is a subspace of V .

Corollary 2.67. Let V be a vector space over F, let W be a subspace of V , and let S ⊂ V .

If W contains V then W contains span(S).

Proof. We know that W is a vector space containing S, so span(S) must be a subspace of

W .

Corollary 2.68. If V is a vector space and S ⊆ V , then span(S) is the smallest subspace

of V containing S.

Proof. We just showed in proposition 2.66 that span(S) is a subspace of V , and of course

it contains S. So we just need to show that there’s no smaller subspace. In particular, I’ll

prove that if W is a subspace of V , and S ⊆ W , then span(S) ⊆ W .

So suppose W is a subspace of V and S ⊆ W . Let v ∈ span(S). The v is a linear

combination of vectors in S. But S ⊆ W , so v is a linear combination of vectors in W , and

thus an element of W since W is a vector space. Thus any element of span(S) is an element

of W , so span(S) ⊆ W .

Definition 2.69. Let V be a vector space and S ⊂ V . If span(S) = V then we say S spans

V , or generates V , or is a spanning set for V .

If S spans V , then we can express any element of V purely in terms of elements of S.

But this expression might not be unique! Thus we need to introduce a second concept.

Definition 2.70. Let V be a vector space over F , and S ⊂ V . We say S is linearly

independent if, for any finite collection of vectors v1, . . . ,vn ∈ S, the only scalars solving the

equation

a1v1 + · · ·+ anvn = 0

are a1 = · · · = an = 0.

If a set of vectors is not linearly independent, we call it linearly dependent and there is

a linear dependence relationship among the vectors.
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Remark 2.71. This is one of the more subtle definitions in this course, and often gives people

a lot of trouble when they first start working with it. In particular, it features a problem with

nested conditionals : a set of vectors is linearly independent if, if there is a linear combination

equal to zero, then all of the coefficients must be zero. I didn’t use that phrasing in the formal

definition because it’s incredibly awkward to have to instances of the word “if” in a row, but

that does highlight the problem.

In particular, to prove a set is linearly independent, you shouldn’t try to prove that any

linear combination is equal to zero. And you shouldn’t try to prove that a particular set

of coefficients is zero. Instead you should start out with the hypothesis that a finite linear

combination of vectors produces zero, and then prove that all of the coefficients must have

been zero.

(In practice this will almost always involve solving a system of linear equations, and thus

row reducing a matrix.)

Example 2.72. (a) The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly independent: sup-

pose 
0

0

0

 = a


1

0

0

+ b


0

1

0

+ c


0

0

1

 =


a

b

c

 .

Then we have the system of equations a = 0, b = 0, c = 0 and thus all the scalars are

zero.

(b) The set S = {(1, 0, 0), (0, 1, 0)} is linearly independent. Suppose
0

0

0

 = a


1

0

0

+ b


0

1

0

 =


a

b

0

 .

Then we have the system of equations a = 0, b = 0 and thus all the scalars are zero.

(c) The set S = {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not linearly independent, since

1


1

0

0

+ 1


0

1

0

+ (−1)


1

1

0

 =


0

0

0

 = 0.

(d) Any set containing the zero vector is linearly dependent, since 1 · 0 = 0 but 1 ̸= 0.
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Example 2.73. The set S = {1, x, x2, x3} is linearly independent in P3(x). So is the set

T = {1 + x+ x2 + x3, 1 + x+ x2, 1 + x, 1}.

Theorem 2.74. Let V be a vector space and let S1 ⊆ S2 ⊆ V . If S1 is linearly dependent,

then S2 is linearly dependent.

Proof. If S1 is linearly dependent, then there are vectors u1, . . . , un ∈ S1 and scalars not all

zero a1, . . . , an ∈ F such that

a1u1 + · · ·+ anun = 0.

But since S1 ⊆ S2, therefore each ui ∈ S2. So the previous equation shows that S2 is linearly

dependent by definition.

Corollary 2.75. Let V be a vector space and let S1 ⊆ S2 ⊆ V . If S2 is linearly independent,

then S1 is linearly independent.

Proof. This is just the contrapositive of the previous theorem.

From an intuitive standpoint, these two results make sense. If S1 is linearly dependent,

then has some sort of redundancy. But since S1 ⊆ S2, therefore S2 also contains redundant

vectors. Adding more vectors to a redundant set cannot make the set less redundant. So S2

must be linearly dependent.

Similarly, if S2 is linearly independent, then the vectors in S2 point in “genuinely different

directions”. Taking a subset, those vectors will still point in “genuinely different directions”.

Recall that earlier we saw that the set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} was linearly dependent.

But we might notice that we can remove a vector and get a linearly independent set with

the same span—we can just get rid of the redundancy. Conversely, we can start with the

linearly independent set {(1, 0, 0), (0, 1, 0)} and try to add a vector. If that vector is in the

span, then it will be redundant, and we get a linearly dependent set. But if it’s not in the

span, it’s not redundant, and we get an independent set.

Theorem 2.76. Let S be a linearly independent subset of a vector space V , and let v ∈ V .

Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).

Proof. Suppose S is a linearly independent subset of a vector space V and let v ∈ V .

[⇒]. Suppose that S ∪ {v} is linearly dependent. Then there are distinct vectors

u1, . . . ,un ∈ S and scalars a1, . . . , an, b ∈ F not all zero such that

a1u1 + · · ·+ anun + bv = 0.
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Now we claim that b ̸= 0, since if it were 0, then we could delete it from the above equation

to get a nontrivial linear combination of the ui’s to equal 0, which is not possible since S

itself is linearly independent.

Since b ̸= 0, it has a multiplicative inverse, so we can write

v = b−1(−a1u1 − a2u2 − · · · − anun).

This shows that v ∈ span(S).

[⇐]. Conversely, suppose v ∈ span(S). Then there exist vectors v1, . . . ,vm ∈ S and

scalars b1, . . . , bm ∈ F such that

v = b1v1 + · · ·+ bmvm.

Hence,

b1v1 + · · ·+ bmvm − v = 0.

Note that v ̸= vi for any i, since we are assuming v ̸∈ S. Hence, this is a nontrivial linear

combination of the vectors in S ∪{v} which equals 0 (it is nontrivial since the coefficient on

v is −1). Thus, S ∪ {v} is linearly dependent.

2.7 Bases and Dimension

Now we’re ready to introduce our idea of coordinates. Recall we wanted a set S such that

we could write any vector in V as a sum of vectors in S, but only one way. With our new

notation, we can define:

Definition 2.77. If V is a vector space and S is a spanning set for V that is also linearly

independent, we say that S is a basis for V .

Example 2.78. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3, as we have seen before.

We call this set the standard basis for R3, and we write the three elements e1, e2, e3.

We can generalize this to Rn. We define the standard basis vectors for Rn by

e1 =



1

0

0
...

0

0


e2 =



0

1

0
...

0

0


. . . en =



0

0

0
...

0

1


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and the set of standard basis vectors is the standard basis. You can check that the standard

basis is in fact a basis.

Example 2.79. Every (non-trivial) vector space has more than one basis. The set S =

{(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis for R3:

First we show that it is a spanning set. Let (a, b, c) ∈ R3. Then we want to solve
a

b

c

 = α1


1

0

0

+ α2


1

1

0

+ α3


1

1

1


which gives the augmented matrix

1 1 1 a

0 1 1 b

0 0 1 c

→


1 0 0 a− b

0 1 0 b− c

0 0 1 c


which tells us that α3 = c, α2 = b−c, α1 = a−b. Thus there is a solution for any (a, b, c) ∈ R3,

and the set spans.

We also need to prove linear indepencence. So suppose

0 = α1


1

0

0

+ α2


1

1

0

+ α3


1

1

1

 .

This gives us a system of linear equations corresponding to the homogeneous system
1 1 1

0 1 1

0 0 1

→


1 0 0

0 1 0

0 0 1


so the only solution here is α1 = α2 = α3 = 0.

Thus S is linear independent, and since it also spans, it is a basis.

Example 2.80. The set S = {(1, 0, 0), (0, 1, 0)} is not a basis for R3. It is linearly indepen-

dent (since it is a subset of the standard basis, which is linear independent), but it is not a

spanning set, since (0, 0, 1) is not in the span of S.

Example 2.81. The set S = {(2, 3), (3, 4), (4, 4)} is a spanning set for R2 but not a basis.

To see that it’s a spanning set we solve[
a

b

]
= α1

[
2

3

]
+ α2

[
3

4

]
+ α3

[
4

4

]
=

[
2α1 + 3α2 + 4α3

3α1 + 4α2 + 4α3

]
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giving the system of equations

a = 2α1 + 3α2 + 4α3 b = 3α1 + 4α2 + 4α3

and the augmented matrix[
2 3 4 a

3 4 4 b

]
→

[
1 1 0 b− a

2 3 4 a

]
→

[
1 1 0 b− a

0 1 4 3a− 2b

]
→

[
1 0 −4 3b− 4a

0 1 4 3a− 2b

]
.

Thus for any (a, b) ∈ R2, at least one solution exists; in fact we can pick α3 to be any real

number and we get a corresponding solution (3b− 4a+4α3, 3a− 2b− 4α3, α3). Thus the set

spans.

But S is not linearly independent. We can see this in a few ways. Most easily we can

observe that (2, 3)+ (1/4)(4, 4) = (3, 4). If we can’t see that on our own, we can do a couple

things. We can find the nullspace:[
2 3 4

3 4 4

]
→

[
1 1 0

2 3 4

]
→

[
1 1 0

0 1 4

]
→

[
1 0 −4

0 1 4

]

and we see the nullspace {(4α,−4α, α)} is non-trivial, so the set is not linearly independent.

But if these row operations seem familiar, that’s because we did exactly the same thing

to check spanning! So we can look at our spanning equations and try to find all the solutions

when we take a = b = 0. We see that there’s more than one solution there, so the vectors

aren’t linearly independent.

Determining whether a set is a basis is sometimes annoying, but doesn’t involve anything

we haven’t already done: a basis is just a set that both spans and is linearly independent,

and we can check both properties individually. But we’d like to make things a little simpler.

Further, we want to talk about how “big” a space is, and this should plausibly be deter-

mined by how many elements there are in the basis. But since every space has more than

one basis, talking about the size of “the” basis is potentially problematic. Fortunately, this

is not an actual problem, as we shall see.

Lemma 2.82. If S = {v1, . . . ,vn} spans a vector space V , and T = {u1, . . . ,um} is a

collection of vectors in V with m > n, then T is linearly dependent.

Proof. There are two possible ways to prove this. One involves simply writing out a bunch

of linear equations and solving them; this works, but is more tedious than informative. We’ll

use a more formal and abstract approach to proving this instead, which, hopefully, will

actually explain some of why this is true.
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We will start with the set S, and one by one we will trade out vectors in S for vectors

in T , and show that we always still have a spanning set. We will suppose T is linearly

independent, and show that m ≤ n.

Since S is a spanning set, we know that u1 ∈ span(S), and thus {v1, . . . ,vn,u1} is linearly
dependent.. Then we can rewrite our linear dependence equation to express v1 (without loss

of generality) as a linear combination of {u1,v2, . . . ,vn} = S1, and thus

span(S) = span({v1, . . . ,vn,u1}) = span(S1).

We can repeat this process: at every step we add the next vector from T to get the set

{u1, . . . ,uk,vk, . . . ,vn}. Since Sk−1 is a spanning set, this set is linearly dependent; since

the ui are linearly independent by hypothesis, we can remove one of the vi, and without loss

of generality we can remove vk, to obtain the set Sk = {u1, . . . ,uk,vk+1, . . . ,vn}.
If m > n, we can continue until we have replaced every vi. Then we have Sn =

{u1, . . . ,un} is a spanning set, and thus un+1 ∈ span(Sn) and so T is linearly dependent,

which contradicts our assumption.

Thus if T is linearly independent, we must have m ≤ n. Conversely, if m > n then T is

linearly dependent, as we stated.

Corollary 2.83. S = {v1, . . . ,vn} and T = {u1, . . . ,um} are two bases for a space V , then

they are the same size, i.e. m = n.

Proof. S is a spanning set and T is linearly independent, so we can’t have m > n by lemma

2.82. But T is a spanning set and S is linearly independent, so we can’t have n > m by

lemma 2.82. Thus n = m.

Definition 2.84. Let V be a vector space. If V has a basis consisting of n vectors, we say

that V has dimension n and write dimV = n. The trivial vector space {0} has dimension 0.

We say that V is finite–dimensional if there is a finite set of vectors that spans V . (Thus if

V is n-dimensional it is finite-dimensional). Otherwise, we say that V is infinite–dimensional.

In this course we will primarily discuss finite dimensional vector spaces; but there are

many important infinite-dimensional examples.

Example 2.85. The set of standard basis vectors {e1, . . . , en} is a basis for Rn, so Rn is

n-dimensional.

The set {1, x, . . . , xn} is a basis for Pn(x). This set has n+1 vectors, so dimPn(x) = n+1.

P(x) does not have a finite basis. We can see this since the set S = {1, x, . . . , xn} is

linearly independent for any n; but every spanning set is at least as big as any linearly
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independent set, so we can never have a finite spanning set. However, if we allow infinite

bases, then {1, x, . . . , xn, . . . } is a basis for P(x).

Remark 2.86. C([a, b],R) is infinite–dimensional, but if we allow infinite sums and make

convergence arguments it is possible to think of the set {1, x, . . . , xn, . . . } as a sort of (“sep-

arable”) basis. But this requires analysis and is outside the scope of this course. We can

also build a (separable) basis out of the functions sin(nx) and cos(nx) for n ∈ N; this is the
foundation of Fourier analysis and Fourier series.

The set F(R,R) is absurdly huge, and does not have a countable basis. If you believe

the axiom of choice it has a basis, as all sets do, but you can’t possibly write it down. You

can think of it has having “coordinates” given by functions like

fr(x) =

{
1 x = r

0 x ̸= r

but this isn’t a basis because it would require uncountable sums, which you can’t really

define.

How do we find bases? There are two basic ways we can build them.

Lemma 2.87 (Basis Reduction). Suppose S = {v1, . . . ,vn} is a spanning set for V . Then

S can be reduced to a basis for V . That is, there is a subset B ⊆ S that is a basis for V .

Proof. If S is linearly independent, then it is a basis and we’re done.

So suppose S is linearly dependent. Then we know at least one vector is redundant,

so without loss of generality we can reorder the set so that we can write vn as a linear

combination of the other vectors in S.

But then span(S) = span({v1, . . . ,vn−1}), and S1 = {v1, . . . ,vn−1} is a spanning set for

V and a proper subset of S. If S1 is linearly independent, then it is a basis; if not, we can

repeat this process until we reach a linearly independent set, which is our basis B.

Remark 2.88. This proof assumes that S is finite. The result is still (mostly) true if S

is infinite, but if the space is finite-dimensional this isn’t interesting, and if the space is

infinite-dimensional things get very complicated and we don’t want to worry about them

here.

Example 2.89. Let S = {(1, 1, 0), (1, 1, 1), (0, 0, 1), (2, 7, 0)} be a spanning set for R3. Find

a basis B ⊆ S for R3.

We’ll take as given that this is a spanning set, which is not difficult to check. We see

that we can write (1, 1, 1) = (1, 1, 0) + (0, 0, 1), so we can remove (1, 1, 1) without changing

the span, and we have B = {(1, 1, 0), (0, 0, 1), (2, 7, 0)} ⊆ S is a basis for R3.
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Lemma 2.90 (Basis Padding). Suppose S = {v1, . . . ,vn} is linearly independent in V .

Then if V has any finite spanning set T = {u1, . . . ,um}, we can obtain a basis by padding

S. That is, there is a basis B for V with S ⊆ B.

Proof. If T ⊂ span(S), then span(T ) ⊂ span(S), so S is a spanning set for V and thus a

basis, so we’re done.

So suppose without loss of generality that u1 ̸∈ span(S). Then S1 = {v1, . . . ,vn,u1} is

linearly independent since we can’t write any element as a linear combination of the others.

If S1 spans V , then it is a basis and we’re done. If not, there is some other ui ̸∈ span(S1),

so we can repeat the process, and after at most m steps this process will terminate (since

we run out of elements in T ). When we reach a spanning set, this is our basis.

Example 2.91. Let S = {1 + x, x2 − 3} ⊂ P2(x). Can we find a basis B for P2(x) that

contains T?

We need to find a vector (or quadratic polynomial) that isn’t in S. There are lots of

choices here, but it looks to me like 1 is not in the span of S. Then we check: suppose

a(1 + x) + b(x2 − 3) = 1. Then we have

(a− 3b) + ax+ bx2 = 1

which gives the system 
1 −3 1

1 0 0

0 1 0

→


1 0 0

0 1 0

0 0 1


which has no solution. Thus indeed 1 ̸∈ span(S), so {1, 1 + x, x2 − 3} is a basis for P3(x).
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Corollary 2.92. Let V be a finite-dimensional vector space over a field F, and let W be a

subspace of V . Then W is finite-dimensional, and dim(W ) ≤ dim(V ).

Further, if dim(W ) = dim(V ), then W = V .

Proof. Suppose dim(V ) = n. If W = {0}, then dim(W ) = 0 ≤ n so we are done.

Otherwise, W contains a nonzero vector, say v1 ∈ W . Since v1 ̸= 0, the set {v1} is

linearly independent. By basis padding, we can add choose vectors v2, . . . ,vk in W such

that S = {v1, . . . ,vk} is a basis for W , and dim(W ) = k.

But S is a linearly independent subset of V , and thus S can’t have more than n vectors.

Thus k ≤ n and so dim(W ) ≤ dimV .

If dim(W ) = n, S is a linearly independent subset of V containing n vectors. By basis

padding, it is a subset of some basis for V . But any basis for V must have exactly n elements,

and thus S is a basis for V . Since S spans V and W = span(S), we conclude that W = V .
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3 Linear Transformations

Now that we understand vector spaces a bit more, we want to see how functions between

vector spaces work. There are of course lots of functions that that take in vectors and output

other vectors; almost any multivariable function technically qualifies. But we actually want

to care about functions that in some sense are compatible with the actual vector space

structure.

3.1 Definition and examples

Definition 3.1. Let U and V be vector spaces over a field F, and let L : U → V be a

function with domain U and codomain V . We say L is a linear transformation if:

(a) Whenever u1,u2 ∈ U , then L(u1 + u2) = L(u1) + L(u2).

(b) Whenever u ∈ U and r ∈ F, then L(ru) = rL(u).

Geometrically, a linear transformation can stretch, rotate, and reflect, but it cannot bend

or shift.

Example 3.2. Consider the function from R2 to R2 given by a rotation of ninety degrees

counterclockwise. We can see by drawing pictures that the sum of two rotated vectors is the

rotation of the sum of the vectors, and that the rotation of a streched vector is the same as

the strech of a rotated vector. So this is a linear transformation.

Example 3.3. A translation is a function defined by f(x) = x + u for some fixed vector

u. (Geometrically, it corresponds to sliding or translating your input in the direction and

distance of the vector u).

This is not a linear transformation. For instance, f(rx) = rx + u ̸= r(x + u) = rf(x)

unless u = 0.

Example 3.4. The function f(x) = x2 is not a linear transformation from R to R, since
f(2x) = (2x)2 = 4x2 ̸= 2x2 = 2f(x).
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Example 3.5. Define a function L : R3 → R2 by L(x, y, z) = (x+ y, 2z − x). We check:

L((x1, y1, z1) + (x2, y2, z2)) = L(x1 + x2, y1 + y2, z1 + z2)

= (x1 + x2 + y1 + y2, 2z1 + 2z2 − x1 − x2)

= (x1 + y1, 2z1 − x1) + (x2 + y2, 2z2 − x2)

= L(x1, y1, z1) + L(x2, y2, z2).

L(r(x, y, z)) = L(rx, ry, rz) = (rx+ ry, 2rz − rx) =

= r(x+ y, 2z − x) = rL(x, y, z).

Thus L is a linear transformation by definition.

Example 3.6. Define T : Mm×n(F) → Mn×m(F) by T (A) = At, where At is the transpose

of A. On your problem set, you proved that for A,B ∈ Mm×n(F), (A + B)t = At + Bt. In

other words, you proved that T (A+B) = T (A) + T (B).

You could similarly prove that T (cA) = cT (A) or (cA)t = cAt. This shows that T is a

linear transformation.

Example 3.7. Let V = P(R). Define D : V → V by D(f) = f ′, the derivative of f . You

learned in calculus that (f + g)′ = f ′ + g′ and (cf)′ = cf ′ for all c ∈ R. In other words,

D(f + g) = D(f) +D(g) and D(cf) = cD(f) so D is linear.

Similarly, we can define I : V → V by I(f) =
∫ x

0
f(t) dt, the integral of f . Then we know∫ x

0
f(t) + g(t) dt =

∫ x

0
f(t) dt+

∫ x

0
g(t) dt and

∫ x

0
cf(t) dt = c

∫ x

0
f(t) dt, so I is linear.

Question: why can’t I just take the linear operator f 7→
∫
f(x) dx?

3.2 Kernel, Image, and the Rank-Nullity Theorem

There are some important properties we can attach to any linear transformation we study.

In particular, any linear transformation implies the existence of a couple of special sets of

vectors.

Definition 3.8. Let L : U → V be a linear transformation. If u ∈ U is a vector, we say the

element L(u) ∈ V is the image of u.

If S ⊂ U then we define the image of S to be the set L(S) = {L(u) : u ∈ S} to be the set

of images of elements of S. We say the image of the entire set U is the image (or sometimes

range) of the function L.

The kernel (or sometimes nullspace) of L is the set ker(L) = {u ∈ U : L(u) = 0} of

elements of U whose image is the zero vector.
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Another way of thinking about linear transformations is that they send lines to lines. In

particular, the image of a subspace under a linear transformation is always a subspace—thus

the image of a line will be either a point or a line.

Proposition 3.9. Let L : U → V be a linear transformation, and let S ⊆ U be a subspace

of U . Then:

(a) ker(L) is a subspace of U .

(b) The image L(S) of S is a subspace of V .

Proof. (a) See homework 4.

(b) We use the subspace theorem:

(a) We wish to show that 0 ∈ L(S). We claim in particular that L(0) = 0: that

is, the image of the zero vector in U must be the zero vector in V . Recall that

0 · v = 0 for any v ∈ V , so we have

L(0) = L(0 · 0) = 0L(0) = 0.

Thus since S is a subspace we have 0 ∈ S and thus 0 ∈ L(S).

(b) Suppose v ∈ L(S) and r ∈ R. Then there is some u ∈ S with L(u) = v, and

since S is a subspace we know that ru ∈ S. Thus

rv = rL(u) = L(ru) ∈ L(S).

(c) Suppose v1,v2 ∈ L(S). Then there exist u1,u2 ∈ S such that L(u1) = v1 and

L(u2) = v2. Since S is a subspace we know that u1 + u2 ∈ S. Then

v1 + v2 = L(u1) + L(u2) = L(u1 + u2) ∈ L(S).

Corollary 3.10. If L : U → V is a linear transformation, then the image of L is a subspace

of V .

Let’s think about some of the transformations we’ve already studied.

Example 3.11. In our geometric example of a ninety degree counterclockwise rotation, the

kernel is just the origin—nothing gets mapped to the origin except the origin. The image is

the entire plane.
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Example 3.12. Let V = P(R) be the space of real polynomials, and consider again our

functions D the derivative and I the integral. We can see that ker(D) is the set of constant

polynomials, ker(D) = {a : a ∈ R}. The image is all polynomials.

Conversely, the kernel of I is ker(I) = {0}, since no polynomial will have a zero integral

except the zero polynomial. But the image is polynomials with zero constant term, Im(I) =

{a1x+ a2x
2 + · · ·+ anx

n}.

Example 3.13. Let D([a, b],R) be the space of continuously differentiable functions from

the closed interval [a, b] to the real line. Define the derivative operator D : D([a, b],R) →
C([a, b],R) by D(f) = f ′. First we claim that D is a linear operator: we have that D(f+g) =

(f + g)′ = f ′ + g′ = D(f) +D(g), and D(rf) = (rf)′ + rf ′ = rD(f).

The kernel of D is the space of constant functions, which is a one-dimensional subspace.

The image of D is actually a little hard to see, but it’s actually the set of all continuous

functions on [a, b].

In other contexts we might write d
dx

instead of D for this linear transformation.

Example 3.14. Let C([a, b],R) be the set of all continuous functions on the closed interval

[a, b]. The (indefinite) integral isn’t quite a linear transformation, since there’s an ambiguity

in choice of constant. (This is what we mean when we say something is “not well defined”:

if I tell you to give me the integral of x2, you can’t give me a specific function back so my

question is not precise enough).

But the function I(f) =
∫ x

a
f(t) dt is a linear transformation, since

∫ x

a
(f + g)(t) dt =∫ x

a
f(t) dt +

∫ x

a
g(t) dt and

∫ x

a
rf(t) dt = r

∫ x

a
f(t) dt. In this case the choice of a as the

basepoint resolves the earlier ambiguity.

The kernel of I is the trivial vector space containing only the zero function. The image

is again a bit hard to see, but works out to be the space of differentiable functions with the

property that F (a) = 0.

This last example shows an important principle: our derivative and integral linear trans-

formations (almost) undo each other. This is a very important property and we will look at

it on its own in a bit.

Theorem 3.15. Let T : V → W be a linear transformation. If β = {v1, . . . ,vn} is a basis

for V , then

R(T ) = span(T (β)) = span(T (v1), . . . , T (vn)).

Proof. We need to show both inclusions.
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[⊇]. By definition, it is clear that {T (v1), . . . , T (vn)} ⊆ R(T ). Then by proposition 2.66

we know that span(T (v1), . . . , T (Vn)) ⊆ R(T ), which shows one of the inclusions.

[⊆]. Now suppose that x ∈ R(T ). This means that there exists v ∈ V such that T (v) = x.

Since v ∈ V and β is a basis for V , there exist scalars c1, . . . , cn ∈ F such that

v = c1v1 + · · ·+ cnvn.

Then

x = T (v) = T (c1v1 + · · ·+ cnvn)

= T (c1v1) + · · ·+ T (cnvn)

= c1T (v1) + · · ·+ cnT (vn)

and so x is a linear combination of the vectors T (v1), . . . , T (vn), in other words, x ∈
span(T (v1), . . . , T (vn), and so we have the other inclusion.

Since we have two nice subspaces, we have new vector spaces and can talk about their

properties. The most important property of vector spaces that we’ve discussed is the dimen-

sion. (Bases are more important but aren’t really a “property”.)

Definition 3.16. Let L : V → W be a linear transformation. If ker(L) is finite-dimensional,

we define the nullity of L to be null(L) = dim(ker(L)). If Im(L) is finite-dimensional, we

define the rank of L to be rk(L) = dim(Im(L)).

The kernel is all the vectors that get sent to zero; we can think of it as all the image that

L destroys or discards. The image is all the vectors that get output, and thus we can think

of it as the image that gets preserved, or sent onwards, by L. And this implies a relationship:

all the information can be either destroyed, or preserved, but not both.

More algebraically, if the kernel is large, that means a lot of vectors are being sent to

0. And that means that relatively few vectors can be sent to non-zero vectors, so the image

must be small.

Formalizing this relationship leads to

Theorem 3.17 (Rank-Nullity). Let V,W be vector spaces over F, and let T : V → W be

linear. If V is finite-dimensional, then

null(L) + rk(L) = dim(V ).
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Proof. Suppose that dim(V ) = n and dim(ker(T )) = k. We can then take a basis {v1, . . . , vk}
of ker(T ). By the basis padding theorem, we may extend this linearly independent set to a

basis of V , say β = {v1, . . . , vn}.
We claim that S = {T (vk+1), . . . , T (vn)} is a basis for Im(T ). First, we prove that S

generates Im(T ). Note that we have that

Im(T ) = span(T (v1), . . . , T (vk), T (vk+1), . . . T (vn))

= span(0, . . . ,0, T (vk+1), . . . T (vn))

= span(T (vk+1), . . . T (vn)) = span(S).

Hence, S generates R(T ).

Next, we must show that S is linearly independent. To this end, suppose we have scalars

ck+1, . . . , cn ∈ F such that
n∑

i=k+1

ciT (vi) = 0.

Using the fact that T is linear, we have

n∑
i=k+1

ciT (vi) = T

(
n∑

i=k+1

civi

)
= 0

which shows that
n∑

i=k+1

civi ∈ ker(T ).

Since v1, . . . , vk is a basis of ker(T ), there exist scalars c1, . . . , ck, such that

k∑
i=1

civi =
n∑

i=k+1

civi

and so
k∑

i=1

civi +
n∑

i=k+1

(−ci)vi = 0.

But now since β is a basis for V , the set v1, . . . , vn is linearly independent, which forces all

of the ci = 0. But this shows that T (vk+1), . . . , T (vn) is linearly independent.

This shows that

rk(T ) = dim Im(T ) = n− k = dim(V )− null(T ),

from which the theorem follows.
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This theorem gives us a major constraint on what linear functions can possibly look like.

We have more to say about this structure, but first we want to understand how to compute

with linear functions a little more easily. Fortunately, we have an extremely powerful tool

for doing so.

3.3 The Matrix of a Linear Transformation

We’ve seen some examples of linear transformations, but they’re fundamentally awkward to

compute with. But we can use matrices to make all our computations simpler—and turn

almost every computation into a row reduction.

We want to start by looking at the situation just in Rn or Fn. We want to study linear

functions in those spaces, and it turns out they can all be represented by matrices. First we

need some facts about matrices.

Definition 3.18. If A ∈ Mℓ×m and B ∈ Mm×n, then there is a matrix AB ∈ Mℓ×n whose

ij element is

cij =
m∑
k=1

aikbkj.

If you’re familiar with the dot product, you can think that the ij element of AB is the

dot product of the ith row of A with the jth column of b.

Note that A and B don’t have to have the same dimension! Instead, A has the same

number of columns that B has rows. The new matrix will have the same number of rows as

A and the same number of columns as B.

Matrix multiplication is associative, by which we mean that (AB)C = A(BC).

Matrix multiplication is not commutative: in general, it’s not even the case that AB and

BA both make sense. If A ∈ M3×4 and B ∈ M4×2 then AB is a 3× 2 matrix, but BA isn’t

a thing we can compute. But even if AB and BA are both well-defined, they are not equal.

Example 3.19.

[
3 5 1

−2 0 2

]
2 1

1 3

4 1

 =

[
3 · 2 + 5 · 1 + 1 · 4 3 · 1 + 5 · 3 + 1 · 1
−2 · 2 + 0 · 1 + 2 · 4 −2 · 1 + 0 · 3 + 2 · 1

]
=

[
15 19

4 0

]

2 1

1 3

4 1


[
3 5 1

−2 0 2

]
=


2 · 3 + 1 · (−2) 2 · 5 + 1 · 0 2 · 1 + 1 · 2
1 · 3 + 3 · (−2) 1 · 5 + 3 · 0 1 · 1 + 3 · 2
4 · 3 + 1 · (−2) 4 · 5 + 1 · 0 4 · 1 + 1 · 2

 =


4 10 4

−3 5 7

10 20 6

 .
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Particularly nice things happen when our matrices are square. Any time we have two

n× n matrices we can multiply them by each other in either order (though we will still get

different things each way!).

Example 3.20. [
4 1

−3 5

][
−1 1

1 −2

]
=

[
−3 2

8 −13

]
[
−1 1

1 −2

][
4 1

−3 5

]
=

[
−7 4

10 −9

]
.

However, matrix multiplication does satisfy the distributive and associative properties.

Fact 3.21. If A ∈ Mℓ×m and B,C ∈ Mm×n then A(B + C) = AB + AC.

If A ∈ Mℓ×m, B ∈ Mm×n, C ∈ Mn×p then (AB)C = A(BC).

Example 3.22.[
1 3

2 4

][
5 −1

3 2

]
=

[
1 · 5 + 3 · 3 1 · (−1) + 3 · 2
2 · 5 + 4 · 3 2 · (−1) + 4 · 2

]
=

[
14 5

22 6

]
[
4 6

2 1

][
3 1 5

4 1 6

]
=

[
4 · 3 + 6 · 4 4 · 1 + 6 · 1 4 · 5 + 6 · 6
2 · 3 + 1 · 4 2 · 1 + 1 · 1 2 · 5 + 1 · 6

]
=

[
36 10 56

10 3 16

]
.

So how does this give us a linear function? If we have a vector in Fn, we can view it as a

n× 1 matrix. And then multiplying by a m× n matrix will give us a m× 1 matrix—which

is a vector in Fm!

Example 3.23. Let A =

[
3 5 1

2 −1 3

]
be a matrix, and u =


5

−2

1

. Then we can compute

Au =

[
3 5 1

2 −1 3

]
5

−2

1


=

[
6

15

]
.
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Now let’s see what happens to each element of the standard basis for R3.

Ae1 =

[
3 5 1

2 −1 3

]
1

0

0

 =

[
3

2

]

Ae1 =

[
3 5 1

2 −1 3

]
0

1

0

 =

[
5

−1

]

Ae1 =

[
3 5 1

2 −1 3

]
0

0

1

 =

[
1

3

]
.

We notice that the image of the standard basis elements are just the columns of the matrix!

This isn’t a coincidence; the columns of our matrix are telling us exactly where our basis

vectors go. And we’ll see that this is enough to tell us about our entire function—as long as

it’s linear.

But remember we said that A(B + C) = AB + AC. That implies that A(u + v) =

Au + av. It also shouldn’t be too hard to convince yourself that scalar multiplication

commutes: A(rB) = r(AB), and thus A(ru) = r(Au). So multiplication by a matrix is

always a linear function.

It’s less obvious, but it turns out that any linear function Fn → Fm can be described by

a matrix. But we’ll wait and prove this along with the proof for all vector spaces.

So now we want to figure out how to apply this logic to vector spaces that aren’t Fn.

And that requires us to use our discussion of bases to get coordinates on our space.

Definition 3.24. If V is a vector space over F, we define an ordered basis for V to be a

basis for V with a specific fixed order.

Let β = {v1, . . . ,vn} be an ordered basis for V . Then if v ∈ V , we can uniquely write

v = a1v1 + · · ·+ anvn

for ai ∈ F. We define the coordinate vector of v with respect to β to be

[u]β =


a1
...

an

 ∈ Fn.

We call the ai the coordinates of v with respect to β.
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This is one more layer of precision to our idea that any finite-dimensional vector space

“looks like” Fn.

Example 3.25. Let U = P3(x). Then E = {1, x, x2, x3} is a basis for U . Also, F =

{1, 1 + x, 1 + x2, 1 + x3} is a basis for U .

Let f(x) = 1 + 3x+ x2 − x3 ∈ U . Then

[f ]E =


1

3

1

−1

 [f ]F =


−2

3

1

−1

 .

These are two different vectors of real numbers, but they represent the same element of U ,

just in different bases.

Example 3.26. Let U = R3 and let E = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}. Then if u = (1, 3, 2),

then

[u]E =


−2

1

2

 .

Remark 3.27. If B is the standard basis for Rn, then any time we write a column vector

there’s an implicit


a1
...

an


B

that we just don’t bother to write down.

Lemma 3.28. If U is a vector space and E = {e1, . . . , en} is a basis for U , then the function

[·]E : U → Rn which sends u to [u]E is a linear function.

Proof. See HW 5.

Theorem 3.29. Let U and V be finite-dimensional vector spaces, with E = {e1, . . . , en} a

basis for U and F = {f1, . . . , fm} a basis for V . Let L : U → V be a linear transformation.

Then there is a matrix A that represents L with respect to E and F , such that Lu = v if

and only if A[u]E = [v]F . The columns of A are given by cj = [L(ej)]F .

Remark 3.30. This looks really complicated, but it really just says that any v linear trans-

formation is determined entirely by what it does to the elements of some basis; if you have a

basis and you know where your transformation sends each element of that basis, you know

what it does to everything in your space.

In particular, if we have coordintes for our vector spaces, we can use a matrix to map

one set of coordinates to the other, as if we were working in Rn.
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U

[·]E
��

L // V

[·]F
��

u � L //
_

[·]E
��

L(u)
_

[·]F
��

Rn A // Rm [u]E
� A // A[u]E = [L(u)]F

Proof. We just want to show that A[u]E = [L(u)]F for any u ∈ U , where

A = [c1 . . . cn] = [[L(e1)]F . . . [L(en)]F ] .

Let u ∈ U . Since E is a basis for U we can write u = a1e1 + · · ·+ anen. Then we have

[L(u)]F = [a1L(e1) + · · ·+ anL(en)]F = a1 [L(e1)]F + · · ·+ an [L(en)]F

= a1c1 + · · ·+ ancn;

A[u]E = A [a1e1 + · · ·+ anen]E = A(a1, . . . , an) = [c1 . . . cn] (a1, . . . , an)

= c1a1 + · · ·+ cnan.

Thus we have [L(u)]F = A [u]E, so the matrix A does in fact represent the linear operator

L.

Example 3.31. Let F = {(1, 1), (−1, 1)} be a basis for R2, and let L : R3 → R2 be given

by L(x, y, z) = (x− y− z, x+ y+ z). Find a matrix for L with respect to the standard basis

in the domain and F in the codomain.

L(1, 0, 0) = (1, 1) = f1

L(0, 1, 0) = (−1, 1) = f2

L(0, 0, 1) = (−1, 1) = f2

A =

[
1 0 0

0 1 1

]
.

Example 3.32. Let S be the subspace of C([a, b],R) spanned by {ex, xex, x2ex}, and let D

be the differentiation operator on S. Find the matrix of D with respect to {ex, xex, x2ex}.
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We compute:

D(ex) = ex = s1

D(xex) = ex + xex = s1 + s2

D(x2ex) = 2xex + x2ex = 2s2 + s3

A =


1 1 0

0 1 2

0 0 1

 .

Example 3.33. Let E = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and F = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} be

bases for R3, and define L(x, y, z) = (x+ y+ z, 2z,−x+ y+ z). We can check this is a linear

transformation.

To find the matrix of L with respect to E and the standard basis, we compute

L(1, 1, 0) = (2, 0, 0)

L(1, 0, 1) = (2, 2, 0)

L(0, 1, 1) = (2, 2, 2).

Thus the matrix with respect to E and the standard basis is

A =


2 2 2

0 2 2

0 0 2

 .

If we want to find the matrix with respect to E and F , we observe that

L(1, 1, 0) = (2, 0, 0) = 2(1, 0, 0) = 2f1

L(1, 0, 1) = (2, 2, 0) = 2(1, 1, 0) = 2f2

L(0, 1, 1) = (2, 2, 2) = 2(1, 1, 1) = 2f3.

Thus the matrix is 
2 0 0

0 2 0

0 0 2

 .

We notice that this matrix is really simple; this is a “good” choice of bases for this linear

transformation.
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In contrast, let’s look at the transformation T (x, y, z) = (x, y, z). Then we have

T (1, 1, 0) = (1, 1, 0) = (1, 1, 0) = f2

T (1, 0, 1) = (1, 0, 1) = (1, 0, 0)− (1, 1, 0) + (1, 1, 1) = f1 − f2 + f3

T (0, 1, 1) = (0, 1, 1) = −(1, 0, 0) + (1, 1, 1) = −f1 + f3.

Thus the matrix of T with respect to E and F is
0 1 −1

1 −1 0

0 1 1

 .

Thus this transformation, which is really simple with respect to the standard basis, is much

more complicated with respect to these bases.

These matrices, finally, allow us to do easy calculations of the kernel and image of a

transformation. We start with the kernel: we’re looking for the solutions to L(v) = 0. But

this is the same as looking for solutions of A[v] = 0. Further, if we take A = (aij) and

[v] = (v1, . . . , vn), then this equation becomes
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn




v1

v2
...

vn

 =


0

0
...

0



a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn

...

am1x1 + · · ·+ amnxn

 =


0

0
...

0


which gives us the system

a11x1 + · · ·+ a1nxn = 0

a21x1 + · · ·+ a2nxn = 0

...
...

am1x1 + · · ·+ amnxn = 0.
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And since we have a system of equations, we can turn it into an augmented matrix:
a11 a12 . . . a1n 0

a21 a22 . . . a2n 0
...

...
. . .

...
...

am1 am2 . . . amn 0


but this is just the matrix we started with! So we can find the kernel by row-reducing this

matrix.

Similarly, if we want to check if a vector u is in the image, that corresponds to solving

the equation L(v) = u, and thus A[v] = [u]; working through the same computations, this

leads us to row reduce the matrix
a11 a12 . . . a1n u1

a21 a22 . . . a2n u2

...
...

. . .
...

...

am1 am2 . . . amn um

 .

Example 3.34. Consider again S the subspace of C([a, b],R) spanned by {ex, xex, x2ex},
and let D the differentiation operator on S. We want to find the kernel and image of D.

We found the matrix with respect to {ex, xex, x2ex} to be

A =


1 1 0

0 1 2

0 0 1

 .

We can then set up the equation

Ax = b

and find for which b there is a x that solves this equation. So we have
1 1 0

0 1 2

0 0 1



x1

x2

x3

 =


b1

b2

b3



x1 + x2

x2 + 2x3

x3

 =


b1

b2

b3


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which gives us the system of equations

x1 + x2 = b1

x2 + 2x3 = b2

x3 = b3

which we can solve by row reducing a matrix:
1 1 0 b1

0 1 2 b2

0 0 1 b3

→


1 0 −2 b1 − b2

0 1 2 b2

0 0 1 b3

→


1 0 0 b1 − b2 + 2b3

0 1 0 b2 − 2b3

0 0 1 b3

 .

First, we observe that this has solutions for any b = (b1, b2, b3); that means that the image of

our matrix is R3, and thus the image ofD is S. So if we want to obtain, say, 3ex+5xex−2x2e2

we have b1 = 3, b2 = 5, b3 = −2, and so we must have x1 = −6, x2 = 9, x3 = −2; and indeed

we can check that

d

dx
− 6ex + 9xex − 2x2ex = −6ex + 9ex + 9xe2 − 4xex − 2x2ex

= 3ex + 5xex − 2x2ex.

Second, if we look at the matrix we were reducing, it’s just an augmented version of

A—which isn’t an accident. We pushed our symbols around through three or four different

forms of the question, but throughout we were asking essentially the same question.

Finally, we can just as well try to identify the kernel of this transformation. We would

set up the same equations, except instead of looking at an arbitrary output b, we want to

see how we can obtain 0. So we would take our same solutions as before, but with all the

bi = 0. So we have

x1 = b1 − b2 + 2b3 = 0

x2 = b2 − 2b3 = 0

x3 = b3 = 0.

Thus the only solution is x1 = x2 = x3 = 0, and the kernel of the transformation is {0}.

3.4 The space of linear transformations

We know the set of m × n matrices is a vector space: we can add matrices, and multiply

them by scalars. We now have a function that takes in a linear transformation and gives us
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a matrix. In fact, this function should give us some sort of equivalence—which would mean

that the linear transformations should also be a vector space!

And indeed we can add and scalar multiply linear transformations.

Definition 3.35. Let L, T : U → V be linear transformations. We define a function

(L+ T )(u) = L(u) + T (u).

Let r ∈ F be a scalar. Then we define a function (rT )(u) = r(T (u)).

Proposition 3.36. Let U, V be vector spaces over F, and r ∈ F be a scalar. If L, T : U → V

are linear transformations, then the function rL+ T is also a linear transformation.

Proof. HW 6.

From here we can conclude that the set of linear transformations from U to V is a vector

space. We have two operations; we just have to check all ten axioms, which is tedious but

not difficult. The zero vector is the zero linear transformation, defined by L(v) = 0.

Definition 3.37. Let U, V be vector spaces over F. We denote the space of linear transfor-

mations from U to V by L(U, V ).

Proposition 3.38. Let V,W be finite-dimensional vector spaces over F with ordered bases

β, γ, and let L, T : V → W be linear transformations. Then

(a) [L+ T ]γβ = [L]γβ + [T ]γβ

(b) [rL]γβ = r[L]γβ for all r ∈ F.

Proof. Let β = {v1, . . . , vn} and γ = {w1, . . . , wm}. We know that since γ is a basis for W ,

there are unique scalars aij and bij for 1 ≤ i ≤ m and 1 ≤ j ≤ n such that

L(vj) =
m∑
i=1

aijwi and T (vj) =
m∑
i=1

bijwi.

And that the matrix [L]γβ = (aij) and [T ]γβ = (bij). To compute the matrix [L+T ]γβ, we need

to compute the coefficients on (L+ T )(vj) in terms of the wi. But now note that

(L+ T )(vj) = L(vj) + T (vj) =
m∑
i=1

aijwi +
m∑
i=1

bijwi =
m∑
i=1

(aij + bij)wi.

Hence, the matrix [L + T ]γβ = (aij + bij). But by definition of matrix addition, this is the

same as [L]γβ + [T ]γβ.

Part (2) is proved similarly, and you should go through it as an exercise.
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Finally, we can compose two linear transformations and get another linear transformation.

Proposition 3.39. Let U, V,W be vector spaces over F, and let L : U → V and T : V → W

be linear functions. Then T ◦ L : U → W is also linear.

Proof. Let u1,u2 ∈ U , and r ∈ F. Then

TL(u1 + u2) = T
(
L(u1) + L(u2)

)
= T (L(u1)) + T (L(u2))

TL(ru1) = T
(
rL(u1)

)
= rTL(u1).

The composition of linear transformations also behaves very well, and respects a lot of

properties we’d like to preserve.

Proposition 3.40. Let U, V,W, Y be vector spaces over F. Let L1, L2 : U → V, T1, T2 : V →
W , and S : W → Y . Then

(a) (T1 + T2)L1 = T1L1 + T2L1 and T1(L1 + L2) = T1L1 + T1L2.

(b) S(T1L1) = (ST1)L1.

(c) a(T1L1) = (aT1)L1 = T1(aL1).

There’s also another special linear transformation:

Definition 3.41. Let V be a vector space over F. We define the identity transformation IV

by IV (v) = v.

We now want to relate all this to matrices. We can compose two linear transformations.

What does that do to the matrices? In fact, it does the best possible thing:

Proposition 3.42. Let U, V,W be finite-dimensional vector spaces over F, with ordered

bases α, β, γ. Let L : U → V and T : V → W be linear transformations. Then

[TL]γα = [T ]γβ[L]
β
α.

That is, composition of linear transformations is just the same as multiplying the cor-

responding matrices. And this is essentially where the definition of matrix multiplication

came from.

Proof.
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3.5 Injectivity, Surjectivity, and Isomorphism

Here are some definitions you should be familiar with from 2971:

Definition 3.43. � Let f : U → V be any function. If there is a g : V → U such that

g(f(u)) = u for all u ∈ U , and f(g(v)) = v for all v ∈ V , then we say that g = f−1 is

the inverse of f , and that f is invertible.

� A function f is one-to-one or injective if it has the property that: if f(x) = f(y) then

x = y. This tells us that anything in the image of f is only in the image once.

� A function f : A → B is onto or surjective if the image of f is B. That is, f is onto

if for every b ∈ B there is an a ∈ A with f(a) = b. This tells us we can reach every

element of the codomain from some element of the domain.

� A function f is bijective if it is both one-to-one and onto.

Fact 3.44. A function f : U → V is invertible if and only if it is bijective.

Definition 3.45. If L : U → V is an invertible linear transformation, we say that L is an

isomorphism between U and V .

If U and V are vector spaces, we say they are isomorphic if there exists an isomorphism

from U to V . We write U ∼= V .

Because linear transformations are so structured, we can check these things more easily

than usual.

Proposition 3.46. Let L : U → V be a linear transformation. Then L is injective if and

only if ker(L) = {0}.

Proof. See hw6?

This makes it easy to check if a linear transformation is injective. We just need to check

the kernel, and we can check the kernel of the transformation by row-reducing the associated

matrix.

Surjectivity is a little harder to check, at least directly. We can still do this with the

matrix form of a transformation:

Example 3.47. Consider again S the subspace of C([a, b],R) spanned by {ex, xex, x2ex},
and let D the differentiation operator on S. We want to find the kernel and image of D. We
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got the matrix

A =


1 1 0

0 1 2

0 0 1


and then reduced to get

1 1 0 b1

0 1 2 b2

0 0 1 b3

→


1 0 −2 b1 − b2

0 1 2 b2

0 0 1 b3

→


1 0 0 b1 − b2 + 2b3

0 1 0 b2 − 2b3

0 0 1 b3

 .

So we saw the image of A was R3, and thus the image of D was S, making D surjective.

And the kernel of D is {0}, so D is injective.

But it’s often simpler to use the rank-nullity theorem. If we know the dimension of the

kernel, then we know the dimension of the image, and thus we can figure out if it’s surjective.

As a corollary, we can observe that if two spaces are isomorphic, they must have the same

dimension. But we can actually say something stronger.

Proposition 3.48. Let U, V/F be finite-dimensional vector spaces. Then U ∼= V if and only

if dim(U) = dim(V ).

Proof. Suppose U ∼= V . Then there is an isomorphism L : U → V . Since L is injective, we

know ker(L) = {0} and so dim(ker(L)) = 0. Since L is surjective, we know that Im(L) = V

and thus dim(Im(L)) = dim(V ). But by the rank-nullity theorem, we know that

dim(U) = dim(ker(L)) + dim(Im(L)) = 0 + dim(V ) = dim(V ).

Conversely: suppose dim(U) = dim(V ). We have a basis β = {u1, . . . ,un} for U , and a

basis γ = {v1, . . . ,vn} for V . (These two bases have the same size, since dim(U) = dim(V ).)

Define a transformation L : U → V by

L(a1u1 + · · ·+ anun) = a1v1 + · · ·+ anvn.

First we need to prove that this is “well-defined”—that is, we need to prove that L is actually

a function. But we know that given a vector u ∈ U there is a unique way to write it as a

linear combination of our basis vectors. So there’s only one way to represent the input, and

so this is a proper function.

We need to check that this is linear, and that it’s invertible. Suppose a ∈ F, and that

u1 = b1u1 + · · ·+ bnun

u2 = c1u! + · · ·+ cnvn ∈ U.
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Then

L(au1 + u2) = L
(
a
(
b1u1 + · · ·+ bnun

)
+ c1u1 + · · ·+ cnvn

)
= L

(
(ab1 + c1)u1 + · · ·+ (abn + cn)un

)
= (ab1 + c1)v1 + · · ·+ (abn + cn)vn

and

aL(u1) + L(u2) = a
(
b1v1 + · · ·+ bnvn) + c1v1 + · · ·+ cnvn

= (ab1 + c1)v1 + · · ·+ (abn + cn)vn.

So L is linear.

To show that L is a bijection, we can do two things. We could check that it’s injective and

surjective, which is annoying; but we can also just find an inverse. So we define a function

T : V → U by the formula

T (a1v1 + · · ·+ anvn) = a1u1 + · · ·+ anun,

and we see that T (L(u)) = u for all u ∈ U . Thus L is invertible.

But this sort of rule isn’t very helpful for actually finding inverses to transformations,

that we can compute. For that we have to use matrices again.

Definition 3.49. Let F be a field and n ∈ N. We define the identity matrix to be the matrix

In ∈ Mn×n that has a 1 on every entry in the main diagonal, and 0s everywhere else. For

example,

I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

If A ∈ Mn then InA = A = AIn. Thus it is a multiplicative identity in the ring of n× n

matrices.

Let A and B be n × n matrices, such that AB = In = BA. Then we say that B is the

inverse (or multiplicative inverse) of A, and write B = A−1.

If such a matrix exists, we say that A is invertible or nonsingular. If no such matrix

exists, we say that A is singular.
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Example 3.50. The identity matrix In is its own inverse, and thus invertible.

The matrices [
2 4

3 1

]
and

[
−1/10 2/5

3/10 −1/5

]
are inverses to each other, as you can check.

Example 3.51. The matrix

[
1 0

0 0

]
has no inverse, since

[
1 0

0 0

][
a b

c d

]
=

[
a b

0 0

]

won’t be the identity for any a, b, c, d. Thus this matrix is singular.

As the last example shows, finding the inverse to a matrix is a matter of solving a big

pile of linear equations at the same time (one for each coefficient of the inverse matrix).

Fortunately, we just got good at solving linear equations. Even more fortunately, there’s an

easy way to organize the work for these problems.

Proposition 3.52. Let A be a n×n matrix. Then if we form the augmented matrix
[
A In

]
,

then A is invertible if and only if the reduced row echelon form of this augmented matrix is[
In B

]
for some matrix B, and furthermore B = A−1.

Proof. Let X be a n × n matrix of unknowns, and set up the system of equations implied

by AX = In. Thus we have
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn

 =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 0


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which gives us a huge pile of equations like

a11x11 + a12x21 + · · ·+ a1nxn1 = 1

a11x12 + a12x22 + · · ·+ a1nxn2 = 0

...
...

a11x1n + a12x2n + · · ·+ a1nxnn = 0

−−−

a21x11 + a22x21 + · · ·+ a2nxn1 = 0

a21x12 + a22x22 + · · ·+ a2nxn2 = 1

...
...

a21x1n + a22x2n + · · ·+ a2nxnn = 0

−−−
...

...

−−−

an1x11 + an2x21 + · · ·+ annxn1 = 0

an1x12 + an2x22 + · · ·+ annxn2 = 0

...
...

an1x1n + an2x2n + · · ·+ annxnn = 1

Now we can solve this system by turning it into an augmented matrix. And in theory, maybe

the matrix should be n2 rows and n2 columns, and then one augmented column. But it’s

really the same matrix of coefficients repeated n times, so we’ll have to do the exact same set

of row operations n times. Instead we can do them all at once, by taking the single column

with n2 entries and rewriting it as n columns with n entries each.

Then if the matrix A has a reduced row echelon form equal to the identity, this system

will have a unique solution, which will give us A−1. If the RREF of A isn’t the identity, then

it will have a row of all zeroes, and thus there will be no solution, and A has no inverse.

Example 3.53. Let’s find an inverse for A =


1 2 3

0 1 4

0 0 1

.
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We form and reduce the augmented matrix
1 2 3 1 0 0

0 1 4 0 1 0

0 0 1 0 0 1

→


1 0 −5 1 −2 0

0 1 4 0 1 0

0 0 1 0 0 1

→


1 0 0 1 −2 5

0 1 0 0 1 −4

0 0 1 0 0 1

 .

Thus A−1 =


1 −2 5

0 1 −4

0 0 1

. We can check this by multiplying the matrices back together.

Example 3.54. Find the inverse of B =


1 0 4

1 1 6

−3 0 −10

 .

We form and reduce the augmented matrix
1 0 4 1 0 0

1 1 6 0 1 0

−3 0 −10 0 0 1

→


1 0 4 1 0 0

0 1 2 −1 1 0

0 0 2 3 0 1



→


1 0 4 1 0 0

0 1 2 −1 1 0

0 0 1 3/2 0 1/2

→


1 0 0 −5 0 −2

0 1 2 −4 1 −1

0 0 1 3/2 0 1/2

 .

Thus B−1 =


−5 0 −2

−4 1 −1

3/2 0 1/2

 .

Example 3.55. What happens if we try to find an inverse for C =

[
1 0

0 0

]
? We start with

[
1 0 1 0

0 0 0 1

]

but then there is no way to make the left-side block of the matrix into the identity I2. Thus

this matrix C is not invertible.

Proposition 3.56. Let L : U → V be a linear transformation of finite dimensional vector

spaces, and let E,F be bases for U, V respectively. Let A be the matrix of L with respect to

E,F . Then L is invertible if and only if A is invertible, and the matrix of L−1 is A−1.
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Proof. Suppose L is invertible, and that the matrix of L is A and the Let B be the matrix

of L−1. Then for any u ∈ U ,

[L−1(L(u))]E = B[L(u)]F = BA[u]E

[L−1(L(u))]E = [u]E

and thus BA[u]E = [u]E for all u ∈ U . Thus BAx = x for all x ∈ Rn, and thus BA = In.

So by definition B = A−1.

Conversely, suppose the matrix of L is A, and A has an inverse A−1. Let T be the

function corresponding to A−1, so for all v ∈ V we have [T (v)]E = A−1[v]F . Then for any

u ∈ U,v ∈ V , we compute

[T (L(u))]E = A−1[L(u)]F = A−1A[u]E = [u]E

[L(T (v))]F = A[T (v)]E = AA−1[v]F = [v]F .

Thus T (L(u)) = u and L(T (v)) = v, so by definition T = L−1.

Example 3.57. Consider again S the subspace of C([a, b],R) spanned by {ex, xex, x2ex},
and let D the differentiation operator on S.We got the matrix

A =


1 1 0

0 1 2

0 0 1


and we can invert this matrix:

1 1 0 1 0 0

0 1 2 0 1 0

0 0 1 0 0 1

→


1 0 −2 1 −1 0

0 1 2 0 1 0

0 0 1 0 0 1

→


1 0 0 1 −1 2

0 1 0 0 1 −2

0 0 1 0 0 1

 .

Thus we have an inverse matrix

A−1 =


1 −1 2

0 1 −2

0 0 1

 .

What does this say as a function from S → S? Well, this is the function that sends ex 7→ ex,

sends xex 7→ −ex + xex, and sends x2ex 7→ 2ex − 2xex + x2ex. So it’s the antidifferentiation

operator on S!
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We’ve done a lot of work on the relationship between linear functions and matrices. This

also gives us an actual isomorphism.

Proposition 3.58. Let V,W be finite-dimensional vector spaces over F of dimension n and

m, respectively; and fix ordered bases β, γ of V and W . We can define a function

Φγ
β : L(V,W ) → Mm×n(F)

by Φγ
β(T ) = [T ]γβ. Then Φγ

β is an isomorphism.

Proof. In proposition 3.38 we showed that Φγ
β is a linear transformation. So we just need to

show it has an inverse.

Let A ∈ Mm×n, and fix bases β = {v1, . . . ,vn} and γ = {w1, . . . ,wm}. Then we can

define a unique linear transformation T : V → W by setting

T (vj) =
m∑
i=1

aijwi

for each basis element vj ∈ β. Then we can extend this by linearity to get a unique linear

transformation on all of V . Thus Φγ
β(T ) = A, so Φγ

β is surjective.

Now suppose Φγ
β(T ) = Φγ

β(L). Then [T ]γβ = [L]γβ. Thus T (vj) = L(vj) for each j, and

thus T = L. So Φγ
β is injective.

Corollary 3.59. If dim(V ) = n and dim(W ) = m then dim(L(V,W )) = mn.

3.6 Change of Basis

We will sometimes use the notation ϕβ for the map x 7→ [x]β.

Proposition 3.60. If V is a finite-dimensional vector space with ordered basis β, then ϕβ

is an isomorphism.

Proof. We’ve already shown this is linear.

Let x = (x1, . . . , xn) ∈ Rn. Then if β = {v1, . . . ,vn}, we can set v = x1v1 + · · ·+ xnvn,

and ϕβ(v) = x. So ϕβ is surjective. Since V and Rn have the same dimension, it must also

be injective.

We return to theorem 3.29, and the diagram that follows it, now with our new notation:
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UOO

ϕβ

��

L // VOO

ϕγ

��

u � L //
_

ϕβ

��

L(u)
_

ϕγ

��
Rn A // Rm [u]β

� A // A[u]β = [L(u)]γ

The new information, in addition to changing the notation, is that the vertical maps

are invertible, which means that we can go either way. Specifically, this tells us that if we

have a linear transformation L : U → V , and its matrix is A ∈ Mm×n with implied linear

transformation LA : Rn → Rm, then we have

L = ϕ−1
γ ◦ LA ◦ ϕβ.

So this gives us a whole family of isomorphisms: every basis for V gives an isomorphism

ϕβ : V
∼−→ Rn. If we have another basic γ we get another isomorphism ϕγ : V

∼−→ Rn; but

since isomorphisms are invertible this in fact gives us an isomorphism ϕ−1
γ ϕβ from V to itself!

Proposition 3.61. Let β and γ be two ordered bases of a finite-dimensional vector space V ,

and let Q = [IV ]
β
γ . Then Q is an invertible matrix, and for any v ∈ V , [v]β = Q[v]γ.

Proof. Since IV is invertible, its matrix is also invertible. For any v ∈ V , we have

[v]β = [IV (v)]β = [IV ]
β
γ [v]γ = Q[v]γ.

So this matrix Q changes the coordinates of our vector: it changes γ-coordinates into

β-coordinates. The inverse, of course, goes the other way, and Q−1 changes β coordinates

into γ coordinates.

Definition 3.62. We call such an isomorphism a change of basis map. The matrix of such

an isomorphism is called a transition matrix.

Example 3.63. We know that β = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and γ = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}
are both bases for R3. Then we have

[IV (1, 0, 0)]β = [(1, 0, 0)]β = (1, 0, 0)

[IV (1, 1, 0)]β = [(1, 1, 0)]β = (1, 1, 0)

[IV (1, 1, 1)]β = [(1, 1, 1)]β = (1, 1, 1)

[IV ]
β
γ =


1 1 1

0 1 1

0 0 1

 .
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If we have the γ coordinates of a vector, this gives us the β coordinates; so if [v]γ = (3, 1, 4)

then we have

[v]β = [IV ]
β
γ [v]γ

=


1 1 1

0 1 1

0 0 1



3

1

4

 =


8

5

4

 .

Of course we could have figured this out directly, in this case. Because we know that

v = 3


1

0

0

+ 1


1

1

0

+ 4


1

1

1

 =


8

5

4

 .

The really cool bit is that we can invert it. Row reduction gives
1 1 1 1 0 0

0 1 1 0 1 0

0 0 1 0 0 1

→


1 0 0 1 −1 0

0 1 1 0 1 0

0 0 1 0 0 1

→


1 0 0 1 −1 0

0 1 0 0 1 −1

0 0 1 0 0 1


and thus we have (

[Iv]
β
γ

)−1

=


1 −1 0

0 1 −1

0 0 1

 .

But this is just the matrix that changes coordinates from β to γ. So if I have the vector

v = (5,−2, 3), then we can find

[v]γ =


1 −1 0

0 1 −1

0 0 1




5

−2

3



=


7

−5

3

 .

And indeed we can see that

7


1

0

0

− 5


1

1

0

+ 3


1

1

1

 =


5

−2

3

 .
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Definition 3.64. A linear transformation L : V → V is called a linear operator on V . We

denote the space of linear operators on V by L(V ) = L(V, V ).

If we have a linear operator on V , and a basis on V , then we can get a matrix for that

operator. But which matrix we get depends on the basis we choose.

Example 3.65. Let Rπ/2 : R2 → R2 be the linear transformation given by a rotation

ninety degrees counterclockwise. We saw earlier that with respect to the standard basis, this

transformation has matrix A =

[
0 −1

1 0

]
. But we can also compute the matrix with respect

to, say, γ = {(1, 0), (1, 1)}. Then we have

Rπ/2(1, 0) = (0, 1) = (1, 1)− (1, 0) → (−1, 1)

Rπ/2(1, 1) = (−1, 1) = (1, 1)− 2(1, 0) → (−2, 1)

B =

[
−1 −2

1 1

]
.

These two matrices represent the same transformation, with respect to different bases.

But they are clearly not the same matrix! What’s going on here?

The answer is that we changed the coordinate system, and so our matrix changed. After

we account for that, we should get the same matrix. To account for this, we need the change

of basis matrix between γ and the standard basis β. We have

U [I]βγ =

[
1 1

0 1

]
the transition matrix from γ to the standard basis, and thus

U−1 =

[
1 −1

0 1

]
= [I]γβ

is the transition matrix from the standard basis to γ.

If we want to perform the operation Rπ/2 on the vectors of F , we can use the matrix

B that we found. Alternatively, we can transform our vectors into E-coordinates, use the

matrix A, and then transform back into F -coordinates. This operation would be given by

U−1AU . We calculate that

U−1AU = [I]γβ[Rπ/2]
β
β[I]

β
γ =

[
1 −1

0 1

][
0 −1

1 0

][
1 1

0 1

]

=

[
−1 −1

1 0

][
1 1

0 1

]
=

[
−1 −2

1 1

]
= B = [Rπ/2]

γ
γ.
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This is the same as the matrix B = [Rπ/2]
γ
γ, as it should be.

We can generalize this. Sometimes two different matrices are representing the same

transformation, just in different bases. and in this case, the matrices have to have some

basic properties in common. We call these matrices similar.

Definition 3.66. If A and B are n × n matrices, we say they are similar if there is some

invertible matrix U such that B = U−1AU . We write A ∼ B.

Proposition 3.67. Let E = {e1, . . . , en}, F = {f1, . . . , fn} be two bases for V , and let

L : V → V be a linear function. Let U be the transition matrix from F to E.

If A is the matrix representing L with respect to E, and B is the matrix representing L

with respect to F , then B = U−1AU .

Example 3.68. Let D : P2(x) → P2(x) be the differentiation operator. Let’s find the matrix

of D with respect to E = {1, x, x2} and with respect to F = {1, 2x, 4x2 − 2}.

We’ve already seen that the matrix of D with spect to E is A =


0 1 0

0 0 2

0 0 0

.
We can work out the matrix with respect to F directly:

D(1) = 0 → (0, 0, 0)

D(2x) = 2 → (2, 0, 0)

D(4x2 − 2) = 8x → (0, 4, 0)

B =


0 2 0

0 0 4

0 0 0


Alternatively, we could recall that the change of basis matrices between E and F :

[I]EF =


1 0 1/2

0 1/2 0

0 0 1/4

 = U−1

[I]FE =


1 0 −2

0 2 0

0 0 4

 = U.
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So we can compute the matrix B for D by saying

B = U−1AU =


1 0 1/2

0 1/2 0

0 0 1/4



0 1 0

0 0 2

0 0 0



1 0 −2

0 2 0

0 0 4



=


0 1 0

0 0 1

0 0 0



1 0 −2

0 2 0

0 0 4

 =


0 2 0

0 0 4

0 0 0

 .

Example 3.69. Let L : R3 → R3 be given by L(x, y, z) = (x + 3y + z, 2x− y + 3z, y − z).

Find the matrix of L with respect to {(4, 1, 2), (3, 0, 1), (1,−1, 0)}, and show it is similar to

the matrix with respect to the standard basis.

We have

L(1, 0, 0) = (1, 2, 0)

L(0, 1, 0) = (3,−1, 1)

L(0, 0, 1) = (1, 3,−1)

A = [L]EE =


1 3 1

2 −1 3

0 1 −1

 .

We can compute the change of basis matrices. If U is the matrix from F to E, then we

have

U = [I]EF


4 3 1

1 0 −1

2 1 0


and 

4 3 1 1 0 0

1 0 −1 0 1 0

2 1 0 0 0 1

→


1 0 −1 0 1 0

4 3 1 1 0 0

2 1 0 0 0 1

→


1 0 −1 0 1 0

0 3 5 1 −4 0

0 1 2 0 −2 1



→


1 0 −1 0 1 0

0 1 2 0 −2 1

0 3 5 1 −4 0

→


1 0 −1 0 1 0

0 1 2 0 −2 1

0 0 −1 1 2 −3



→


1 0 −1 0 1 0

0 1 2 0 −2 1

0 0 1 −1 −2 3

→


1 0 0 −1 −1 3

0 1 0 2 2 −5

0 0 1 −1 −2 3


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so we have

[I]FE = U−1 =


−1 −1 3

2 2 −5

−1 −2 3

 .

Thus to find the matrix with respect to F , we can compute

B = U−1AU =


−1 −1 3

2 2 −5

−1 −2 3



1 3 1

2 −1 3

0 1 −1



4 3 1

1 0 −1

2 1 0



=


−3 1 −7

6 −1 13

−5 2 −10



4 3 1

1 0 −1

2 1 0

 =


−25 −16 −4

49 31 7

−38 −25 −7

 .

There’s not a really efficient way to determine whether two matrices are similar in general,

although we have a few tools that can tell us two matrices are not similar. For instance, any

property that belongs to the transformation, and not just to the matrix, has to be the same

for similar matrices. One example:

Proposition 3.70. Let A,B ∈ Mn×n with A ∼ B. Then A is invertible if and only if B is

invertible.

Proof. HW 8

We call properties like these similarity invariants. We can never use similarity invariants

to prove that two matrices are similar, but we can definitely use them to prove that two

matrices are not similar.

Example 3.71. A =

[
1 0

0 1

]
is invertible, but B =

[
1 0

0 0

]
is not. So A is not similar to B.

A less obvious similarity invariant is the trace. Recall we defined the trace of a matrix to

be the sum of the entries on the main diagonal. It’s not at all obvious that this is a similarity

invariant, but we’ll see soon that it is. That allows us to separate more matrices:

Example 3.72. Let C =

[
1 0

0 1

]
and D =

[
2 0

0 1

]
. Then Tr(C) = 2 and Tr(D) = 3, so C is

not similar to D.

But to talk about this more, we first need to spend a bit of time understanding the

matrices themselves, and invariants we can attach to them.
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4 Matrices and Systems of Equations

In this section we want to spend some time dealing with matrices directly. We’ve seen a

lot of facts about matrices already; here we can collect some of them, and prove some basic

facts about matrices.

4.1 Elementary Matrices

Recall in definition 2.56 we had three “elementary matrix operations”:

I Interchange two rows.

II Multiply a row by a nonzero real number.

III Replace a row by its sum with a multiple of another row.

At the time we justified these purely in terms of thinking of the corresponding system of

equations. But now that we understand matrices themselves better, we can built a theoretical

framework for them.

In particular, we can encode the elementary row operations as matrices:

Definition 4.1. An n × n elementary matrix is a matrix obtained by performing an ele-

mentary operation on In. The elementary matrix is said to be of type 1, type 2, or type 3,

depending on which elementary operation was performed on In.

Example 4.2. For example, interchanging the second and third rows of I3 produces the

elementary matrix

E1 =


1 0 0

0 0 1

0 1 0

 .

Multiplying the third row by 2 produces the elementary matrix

E2 =


1 0 0

0 1 0

0 0 2

 .

Subtracting 4 times the first row from the second row yields the elementary matrix

E3 =


1 0 0

−4 1 0

0 0 1

 .
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And these elementary matrices do in fact encode everything there is to know about the

corresponding row operations.

Proposition 4.3. Let A ∈ Mm×n(F) and suppose that B is obtained from A by performing

an elementary row operation. Then there exists an m × m elementary matrix E such that

B = EA.

In fact, E is obtained from Im by performing the same elementary row operation as that

which was performed on A to obtain B.

Conversely, if E is an elementary m ×m matrix, then EA is the matrix obtained from

A by performing the same elementary row operation as which produces E from Im.

Proving this is not interesting. But we can do a couple examples and see how the logic

works out.

Example 4.4.

E1A =


1 0 0

0 0 1

0 1 0



1 2 3 4

2 1 −1 3

4 0 1 2

 =


1 2 3 4

4 0 1 2

2 1 −1 3

 = B,

as desired. Similarly,

E2B =


1 0 0

0 1 0

0 0 2



1 2 3 4

4 0 1 2

2 1 −1 3

 =


1 2 3 4

4 0 1 2

4 2 −2 6

 = C.

Finally,

E3C =


1 0 0

−4 1 0

0 0 1



1 2 3 4

4 0 1 2

4 2 −2 6

 =


1 2 3 4

0 −8 −11 −14

4 2 −2 6

 = D.

Proposition 4.5. Elementary matrices are invertible, and their inverses are also elementary

matrices of the same type.

Proof. Let E be an elementary n×nmatrix. Then by definition, E is obtained by performing

an elementary row operation on In.

We have already seen that this means that we can obtain In from E by performing an

elementary row operation. This means that there is an elementary matrix E ′ such that

E ′E = In.

But this means that E is invertible and E−1 = E ′, so its inverse is also an elementary

matrix.
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Proposition 4.6. Every invertible matrix is a product of elementary matrices.

Proof. By our algorithm, a matrix is invertible if and only if we can row-reduce it to the

identity. So if A is an invertible matrix, there is some sequence of row operations that turns

it into the identity. Thus we can write

In = E1E2 . . . EkA

A = E−1
k . . . E−1

2 E−1
1 In

= E−1
k . . . E−1

2 E−1
1 .

These elementary matrices don’t yet allow us to do anything we couldn’t do just by

identifying row operations. But they’re a really useful tool for understanding what those

row operations will do.

4.2 Rowspace and Columnspace

Definition 4.7. Let A be a m × n matrix. The column space of A, denoted col(A), is the

subspace of Rm spanned by the columns of A. The rowspace of A, denoted row(A), is the

space spanned by the rows of A.

Remark 4.8. We now have three subspaces attached to a given matrix: the rowspace,

columnspace, and nullspace. Some sources will also point to a fourth space N(AT ), but

I won’t really discuss this until we have the tools to explain why it matters.

There are two facts about these spaces that we can obtain from the work we’ve already

done.

Proposition 4.9. If A and B are row-equivalent matrices, then they have the same rowspace.

Proof. We need to check that each elementary row operation doesn’t change the span of the

set of vectors.

I. (Switch two rows) Switching the order of two vectors does not affect the span at all.

II. (Multiply a row by a nonzero scalar) Multiplying a vector by a non-zero scalar won’t

change the span of the set of vectors, since in any linear combination we can always

just multiply the relevant coefficient by the inverse of our non-zero scalar.
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III. (Add a multiple of one row to another) This won’t add anything to the span, since

a linear combination of the new vectors will still be a linear combination of the old

vectors.

This won’t lose anything from the span, since we can undo the row operation, and so

every old vector is a linear combination of new vectors.

This means that it’s very easy to find a basis for the rowspace of a matrix: just row

reduce it, and look at the result.

Example 4.10. Let

A =


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1

 .

We can row reduce this matrix
1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1

→


1 5 −9 11

0 1 −3 1

0 2 −3 3

0 7 −12 10

→


1 0 6 6

0 1 −3 1

0 0 3 1

0 0 9 3



→


1 0 6 6

0 1 −3 1

0 0 1 1/3

0 0 9 3

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0

 .

Thus a basis for the rowspace of A is {(1, 0, 0, 4), (0, 1, 0, 2), (0, 0, 1, 1/3)}.

In fact, we can use this technique any time we have a set of vectors and want to find a

nice basis for their span: write your vectors as the rows of a matrix, and then row-reduce.

Unfortunately, it’s a little tricky to make this into more than a useful computational

trick. It’s not totally clear what the rowspace means, in terms of the underlying linear

transformation. (It’s something called the coimage, which we won’t be worrying about; but

we will revisit the geometric interpretation of the rowspace towards the end of the course.)

In contrast, the column space has a straightforward interpretation in terms of the linear

function:
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Proposition 4.11. Let A be a m× n matrix. Then col(A) is the image in Rm of the linear

transformation LA : Rn → Rm associated to A.

Proof. We did all the hard work here way back in section 2.5. We observed that Ax = b

has a solution if and only if b is in the span of the columns of A, which is precisely the

columnspace of A.

Definition 4.12. We define the rank of a matrix A to be the dimension of col(A).

If A is the matrix of a linear transformation L, then rk(L) = rk(A).

It’s relatively easy to find the rank, by the following proposition:

Proposition 4.13. Let A be an m× n matrix. If P and Q are invertible m×m and n× n

matrices respectively, then

(a) rk(AQ) = rk(A),

(b) rk(PA) = rk(A),

and therefore

(c) rk(PAQ) = rk(A).

Proof. (a) Notice that

Im(LAQ) = Im(LALQ) = LALQ(Fn) = LA(Fn) = Im(LA)

since LQ(Fn) = Fn, since LQ is surjective. Therefore,

rk(AQ) = dim Im(LAQ) = dim Im(LA) = rk(A).

(b) This is a bit more subtle. We have

Im(LPA) = Im(LPLA) = LP Im(LA).

Since LP is an isomorphism, it maps Im(LA) to a subspace of the same dimension, and hence

it will be true that

dim Im(LPA) = dim Im(LA)

whence rk(PA) = rk(A).

(c) Follows from applying (a) and then (b).

Corollary 4.14. Elementary row and column operations on a matrix are rank-preserving.
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Remark 4.15. We haven’t talked about column operations yet, but they’re the same idea as

row operations, just on columns. They’re less theoretically useful but we can get a bit of

work out of them.

But finding a basis for the column space is a little trickier. One option is just to row-

reduce the transpose of the matrix. But there’s something a little slicker we can do.

Proposition 4.16. Let A be a m× n matrix. Let B be the reduced row echelon form of A.

Then the set of columns of A that correspond to columns with leading 1s in B is a basis for

the columnspace of A.

Example 4.17. Consider again the matrix

A =


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1

 .

We saw that this has reduced row echelon form
1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0

 ,

which has leading 1s in the first, second, and third columns. So a basis for col(A) is

{(1,−2, 3,−1), (5,−9, 17, 2), (−9, 15,−30,−3)}.

Remark 4.18. Note that the columns of the reduced matrix do not themselves give a basis

for the columnspace/image; we need to take columns from the original matrix.

Proof. Clearly the set of columns of A is a spanning set for the columnspace of A. So we

just need to figure out which, if any, vectors to remove. Which means we need to determine

which vectors have linear dependences.

We claim that row operations don’t affect dependences between columns. The columns

of A are linearly independent if and only if there is a vector x such that Ax = 0. But the

set of solutions to Ax = 0 is the same as the set of solutions to Bx = 0; that’s why row

reduction works to solve systems of equations. And that means that the columns of B have

the same set of linear dependencies that the columns of A have.
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Thus we can remove the columns of A that correspond to dependent columns in B; what

is left is the columns in A that correspond to columns with leading ones in B.

Corollary 4.19. Let A be a matrix. Then dim(row(A)) = rk(A) = dim(col(A)).

Proof. Let B be the RREF of A. By proposition 4.16, the dimension of the columnspace of

A is the number of leading ones in B. But the non-zero rows of B form a basis for row(A),

and thus the dimension of row(A) is also the number of leading ones in B.

Proposition 4.20. Let A be an m×n matrix of rank r. Then r ≤ m, r ≤ n, and by means

of a finite number of elementary row and column operations, A can be transformed into the

matrix

D =

[
Ir O1

O2 O3

]
where O1, O2, and O3 are zero matrices [of size (m−r)×r, r×(n−r) and (m−r)×(n−r)].

Corollary 4.21. Let A be an m× n matrix of rank r. Then there exist invertible matrices

B and C of sizes m×m and n× n such that D = BAC where

D =

[
Ir O1

O2 O3

]
.

Proof. We perform elementary row operations on A by multiplying on the left by m × m

elementary matrices E1, . . . , Ep. We perform elementary column by multiplying on the right

by n× n elementary matrices G1, . . . , Gq. Then in the previous theorem, we have

D = EpEp−1 · · ·E1AG1G2 · · ·Gq.

We know that elementary matrices are invertible, and the product of invertible matrices is

invertible. Hence, letting B = EpEp−1 · · ·E1 and C = G1G2 · · ·Gq yields the result.

4.3 Systems of equations and the Nullspace

Recall we defined:

Definition 4.22. A system of linear equations is a system of the form

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm
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with the aij and bis all elements of some field F.
We say this is a system of m equations in n unknowns.

If we take A to be the coefficient matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


and we set

x =


x1

x2

. . .

xn

 ∈ Fn b =


b1

b2

. . .

bm

 ∈ Fm

then we can rewrite this system as the matrix equation

Ax = b.

Then a solution to the system is a vector

s =


s1

s2

. . .

sn

 ∈ Fn.

Some systems of equations are especially nice.

Definition 4.23. A system Ax = b is homogeneous if b = 0. Otherwise it’s nonhomoge-

neous.

The set of solutions to a homogeneous system Ax = 0 is the nullspace of the matrix A,

sometimes written N(A). The dimension of the nullspace is the nullity of A.

Proposition 4.24. The nullspace of A is the kernel of the linear transformation associate

to A. Consequently it is a subspace of Rn.

Proof. Let L : Rn → Rm be defined by L(x) = Ax. Then ker(L) = {x ∈ Rn : Ax = 0},
which is precisely the definition of the nullspace of A.

Corollary 4.25 (Rank-Nullity Theorem for matrices). If A ∈ Mm×n then rk(A)+dim(N(A)) =

n.
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Proof. The linear transformation associate to A has domain Rn. The rank of this transfor-

mation is the rank of A, and the dimension of the kernel is the nullity of A, so this follows

from the rank-nullity theorem.

Corollary 4.26. If m < n, then the system Ax = 0 has a nonzero solution.

Proof. Since the rank is the dimension of the image of the transformation, we have rk(A) ≤
m. Thus the nullity is at least n −m ≥ 1, so the space of solutions has dimension at least

1. Then ker(A) ̸= {0} and thus there is a nonzero element in ker(A).

Remark 4.27. If we work over the field R or C, this in fact implies that Ax = 0 has infinitely

many solutions. But in a finite field, a finite-dimensional vector space still has finitely many

elements. (See homework 9.)

This tells us all the theory we need for homogeneous systems. And we already know how

to solve them in practice, using row-reduction. What about non-homogeneous systems? The

solution set to a homogeneous system is always a vector space, which gave us all our theory.

But the set of solutions to a non-homogeneous system is never a vector space:

(a) The zero vector is never a solution, since A0 = 0 ̸= b.

(b) Adding two solutions doesn’t give you another solution:

A(x1 + x2) = Ax1 + Ax2

= b+ b = 2b ̸= b.

(c) Multiplying a solution by a scalar doesn’t give another solution: Arx = rb ̸= b unless

r = 1.

But if homogeneous systems are straightforward, we’d like to use what we know about

them to answer our new questions.

Definition 4.28. Let Ax = b be a nonhomogeneous system of linear equations. We say the

system Ax = 0 is the homogeneous system corresponding to Ax = b.

Proposition 4.29. Suppose Ax = b is a non-homogeneous linear system.

If U = N(A)) and x0 is a solution to Ax = b, then the set of solutions to the system

Ax = b is the set

N(A) + x0 = {y + x0 : y ∈ N(A)}.
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Proof. We want to show that two sets are equal, so we show that each is a subset of the

other.

First, suppose that x1 is a solution to Ax1 = b. Then we have

b = Ax0

b = Ax1

b− b = Ax1 − Ax0 = A(x1 − x0)

0 = A(x1 − x0).

Thus y = x1 − x0 is a solution to Ax = 0, and then x1 = x0 + y for some y ∈ U .

Conversely, suppose x1 = x0 + y for some y ∈ U . Then

Ax1 = A(x0 + y) = Ax0 + Ay = b+ 0 = b.

Thus x1 is a solution to Ax = b.

Remark 4.30. This proof basically used linearity and nothing else. So the same argument

works for any linear transformation L : U → V , and any vector equation L(x) = b.

Example 4.31. Let’s find a set of solutions to the system

x1 + x2 + x3 = 3

x1 + 2x2 + 3x3 = 6

2x1 + 3x2 + 4x2 = 9.

Gaussian elimination gives
1 1 1 3

1 2 3 6

2 3 4 9

→


1 1 1 3

0 1 2 3

0 1 2 3

→


1 1 1 3

0 1 2 3

0 0 0 0

→


1 0 −1 0

0 1 2 3

0 0 0 0

 .

Taking x3 = α as a free variable, our solution set is {(α, 3−2α, α)} = {(0, 3, 0)+α(1,−2, 1)}.
Indeed, we see that this set corresponds to elements of the vector space spanned by {(1,−2, 1)},
plus a specific solution (0, 3, 0).

Alternatively, we could have solved the homogeneous system first, and seen that the

solution was x1 − x3 = 0, x2 + 2x3 = 0, telling us that N(A) = {α(1,−2, 1)}. Then we just

need to find a solution; to my eyes the obvious solution is (1, 1, 1). So our theorem tells us

that the solution set is {(1, 1, 1) + α(1,−2, 1)}. This may not look like the solution we got

before, but it is in fact the same set, since (1, 1, 1) = (0, 3, 0) + (1,−2, 1).
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Corollary 4.32. Let A ∈ Mn×n. Then the system Ax = b has exactly one solution if and

only if A is invertible.

Proof. See homework 9

We can summarize a lot of our work with

Theorem 4.33. Let V be an n-dimensional vector space, L : V → V a linear operator, and

A the matrix of V with respect to some ordered basis β. Then the following are equivalent:

(a) L is an invertible operator.

(b) A is an invertible matrix.

(c) A is injective

(d) A is surjective

(e) ker(A) = {0}.

(f) rk(A) = n

(g) The equation Ax = 0 has only the trivial solution.

(h) For any b ∈ V , the system Ax = b has a unique solution.

(i) The columns of A are linearly independent.

(j) The columns of A span Rn.

(k) The rows of A are linearly independent.

(l) The rows of A span Rn.

In the next section we’ll add a few more items to this list.
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5 Eigenvectors and Eigenvalues

In this section we will study a special type of basis, called an eigenbasis. For (almost) any

given operator, we get a specific basis which will make most our computations easier.

5.1 Eigenvectors

Definition 5.1. Let L : V → V be a linear transformation, and let λ be a scalar. If there

is a vector v ∈ V such that Lv = λv, then we say that λ is an eigenvalue of L, and v is an

eigenvector with eigenvalue λ.

Geometrically, an eigenvector corresponds to a direction in which our linear operator

purely stretches or shrinks vectors, without rotating or reflecting them at all. It can often

be an axis of rotation.

Example 5.2. Let A =

[
4 −2

1 1

]
. We can check that if x = (2, 1), then

Ax =

[
4 −2

1 1

][
2

1

]
=

[
6

3

]
= 3

[
2

1

]
,

so x is an eigenvector with eigenvalue 3. Similarly, we can check that if y = (1, 1), then

Ay =

[
4 −2

1 1

][
1

1

]
=

[
2

2

]
= 2

[
1

1

]
.

Thus y is an eigenvector with eigenvalue 2.

Example 5.3. Let Rπ/2 : R2 → R2 be the rotation map. We can see geometrically that this

has no non-trivial eigenvectors, since it changes the direction of any vector. Algebraically, if

(x, y) is an eigenvector, then we would have

Rπ/2(x, y) =

[
0 −1

1 0

][
x

y

]
=

[
−y

x

]
=

[
λx

λy

]

and thus we have λy = x, λx = −y, which gives λ2y = −y. So either y = 0, or λ2 = −1, and

the second isn’t possible in R. So the only solution here is x = y = 0.

Example 5.4. But now suppose we take the same operator, given by the matrix A =[
0 −1

1 0

]
, but view it as a map from C2 to C2. We have the same calculation, and the same

http://jaydaigle.net/teaching/courses/2023-fall-2185/ 85

http://jaydaigle.net/teaching/courses/2023-fall-2185/


Jay Daigle George Washington University Math 2185: Linear Algebra

conclusion that λ2 = −1, but now this has a solution. In fact, it has two: i and −i. So these

are the two eigenvalues.

To find eigenvectors, we solve

Ax = ix[
0 1

1 0

][
x

y

]
=

[
ix

iy

]
[
−y

x

]
=

[
ix

iy

]
.

This gives the system

−y = ix

x = iy

which is, of course, the same system we found before. So we conclude from the first equation

that if x = 1 then y = −i; we confirm that this is consistent with the second equation. So

the vector

[
1

−i

]
is an eigenvector with eigenvalue i.

Similarly, if we take λ = −i then we get the system

−y = −ix

x = −iy

and then if x = 1 we have y = i. Thus

[
1

i

]
is an eigenvector with eigenvalue −i.

Example 5.5. In contrast, if we take the rotation map R : R3 → R3 that rotates around

the z-axis, the vector (0, 0, 1) will be an eigenvector with eigenvalue 1.

Example 5.6. Let V = D(R,R) be the space of differentiable real functions, and let d
dx

:

V → V be the derivative map. If f(x) = erx, then d
dx
f(x) = rerx = rf(x), so f is an

eigenvector with eigenvalue r.

Proposition 5.7. Let V be a vector space and L : V → V a linear transformation. v is an

eigenvector with eigenvalue λ if and only if v ∈ ker(L− λI).

Proof. v is an eigenvector with eigenvalue λ if and only if Lv = λv = λIv, if and only if

0 = Lv − λIv = (L− λI)v, if and only if v ∈ ker(L− λI).
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Corollary 5.8. The set of eigenvectors with eigenvalue λ is a subspace of V , called the

eigenspace corresponding to λ. We denote this space Eλ.

Corollary 5.9. A transformation L is invertible if and only if 0 is not an eigenvalue of L.

Proposition 5.10. Let L : V → V be a linear transformation. If E = {e1, . . . , en} is a set

of eigenvectors each with a distinct eigenvalue, then E is linearly independent.

Proof. Let λi be the eigenvalue corresponding to ei. Suppose ( for contradiction) that E

is linearly dependent, and let k be the smallest positive integer such that {e1, . . . , ek} is

linearly dependent; then we must have ak ̸= 0, and we can compute

ek =
−a1
ak

e1 + · · ·+ −ak−1

ak
ek−1

L(ek) = L

(
−a1
ak

e1 + · · ·+ −ak−1

ak
ek−1

)
=

−a1
ak

L(e1) + · · ·+ −ak−1

ak
L(ek−1)

λkek =
−a1
ak

λ1e1 + · · ·+ −ak−1

ak
λk−1ek−1.

We can multiply the first equation by λ1 and subtract from the last equation; this gives us

0 =
−a1
ak

(λ1 − λk)e1 + · · ·+ −ak−1

ak
(λk−1 − λk)ek−1.

But we know by hypothesis that the set {e1, . . . , ek−1} is linearly independent, so all these

coefficients must be zero. Since the ai are not all zero, we must have at least some λi−λk =

0.

Corollary 5.11. Let V be finite-dimensional, and L : V → V a linear operator. Then L

has at most dim(V ) distinct eigenvalues.

So the set of eigenvectors is linearly independent. If it happens to span V then it’s a

basis, and that’s really nice. Unfortunately that often isn’t true.

Example 5.12. Let A =

[
1 1

0 1

]
. It’s pretty easy to see that 1 should be an eigenvalue of

this thing, since

A− 1 · I =

[
0 1

0 0

]
has kernel spanned by (1, 0). With a little more work you can convince yourself there’s no

other eigenvalues; I won’t do that here. And that means that the eigenvectors don’t span

all of R2.
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But you might notice another thing. The eigenspace E1 is one-dimensional, but it seems

like it’s almost two-dimensional. And in fact if we do our operator twice, everything goes

away.

(A− I)2 =

[
0 1

0 0

][
0 1

0 0

]
=

[
0 0

0 0

]
has kernel R2.

Definition 5.13. Let A be a n× n matrix, and λ and eigenvalue of A. If v ∈ ker(A− λI)n

then we say v is a generalized eigenvector of A.

These aren’t critical but we’ll be coming back to them a few times.

It’s straightforward enough to check that a vector is an eigenvector if we already have a

candidate; but how do we find them? Sometimes this is easy

Example 5.14. Let A =

[
3 0

0 2

]
. What are the eigenvalues and eigenspaces of A?

We see that

Ax =

[
3 0

0 2

][
x

y

]
=

[
3x

2y

]
.

Thus the eigenvalues are 3 and 2; the corresponding eigenspaces are spanned by (1, 0) and

(0, 1), respectively.

When things aren’t this easy, there is still a fairly straightforward approach we can take:

Example 5.15. Let B =

[
7 2

3 8

]
. Find the eigenvalues and eigenvectors of B.

If x = (x, y) is an eigenvector with eigenvalue λ, then we have

Bx =

[
7x+ 2y

3x+ 8y

]
=

[
λx

λy

]
so we have the system of equations 7x + 2y = λx, 3x + 8y = λy. Equivalently, we have

(7− λ)x+ 2y = 0 and (3x+ (8− λ)y = 0. We row-reduce[
7− λ 2

3 8− λ

]
→

[
3 8− λ

0 2 + (8− λ)(λ− 7)/3

]

→

[
3 8− λ

0 6 + (−56 + 15λ− λ2)

]
=

[
3 8− λ

0 −λ2 + 15λ− 50

]
.
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We first see that this is solveable if and only if 0 = λ2 − 15λ + 50 = (λ − 5)(λ − 10), and

thus if λ = 5 or λ = 10. Thus these are the two eigenvalues for B.

If λ = 5 then we have 3x+ 3y = 0 so y = −x. Any vector (α,−α) will be an eigenvector

with eigenvalue 5, so the eigenspace for 5 is the span of {(1,−1)}. And indeed, we compute

B(1,−1) =

[
7 2

3 8

][
1

−1

]
=

[
5

−5

]
= 5

[
1

−1

]
.

If λ = 10 then we have 3x − 2y = 0 and y = 3/2x. Thus any vector (2α, 3α) will be an

eigenvector with eigenvalue 10, and the corresponding eigenspace is spanned by {(2, 3)}. We

check:

B(2, 3) =

[
7 2

3 8

][
2

3

]
=

[
20

30

]
= 10

[
2

3

]
.

As the previous example shows, it is completely possible to find the eigenvectors and

eigenvalues with the tools we have already, but it’s pretty fiddly even for a small example.

We’d like to streamline the process, and this leads us to define the determinant.

5.2 Determinants

Definition 5.16. Let A ∈ Mn×n. If A has n distinct eigenvalues, we say that the determinant

of A, written detA, is the product of the eigenvalues.

More generally, the determinant of A is the product of the eigenvalues “up to multiplic-

ity”. Thus if the generalized eigenspace of λ = 2 is three-dimensional, we will multiply in λ

three times.

Definition 5.17 (Formal definition).

detA =
∏
λ

λeλ where eλ = dimker(A− λI)n.

We can also take a geometric perspective: we will eventually prove the determinant

represents the volume of the n-dimensional solid that our matrix sends the n-dimensional

unit cube to. Thus it tells us how much our matrix stretches its inputs.

Example 5.18. The determinant of A =

[
3 0

0 2

]
is 3 · 2 = 6.

The determinant of B =

[
7 2

3 8

]
is 5 · 10 = 50.

The determinant of C =

[
1 1

0 1

]
is 12 = 1.
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The determinant is (roughly) the product of the eigenvalues, so it can tell something

about what the eigenvalues are. But this doesn’t help if we don’t have a way of finding the

determinant without already knowing the eigenvalues. Fortunately, there is a straightforward

way to compute it.

5.2.1 The Laplace Formula

We first need to develop some notation.

Definition 5.19. Let A = (aij) be a n× n matrix. We define the i, jth minor matrix of A

to be the (n− 1)× (n− 1) matrix Ãij obtained by deleting the row and column containing

aij—that is, deleting the ith row and jth column.

We define the i, jth minor of A to be det Ãij. We define the i, jth cofactor to be Aij =

(−1)i+j det(Ãij).

Example 5.20. Let

A =


3 1 2

5 −2 −1

3 3 3

 .

Then we have

M1,1 =

[
−2 −1

3 3

]
M3,2 =

[
3 2

5 −1

]
.

Fact 5.21 (Cofactor Expansion). Let A be a n× n matrix.

If A ∈ M1×1 then A =
[
a11

]
and detA = a11.

Otherwise, for any k we have

det(A) =
n∑

i=1

akiAki = ak1Ak1 + ak2Ak2 + · · ·+ aknAkn

=
n∑

i=1

aikAik = a1kA1k + a2kA2k + · · ·+ ankAnk.

Thus we may compute the determinant of a matrix inductively, using cofactor expansion.

We can expand along any row or column; we should pick the one that makes our job easiest.

Remark 5.22. This is usually taken to be the definition of determinant. Feel free to think of

it that way, and the fact about eigenvectors as a theorem.

You can also think of the determinant as the unique multilinear map that satisfies certain

properties. You probably shouldn’t, at the moment. But you can.
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Example 5.23. Let A =


3 2 1

0 5 1

0 0 2

. If we expand along the last row, we get

detA = 0 · (−1)3+1 det

[
2 1

5 1

]
+ 0 · (−1)3+2 det

[
3 1

0 1

]
+ 2 · (−1)3+3 det

[
3 2

0 5

]

= 2det

[
3 2

0 5

]
= 2

(
0 · (−1)2+1 det

[
2
]
+ 5 · (−1)2+2 det

[
3
])

= 2(0 + 5 · 3) = 30.

Example 5.24. Let

A =


3 1 2

5 −2 −1

3 3 3

 .

We’d like to expand along the row or column wiht the most zeros, but we don’t have any.

I’m going to expand along the bottom row because at least everything is the same.

detA = 3(−1)3+1 det

[
1 2

−2 −1

]
+ 3(−1)3+2 det

[
3 2

5 −1

]
+ 3(−1)3+3

[
3 1

5 −2

]
= 3

(
1(−1)1+1(−1) + 2(−1)1+2(−2)

)
− 3

(
3(−1)1+1(−1) + 2(−1)1+25

)
+ 3

(
3(−1)1+1(−2) + 1(−1)1+2(5)

)
= 3(−1 + 4)− 3(−3− 10) + 3(−6− 5) = 9 + 39− 33 = 15.

Using this method, we can compute the determinant of any size of matrix. But for small

matrices we can work out quick formulas that encode all this information.

Proposition 5.25.

det

[
a b

c d

]
= ad− bc det


a b c

d e f

g h i

 = aei+ bfg + cdh− gec− hfa− idb.

5.2.2 Properties of Determinants

We’d like to do things to make computing determinants easier, in addition to the formulas I

just gave. We can start by proving some simple results. This will also allow us to show that

the determinant is in fact the product of the eigenvalues.
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The most important fact is that the determinant is a multilinear map. That is, it’s a

function of multiple vectors that is linear in each of them.

Proposition 5.26. If A is a n×n matrix, then the (Laplace computation of the) determinant

is a linear function of each row. Thus for 1 ≤ r ≤ n, we have

det



a1
...

ar−1

u+ kv

ar+1

...

an


= det



a1
...

ar−1

u

ar+1

...

an


+ k det



a1
...

ar−1

v

ar+1

...

an


where k ∈ F, and u, v and each ai are row vectors in Fn.

Proof. Let A be an n × n matrix with rows a1, a2, . . . , an, and suppose that for some 1 ≤
r ≤ n, we have that ar = u+ tv for some row vectors u, v and some scalar t ∈ F. So we have

that

A =



a1
...

ar−1

u+ tv

ar+1

...

an


.

Write u = (b1, . . . , bn) and v = (c1, . . . , cn). Further, let B and C be the matrices obtained

from A by replacing row r of A with u and v, respectively. That is,

B =



a1
...

ar−1

u

ar+1

...

an


and C =



a1
...

ar−1

v

ar+1

...

an


.

We wish to prove that det(A) = det(B) + t det(C).
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We do a cofactor expansion along the first row to compute det(A), we see that

det(A) =
n∑

i=1

ariAri

=
n∑

i=1

(uri + tvri)Ari

=
n∑

i=1

uriAri + t

n∑
i=1

vriAri.

But we know that Ari = Bri = Cri because all three matrices are identical outside of row r,

and thus we have

det(A) =
n∑

i=1

uriBri + t
n∑

i=1

vriCri = det(B) + t det(C)

as desired.

Corollary 5.27. If A ∈ Mn×n(F) has a row consisting entirely of zeros, then det(A) = 0.

Proof. This is because we can write 0 = 0+ 0. Hence, we have

A =



a1
...

0
...

an


=



a1
...

0+ 0
...

an


.

By the above theorem, we therefore know that

det(A) = det



a1
...

0
...

an


+ det



a1
...

0
...

an


= det(A) + det(A).

This shows that det(A) = 0.

Remark 5.28. We can also prove this pretty easily by doing cofactor expansion along the

row of zeroes, but this argument is fun and standard.
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There are two basic types of operations we do with matrices. One is elementary row oper-

ations, and the other is matrix multiplication; by proposition 4.3 about elementary matrices,

row operations are a form of matrix multiplication so those are basically the same thing. So

let’s think about what elementary row operations do to the determinant. Fortunately, we

can figure all of them out by applications of proposition 5.26.

Proposition 5.29. If A ∈ Mn×n(F) and B is the matrix obtained from A by interchanging

any two rows of A, then det(B) = − det(A).

Proof. Label the rows of A as a1, . . . , an and suppose that B is obtained by interchanging

row r with row s. That is, we have

A =



a1
...

ar
...

as
...

an


and B =



a1
...

as
...

ar
...

an


.

We now take the determinant of a cleverly chosen matrix. Namely,

0 = det



a1
...

ar + as
...

ar + as
...

an


= det



a1
...

ar
...

ar + as
...

an


+ det



a1
...

as
...

ar + as
...

an



= det



a1
...

ar
...

ar
...

an


+ det



a1
...

ar
...

as
...

an


+ det



a1
...

as
...

ar
...

an


+ det



a1
...

as
...

as
...

an


= 0 + det(A) + det(B) + 0

and so det(B) = − det(A).
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Proposition 5.30. Let A ∈ Mn×n(F) and let B be the matrix obtained by adding a multiple

of one row of A to another row of A. Then det(B) = det(A).

Proof. Again, let a1, . . . , an be the rows of A, and suppose that B is obtained by adding k

times row s to row r. We then have

det(B) = det



a1
...

ar + kas
...

as
...

an


= det



a1
...

ar
...

as
...

an


+ k det



a1
...

as
...

as
...

an


= det(A) + 0,

as desired.

Theorem 5.31 (Row Operations). Let A ∈ Mn×n(F). Then if we do an elementary row

operation:

(a) Interchanging two rows multiplies the determinant by −1.

(b) Multiplying a row by a scalar multiplies the determinant by that scalar.

(c) Adding a multiple of one row to another row does not change the determinant.

Proof. (a) This is proposition 6.21.

(b) This follows directly from proposition 5.26.

(c) This is proposition 5.30.

Example 5.32.

det


1 1 1

0 1 0

1 1 2

 = 1 det


3 3 3

0 1 0

1 1 2

 = 3

det


0 1 0

1 0 0

0 0 1

 = −1 det


4 4 4

0 1 0

1 1 2

 = 3 + 1 = 4.
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This is enough to tell us all about invertible matrices, but we need a to briefly discuss

singular matrices before we can tie everything together.

Lemma 5.33. Let A ∈ Mn×n(F). If rk(A) < n then det(A) = 0.

Proof. If rk(A) < n then the rows of A are linearly dependent. Then we can write some row

as a linear combination of the others; without loss of generality, say

an = c1a1 + c2a2 + . . . cn−1an−1.

If we subtract ciai from the nth row, that for every i, we get a matrix with a row of all

zeroes, and thus this new matrix has determinant 0. But these row operations don’t change

the determinant, and thus det(A) = 0.

Theorem 5.34. Let A,B ∈ Mn×n(F). Then det(AB) = det(A) det(B).

Proof. If either A or B is singular, then AB is singular, so det(AB) = det(A) det(B) = 0.

Suppose A and B are both invertible. Then we can write A as a product of elementary

matrices.

First let’s consider the case where A is an elementary matrix. Because we know how row

operations affect the determinant, we can check that:

(a) If A is a type 1 elementary matrix, then det(A) = −1 and det(AB) = − det(B).

(b) If A is a type 2 elementary matrix, then det(A) = k and det(AB) = k det(B).

(c) If A is a type 3 elementary matrix, then det(A) = 1 and det(AB) = det(B).

Now let A be any invertible matrix. We can write A = Em . . . E2E1, and we have

det(AB) = det(Em · · ·E2E1B)

= det(Em) · det(Em−1 · · ·E2E1B)

...

= det(Em) · · · det(E2) · det(E1) · det(B)

= det(Em · · ·E1) · det(B)

= det(A) · det(B)

as desired.
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Corollary 5.35. Let A ∈ Mn×n(F). Then A is invertible if and only if det(A) ̸= 0. If A is

invertible, then det(A−1) = 1
det(A)

.

Proof. We know that if A is not invertible, then det(A) = 0.

If A is invertible, then A−1 exists, and we can write

1 = det(In) = det(AA−1) = det(A) det(A−1).

This proves that det(A) ̸= 0, and further dividing both sides by det(A−1) gives the desired

equality.

Remark 5.36. We can add this to theorem 4.33 as another characterization of invertibility.

There are a few other ways to think about why this result is true.

From the eigenvalue perspective: detA is the product of the eigenvalues. Thus detA = 0

if and only if 0 is an eigenvalue of A. But 0 is an eigenvalue of A if and only if A has

non-trivial kernel, and A is invertible if and only if ker(A) is trivial.

From the cofactor perspective: if A is invertible it is row-equivalent to the identity matrix,

which has determinant 1. None of the row operations can change a determinant from zero

to non-zero or vice versa, so detA is nonzero.

Conversely, if A is not invertible, it is row-equivalent to a matrix with a row of all zeros,

which has determinant zero. Since row operations cannot change a determinant from non-

zero to zero, detA = 0 as well.

We end with a couple final useful facts about the determinant:

Proposition 5.37. detAT = detA.

Proof. Do a cofactor expansion along the column of AT that corresponds to the row you

expanded along in A, or vice versa.

Proposition 5.38. If A is a n×n triangular matrix, then detA is the product of the diagonal

entries of A.

Proof. Homework 10.

Fact 5.39. If A =

[
a b

c d

]
then A−1 = 1

detA

[
d −b

−c a

]
= 1

ad−bc

[
d −b

−c a

]
.

We check this by multiplying the two of them:[
a b

c d

]
1

ad− bc

[
d −b

−c a

]
=

1

ad− bc

[
ad− bc −ab+ ba

cd− dc −bc+ ad

]
=

[
1 0

0 1

]
.
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5.3 Characteristic Polynomials

Now that we’ve figured out how determinants work, we can use them to find eigenvalues.

Definition 5.40. We say that χA(λ) = det(A − λI) is the characteristic polynomial of A.

This is a polynomial in one variable, λ. We call the equation χA(λ) = 0 the characteristic

equation of A.

Proposition 5.41. The real number λ is an eigenvalue of A if and only if it is a root of the

characteristic polynomial of A. That is, the roots of χA(λ) is the set of eigenvalues of A.

Proof. Recall that v is an eigenvector with eigenvalue λ if and only if v ∈ ker(A−λI). Thus

λ is an eigenvalue if and only if ker(A− λI) has nontrivial kernel, which occurs if and only

if det(A− λI) = 0.

Definition 5.42. If

χA(λ) = (λ− λ1)
n1(λ− λ2)

n2 . . . (λ− λk)
nk

then we say that the algebraic multiplicity of the eigenvalue λi is ni.

We say that the geometric multiplicity of λi is dim(ker(A− λiIn)
n).

We will (hopefully) see that the algebraic and geometric multiplicities are the same.

Remark 5.43. This definition implicitly assumes we’re working in the complex numbers,

because every polynomial can be factored completely in that field.

Example 5.44. Find the eigenvalues and corresponding eigenspaces of A =

[
3 2

3 −2

]
.

The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣3− λ 2

3 −2− λ

∣∣∣∣∣
= (3− λ)(−2− λ)− 2 · 3 = −6− 3λ+ 2λ+ λ2 − 6

= λ2 − λ− 12 = (λ− 4)(λ+ 3)

so the eigenvalues are 4 and −3. We compute

A− 4I =

[
−1 2

3 −6

]
→

[
1 −2

0 0

]
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so ker(A − 4I) = {α(2, 1)}. Thus the eigenspace corresponding to 4 is E4 = span{(2, 1)}.
Similarly,

A+ 3I =

[
6 2

3 1

]
→

[
3 1

0 0

]
so ker(A+ 3I) = {α(−1, 3)}. Thus the eigenspace E−3 = span{(−1, 3)}.

Example 5.45. Find the eigenvalues and corresponding eigenspaces of A =

[
5 1

3 3

]
.

The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣
(
5− λ 1

3 3− λ

)∣∣∣∣∣
= (3− λ)(5− λ)− 1 · 3 = 15− 8λ+ λ2 − 3

= λ2 − 8λ+ 12 = (λ− 6)(λ− 2)

so the eigenvalues are 6 and 2.

A− 6I =

[
−1 1

3 −3

]
→

[
−1 1

0 0

]

has kernel {α(1, 1)}, so the eigenspace E6 = span{(1, 1)}.

A− 2I =

[
3 1

3 0

]
→

[
3 1

0 0

]

has kernel {α(−1, 3)}, so the eigenspace E2 = span{(−1, 3)}.

Example 5.46. Find the eigenvalues and corresponding eigenspaces of A =


2 −3 1

1 −2 1

1 −3 2

.
The characteristic equation is

0 = χA(λ) =

∣∣∣∣∣∣∣∣

2− λ −3 1

1 −2− λ 1

1 −3 2− λ


∣∣∣∣∣∣∣∣

= (2− λ)(−2− λ)(2− λ)− 3− 3− ((−2− λ)− 3(2− λ)− 3(2− λ))

= −λ3 + 2λ2 + 4λ− 8− 6 + 2 + λ+ 12− 6λ

= −λ3 + 2λ2 − λ = −λ(λ− 1)2
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so the eigenvalues are 0 and 1 (twice). We have

A− 0I =


2 −3 1

1 −2 1

1 −3 2

→


1 0 −1

0 1 −1

0 0 0


so ker(A) = {α(1, 1, 1)}, and E0 = span{(1, 1, 1)}. We also have

A− I =


1 −3 1

1 −3 1

1 −3 1

→


1 −3 1

0 0 0

0 0 0


so ker(A− I) = {α(3, 1, 0) + β(−1, 0, 1)}, and E1 = span{(3, 1, 0), (−1, 0, 1)}.

We can use this same setup to find eigenvalues and eigenvectors for an operator on some

other finite-dimensional space.

Example 5.47. Let T be the linear operator on P2(R) defined by T (f(x)) = f(x) + (x +

1)f ′(x), and let β = {1, x, x2}. Then we have the matrix

A = [T ]β =


1 1 0

0 2 2

0 0 3

 .

The characteristic polynomial of T is then

det(A− λI3) = det


1− λ 1 0

0 2− λ 2

0 0 3− λ

 = (1− λ)(2− λ)(3− λ).

Hence, the eigenvalues of T are precisely λ = 1, 2, or 3.

We can think about finding the eigenvectors in two ways. One is to work directly: We

can for instance try to solve

T (ax2 + bx+ c) = ax2 + bx+ c

ax2 + bx+ c+ (x+ 1)(2ax+ b) = ax2 + bx+ c

2ax2 + (2a+ b)x+ b = 0

and thus we find that a = 0, b = 0, and c is a free variable; thus E1 is spanned by {1}.

http://jaydaigle.net/teaching/courses/2023-fall-2185/ 100

http://jaydaigle.net/teaching/courses/2023-fall-2185/


Jay Daigle George Washington University Math 2185: Linear Algebra

But that’s a lot of work when we’ve done the work already! We can say that

[E1]β = ker



0 1 0

0 1 2

0 0 2


 = ker



0 1 0

0 0 1

0 0 0


 = span



1

0

0




[E2]β = ker



−1 1 0

0 0 2

0 0 1


 = ker



1 −1 0

0 0 1

0 0 0


 = span



−1

1

0




[E3]β = ker



−2 1 0

0 −1 2

0 0 0


 = ker



1 0 −1

0 1 −2

0 0 0


 = span



1

2

1




and thus

E1 = span{1}

E2 = span{x− 1}

E2 = span{x2 + 2x+ 1}

Proposition 5.48. If A is a n × n matrix over R and n is odd, then A has at least one

eigenvalue.

Proof. Recall that a degree n polynomial always has at least one real root if n is odd. Thus

if A ∈ Mn×n, χA(λ) is degree n, and has a real root, which is an eigenvalue of A.

Example 5.49. Find the eigenvalues and corresponding eigenspaces of B =


2 0 0

0 4 0

1 0 2

.
Since this matrix is triangluar, we know the eigenvalues are 2, 4, 2. We solve

A− 2I =


0 0 0

0 2 0

1 0 0

→


1 0 0

0 1 0

0 0 0


and ker(A− 2I) = {α(0, 0, 1)}, so E2 = span{(0, 0, 1)}. Similarly,

A− 4I =


−2 0 0

0 0 0

1 0 −2

→


1 0 0

0 0 1

0 0 0


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so ker(A− 4I) = {α(0, 1, 0)} so E4 = span{(0, 1, 0)}.
Notice that in this case, the span of the eigenvectors is only 2-dimensional; the eigenvec-

tors don’t span the whole domain.

Over the complex numbers, things work a little better.

Proposition 5.50. If A is a n× n matrix over C, then it has at least one eigenvalue.

Proof. The characteristic polynomial will have at least one root over the complex numbers

by the Fundamental Theorem of Alebra.

Lemma 5.51. Let A ∈ Mn×n(R). If λ ∈ C is an eigenvalue for A, then λ ∈ C is also an

eigenvalue, with the same multiplicity.

Proof. If all the entries of A are real numbers, then χA(λ) will be a real polynomial, and

complex roots of a real polynomial always come in complex-conjugate pairs.

Example 5.52. Let B =

[
.5 −.6

.75 1.1

]
. We can work out the characteristic polynomial is

χB(λ) = det

[
.5− λ −.6

.75 1.1− λ

]
= (.5− λ)(1.1− λ)− (−.6)(.75) = λ2 − 1.6λ+ 1.

By the Fundamental Theorem of Algebra, this quadratic must have two complex roots; by

the Quadratic Formula, we see that they are .8 ± .6i. Let’s set λ = .8 + .6i and find the λ

eigenspace. We have[
.5− (.8 + .6i) −.6

.75 1.1− (.8 + .6i)

]
=

[
−.3− .6i −.6

.75 .3− .6i

]
This would be a pain to row-reduce, but we don’t actually have to; we already know this has

non-trivial kernel, so the second row must be some multiple of the first, even if we’re too lazy

to figure out which multiple. So we can just say that we want to solve .75x1+(.3−.6i)x2 = 0,

and we get x1 = (−.4 + .8i)x2, so the eigenspace is Eλ = {((−.4 + .8i)x2, x2)}. To find an

eigenvector, we can take x2 = 10 so x1 = −4 + 8i, and we have that one eigenvector is

(−4 + 8i, 10).

We might also want to find the other eigenspace, corresponding to Eλ. But we don’t have

to do any more work here! Our matrix B was defined over the real numbers, so everything is

preserved by complex conjugation. We know that Eλ =

{[
(−4 + 8i)α

10α

]}
, so we know that

Eλ =

{[
(−4 + 8i)α

10α

]}
=

{[
(−4− 8i)α

10α

]}
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What does this tell us? We see that while neither eigenvalue is 1 or −1, both eigenvalues

have magnitude 1: |.8+ .6i| = .64+ .36 = 1. This tells us that the linear transformation will

give some sort of rotation.

It turns out that a matrix with complex eigenvalues always represents some sort of

rotation.

5.4 Diagonalization

We now reach the payoff to all this. Throughout section 3, and particularly in section 3.6, we

saw that we could choose a basis to work in, and different bases would produce nicer or more

awkward matrices for the same linear operator. Now we can say, if we find the eigenvectors

of a linear operator and the give us a (eigen)basis for our space, we can always find a matrix

representation of our linear operator with a particularly nice matrix.

Definition 5.53. If D is a n× n matrix such that aij = 0 whenever i ̸= j, we say that D is

diagonal.

Proposition 5.54. Let D =


d11 0 . . . 0

0 d22 . . . 0
...

...
. . .

...

0 0 . . . dnn

 be a diagonal n× n matrix. Then:

� Each standard basis vector ei is an eigenvector of D with eigenvalue dii.

� det(D) =
∏n

i=1 dii is the product of the diagonal entries.

� Rn is spanned by the eigenvectors of D.

Proof. � We have

Dei =


d11 0 . . . 0

0 d22 . . . 0
...

...
. . .

...

0 0 . . . dnn





0
...

1
...

0


=



0
...

dii
...

0


= diiei.

� The determinant is the product of the eigenvalues, which are the diagonal entries.

� The standard basis vectors are eigenvalues, and span Rn.
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Definition 5.55. We say a linear transformation is diagonalizable if its matrix in some basis

is diagonal.

We say a matrix is diagonalizable if its linear transformation is diagonalizable. Thus A

is diagonalizable if A is similar to some diagonal matrix.

Proposition 5.56. Let A be a n× n matrix. Then:

(a) A is diagonalizable if and only if the eigenvectors of A span Rn.

(b) A is diagonalizable if and only if it has n linearly independent eigenvectors.

(c) If A has n distinct eigenvalues, then A is diagonalizable.

Proof. (a) Suppose A is diagonalizable, i.e. there is an invertible matrix U and a diagonal

matrix D such that A = U−1DU . Let F be the image of the standard basis under

U−1; then

Afi = U−1DU fi = U−1Dei = U−1diiei = diiU
−1ei = diifi.

Thus fi is an eigenvector for each i, so we have a basis of eigenvectors.

Conversely Suppose the eigenvectors of A span Rn. Then in particular there is a basis

F = {f1, . . . , fn} of eigenvectors. Let U be the matrix that sends the standard basis to

F . Then for each i we have

U−1AUei = U−1Afi = U−1λifi = λiU
−1fi = λiei

and thus U−1AU is a diagonal matrix with dii = λi. Thus A is diagonalizable.

(b) A set of n linearly independent vectors is a basis for Rn. Thus A has n linearly

indpendent eigenvectors if and only if the eigenvectors span Rn.

(c) Let F = {f1, . . . , fn} be a set of eigenvectors corresponding to each eigenvalue. Then

this set is linearly independent by proposition 5.10, and thus A has n linearly indepen-

dent eigenvectors.

Remark 5.57. Notice that the converse of (3) is not true, by which we mean that it would

be false if we said “if and only if”. For instance, the identity has only one eigenvalue, but is

clearly diagonalizable (and actually diagonal already).
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Corollary 5.58. If A is a n× n matrix and F = {f1, . . . , fn} is a basis of eigenvectors, and

U is the matrix sending the standard basis to F , then D = U−1AU is a diagonal matrix.

We say that the matrix U diagonalizes A.

Remark 5.59. Diagonalization is not unique; the matrix U depends on the choice of ba-

sis. However, since the diagonal entries are the eigenvalues, they will be the same (up to

reordering) for any diagonalization.

Example 5.60. Let A =

[
3 2

3 −2

]
. We know (from example 5.44) that the eigenvalues

are 4 and −3, so the matrix is diagonalizable; the corresponding eigenvectors are (2, 1) and

(−1, 3). So we set

U =

[
2 −1

1 3

]

U−1 =
1

7

[
3 1

−1 2

]

U−1AU =
1

7

[
3 1

−1 2

][
3 2

3 −2

][
2 −1

1 3

]
=

1

7

[
3 1

−1 2

][
8 3

4 −9

]

=
1

7

[
28 0

0 −21

]
=

[
4 0

0 −3

]
.

Example 5.61. Let A =


2 −3 1

1 −2 1

1 −3 2

. We saw in example 5.46 that the eigenvalues are

0, 1, 1. The eigenvectors are (1, 1, 1), (3, 1, 0), (−1, 0, 1), so we set

U =


1 3 −1

1 1 0

1 0 1



U−1 =


−1 3 −1

1 −2 1

1 −3 2


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and then

U−1AU =


−1 3 −1

1 −2 1

1 −3 2



2 −3 1

1 −2 1

1 −3 2



1 3 −1

1 1 0

1 0 1



=


−1 3 −1

1 −2 1

1 −3 2



0 3 −1

0 1 0

0 0 1

 =


0 0 0

0 1 0

0 0 1

 .

Example 5.62. We saw in example 5.49 that the matrix B =


2 0 0

0 4 0

1 0 2

 had eigenspaces

E2 = span{(0, 0, 1)} and E4 = span{(0, 1, 0)}. The eigenvectors do not span R3, so A is not

diagonalizable.

In general I don’t really expect triangular matrices with repeated eigenvalues to be diag-

onal, but treating this thought fully is beyond the scope of this course.

There are a few major uses for diagonalization. The first is to tell us the basis we

“should” be working in, and to allow us to change bases to that basis. The basis in which

your operator is diagonal is the basis in which your operator is “really” working; it divides

your space up into the dimensions along which your operator really works.

Eigenvectors and diagonalization are often used in various sorts of data analysis. The

eigenvector corresponding to the largest eigenvalue is the most significant input, so diagonal-

ization can tell us which components of our data are most important to whatever phenomenon

we’re studying; this is the idea behind “principal component analysis”. If we have time we’ll

return to this at the end of class.

They are also used in various sorts of approximate computations: if your linear operator

has eigenvalues of 5, 3, 1, .1, .1, -.1, .0005, you can get a pretty good approximation of

your operator by ignoring the eigenvectors corresponding to the small eigenvalues, and only

worrying about the large ones. This is important in a lot of numeric computation.

Finally, we can use diagonalization to simplify many matrix computations. We need to

make two observations: one about diagonal matrices, the other about similar matrices.

Proposition 5.63. Suppose C and D are two diagonal matrices with diagonal entries given
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by cii, dii respectively. Then their product is a diagonal matrix given by

c11 0 0 . . . 0

0 c22 0 . . . 0

0 0 c33 . . . 0
...

...
...

. . .
...

0 0 0 . . . cnn





d11 0 0 . . . 0

0 d22 0 . . . 0

0 0 d33 . . . 0
...

...
...

. . .
...

0 0 0 . . . dnn


=



c11d11 0 0 . . . 0

0 c22d22 0 . . . 0

0 0 c33d33 . . . 0
...

...
...

. . .
...

0 0 0 . . . cnndnn


.

Proposition 5.64. If A = U−1BU , then An = U−1BnU .

Proof.

An = (U−1BU)n = U−1BUU−1BU . . . U−1BUU−1BU

U−1BInB . . . IBIBU = U−1BB . . . BBU = U−1BnU.

Example 5.65. Let Let A =

[
3 2

3 −2

]
. Find A5.

If U−1AU = D, then UU−1AUU−1 = UDU−1 and thus A = UDU−1. So

D =

[
4 0

0 −3

]
=

1

7

[
3 1

−1 2

][
3 2

3 −2

][
2 −1

1 3

]
= U−1AU

A =

[
3 2

3 −2

]
=

[
2 −1

1 3

][
4 0

0 −3

]
1

7

[
3 1

−1 2

]
= UDU−1

A5 =

[
3 2

3 −2

]5
=

([
2 −1

1 3

][
4 0

0 −3

]
1

7

[
3 1

−1 2

])5

=

[
2 −1

1 3

][
4 0

0 −3

]5
1

7

[
3 1

−1 2

]

=

[
2 −1

1 3

][
1024 0

0 −243

]
1

7

[
3 1

−1 2

]

=
1

7

[
2 −1

1 3

][
3072 1024

243 −486

]

=
1

7

[
5901 2534

3801 −434

]
=

[
843 362

543 −62

]
.

Example 5.66. Let A =


2 −3 1

1 −2 1

1 −3 2

. Find a formula for An.
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We have 
0 0 0

0 1 0

0 0 1

 =


−1 3 −1

1 −2 1

1 −3 2



2 −3 1

1 −2 1

1 −3 2



1 3 −1

1 1 0

1 0 1



2 −3 1

1 −2 1

1 −3 2

 =


1 3 −1

1 1 0

1 0 1



0 0 0

0 1 0

0 0 1



−1 3 −1

1 −2 1

1 −3 2



2 −3 1

1 −2 1

1 −3 2


n

=



1 3 −1

1 1 0

1 0 1



0 0 0

0 1 0

0 0 1



−1 3 −1

1 −2 1

1 −3 2




n

=


1 3 −1

1 1 0

1 0 1



0 0 0

0 1 0

0 0 1


n 

−1 3 −1

1 −2 1

1 −3 2



=


1 3 −1

1 1 0

1 0 1



0 0 0

0 1 0

0 0 1



−1 3 −1

1 −2 1

1 −3 2



=


2 −3 1

1 −2 1

1 −3 2

 .

Corollary 5.67. If A is a diagonalizable matrix whose eigenvalues are only zero or one,

then An = A for any n.

We can actually extend this even further, and talk about matrix exponentiation.

At first it’s not even clear what it would mean to compute eA where A is a matrix. But

we know from Calculus 2 that we can define ex = exp(x) by its Taylor series:

exp(x) =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+

x3

3!
+

x4

4!
+ . . .

We are perfectly capable of plugging a matrix into this formula, so we can define

eA = 1 + A+
1

2
A2 +

1

3!
A3 +

1

4!
A4 + . . .

But if D is diagonal, we can compute eD just by exponentiating each entry; and it turns out

that this whole operation plays nicely with transition matrices and changing coordinates. So

if A = U−1DU then eA = U−1eDU is easy to compute.
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This sort of matrix exponentiation is really important in a lot of differential equations

modeling problems. It solves multi-dimensional differential equations similar to the single-

variable y′ = ky that is solved by the regular exponential function.

5.4.1 The Jordan Canonical Form

Not every operator is diagonalizable. But over C, every operator is almost diagonalizable,

in a specific way.

Fact 5.68. Suppose T : F → F is a linear operator whose characteristic polynomial factors

completely into linear terms. (If F = C then this is always true.) Then there is a basis β for

Fn such that

[T ]β =


A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ak

 ,

where each Ai has the form

Ai =



λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ


for some eigenvalue λ of T .

We call this the Jordan Canonical Form of T . It is unique up to the ordering of the

blocks. It reflects the structure of the eigenvectors and generalized eigenvectors of T .

I’m not going to prove this because we’re out of time. But from here you can see that

det(T ) is the product of the eigenvalues up to multiplicity, which we claimed at the beginning

of this section.

5.5 Application: Markov Chains

We can combine all these ideas about eigenvalues, similarity, and diagonalization to provide

tools to analyze random processes.

Example 5.69. Suppose at a certain time. 70% of the population lives in the suburbs, and

30% lives in the city. But each year, 6% of the people living in the suburbs move to the city,
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and 2% of the people living in the city move to the suburbs. What happens after a year?

Five years? Ten years?

And what is the equilibrium distribution?

Because these rates of transition are constant, we can model this with a matrix. If s is

the number of people in the suburbs, and c is the number in the city, then next year we’ll

have .94s+ .02c people in the suburbs, and .06s+ .98c people in the city. With our numbers,

that gives 66.4% in the suburbs, and 33.6% in the city.

We could repeat this calculation to find out what happens in two years, and then three,

et cetera. But it’s simpler, first, if we turn this into a matrix. If we think of (s, c) as a vector

in R2, then the population changes according to the following matrix:

A =

[
.94 .02

.06 .98

]
.

Thus after one year the population distribution will be A

[
.7

.3

]
and after five years it will be

A5

[
.7

.3

]
. This matrix A is called a transition matrix, although it has nothing to do with the

change of basis matrices we discussed in section 3.6. Instead, it measures what fraction of a

population transitions from one state to another—in this case, from the suburbs to the city

or vice versa. Notice that every column sums up to 1. This isn’t an accident; exactly 100%

of a population has to go somewhere.

So now we can answer our earlier questions, if we can compute A5 and A10. We saw

in 5.4 that this is easy if we diagonalize the matrix A. We can compute the eigenvectors,

and see that A has an eigenvector (1, 3) with eigenvalue 1, and an eigenvector (−1, 1) with

eigenvalue .92. Then we compute

U =

[
1 −1

3 1

]

U−1 =
1

4

[
1 1

−3 1

]

A = UDU−1 =
1

4

[
1 −1

3 1

][
1 0

0 .92

][
1 1

−3 1

]
.
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This allows us to compute our exponentials:

A5 = UD5U−1 =
1

4

[
1 −1

3 1

][
1 0

0 .925

][
1 1

−3 1

]

≈ 1

4

[
1 −1

3 1

][
1 0

0 .66

][
1 1

−3 1

]
≈

[
.744 .085

.256 .915

]

A5

[
.7

.3

]
≈

[
.55

.45

]
.

Thus after five years we’ll have about 55% of people in the suburbs, and 45% in the city.

For ten years, we can do the same computation.

A10 = UD5U−1 =
1

4

[
1 −1

3 1

][
1 0

0 .9210

][
1 1

−3 1

]

≈ 1

4

[
1 −1

3 1

][
1 0

0 .60

][
1 1

−3 1

]
≈

[
.576 .141

.424 .859

]

A10

[
.7

.3

]
≈

[
.45

.55

]
.

So after ten years, we’ll have 45% of people in the suburbs, and 55% in the city.

But how do we answer our final question, about the equilibrium? Here we want something

like limn→∞An. Without diagonalization this would be really hard to compute. But it’s easy

to see that limn→∞Dn =

[
1 0

0 0

]
, and thus we get

lim
n→∞

An = lim
n→∞

UDnU−1 =
1

4

[
1 −1

3 1

][
1 0

0 0

][
1 1

−3 1

]
=

[
1/4 1/4

3/4 3/4

]

lim
n→∞

An

[
.7

.3

]
≈

[
1/4

3/4

]
.

Thus the equilibrium state is where 25% of people live in the suburbs and 75% live in the

cities. Which maybe we could have guessed from the start, since that makes the populations

moving each way equal.

This entire process is very flexible. Any time the probability of transitioning from one

state to another is constant, and only depends on which state you start in, we can model

our system with a matrix like A, which we call a Markov process. In that case, the sequence

of vectors v1 = Av,v2 = A2v, . . . is called a Markov chain.
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Each column of A is a probability vector, which is a vector of non-negative numbers that

add up to one. Each row and each column corresponds to a particular possible state, and

each entry tells us the probability of moving into the column-state if we start out in the

row-state.

We can use this system to find the projected state after a finite number of steps, but

even more usefully we can use it to project the equilibrium state.

Example 5.70. Suppose our matrix of transition probabilities is B =

[
.7 .2

.3 .8

]
. This matrix

has eigenvalues 1/2, 1 with eigenvectors (1,−1) and (2, 3). Then we can diagonalize:

U =

[
1 2

−1 3

]

U−1 =
1

5

[
3 −2

1 1

]

D = U−1BU =
1

5

[
3 −2

1 1

][
.7 .2

.3 .8

][
1 2

−1 3

]
=

1

5

[
3 −2

1 1

][
.5 2

−.5 3

]

=
1

5

[
2.5 0

0 5

]
=

[
.5 0

0 1

]

B = UDU−1 =

[
1 2

−1 3

][
.5 0

0 1

]
1

5

[
3 −2

1 1

]
Then we can easily exponentiate.

Bn =

([
1 2

−1 3

][
.5 0

0 1

]
1

5

[
3 −2

1 1

])n

=

[
1 2

−1 3

][
.5 0

0 1

]n
1

5

[
3 −2

1 1

]

lim
n→∞

Bn =

[
1 2

−1 3

][
0 0

0 1

]
1

5

[
3 −2

1 1

]
=

1

5

[
1 2

−1 3

][
0 0

1 1

]
=

1

5

[
2 2

3 3

]
=

[
.4 .4

.6 .6

]
.

Thus in the equilibrium, we will have 40% of people in state one, and 60% in state two.

You might have noticed something both of these examples have in common. Both A

and B had 1 as an eigenvalue. And our steady-state vectors were in fact eigenvectors with

eigenvalue 1. As you might guess, this isn’t a coincidence.
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Not every Markov process converges to a steady-state vector. But if it converges, the

steady state will be an eigenvector with eigenvalue 1.

Further, convergence is guaranteed if all the entries of the matrix are positive (and

nonzero). And convergence is also guaranteed if there is only one eigenvector of magnitude

1 (even after taking absolute values).

Example 5.71. Suppose you run a car dealership that does long-term car leases. You lease

sedans, sports cars, minivans, and SUVs. At the end of each year, your clients have the

option to trade in to a different style of car. Empirically, you find that you get the following

transition matrix:

C =


.80 .10 .05 .05

.10 .80 .05 .05

.05 .05 .80 .10

.05 .05 .10 .80


Thus if someone has a sedan this year, they are 80% likely to take a sedan next year, 10%

likely to take a sports car, and 5% each likely to take a minivan or an SUV.

We find that C has the eigenvalues 1, .8, .7, .7, with corresponding eigenvalues
1

1

1

1

 ,


−1

−1

1

1

 ,


0

0

−1

1

 ,


−1

1

0

0


Thus it will have a steady-state equilibrium. In particular, in a steady state, equal numbers

of customers will lease each type of car, no matter what the distribution is right now.

Example 5.72. As a final, non-numerical example, this is how the Google PageRank algo-

rithm works.

They treat web browsing as a random process: given that you are currently on one web

page, you have some (small) probability of winding up on any other web page. Of course,

this probability is higher if the page you’re on links to the new page prominently, so the

probability of winding up on any given page is not equal.

Then they build a giant n × n matrix, where n is the number of web pages they have

analyzed. Each column corresponds to a particular web page, and the entries tell you how

likely you are to go to any other web page next.

Then they compute the eigenvectors and eigenvalues of this matrix. Or at least, they

compute the eigenvector with eigenvalue 1. (Since the matrix is all positive, this is guaranteed
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to exist, and there are relatively efficient ways to find it.) This gives you an equilibrium

probability: if you browse the web for an arbitrarily long period of time, how likely are you

to land on this page?

And that is, roughly speaking, the page rank. The more likely you are to land on a given

web page, from this Markov chain model, the more highly ranked the page is.
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6 Inner Product Spaces and Geometry

In this section we’re going to consider vector spaces from a more geometric perspective. In

R3 we have the geometric ideas of “distance” and “angle”, but neither of those is necessarily

present in an arbitrary vector space. Here we will introduce a new structure called an “Inner

Product” that allows us to generalize the angles and distances of R3 to any vector space

with an inner product structure.

6.1 The Dot Product and Inner Products

Definition 6.1. Let u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Rn. We define the dot product of

u and v by

u · v = u1v1 + · · ·+ unvn =
n∑

i=1

uivi.

This is sometimes also called the scalar product on Rn.

Remark 6.2. If we think of u and v as n × 1 matrices, we can think of u · v = uTv, the

product of a n× 1 matrix with a 1× n matrix.

The dot product has a number of useful properties. First of all, it allows us to define the

length or magnitude of a vector.

Definition 6.3. Let v = (v1, . . . , vn) ∈ Rn. We define the magnitude of v to be

∥v∥ =
√
v · v =

√
v21 + v22 + · · ·+ v2n.

Notice that this is just the usual definition of distance; in the plane this is

∥(x, y)∥ =
√

x2 + y2,

which is just the pythagorean theorem.

Sometimes it’s useful to talk about the distance between two points, rather than the

length of a vector. But the distance between two points is the length of the vector between

them, so we can define the distance between x and y to be

d(x,y) = ∥x− y∥.

We sometimes want to be able to talk about the direction of a vector without worrying

about the magnitude. In this case we may wish to comput the unit vector given by u
∥u∥ .

This vector will clearly have magnitude 1, and point in the same direction that u does.

The dot product has a few important properties:
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Proposition 6.4. Let u,v ∈ Rn. Then:

(a) (Positive definite) u · u ≥ 0, and if u · u = 0 then u = 0.

(b) (Symmetric) u · v = v · u.

(c) (Bilinear) The function defined by L(x) = x · v is linear, and the function defined by

T (y) = u · y is linear.

Proof. (a) u · u = u2
1 + u2

2 + · · ·u2
n. Each term is non-negative since each term is a real

square, so the sum is non-negative. The sum is zero if and only if each term is zero, if

and only if u = (0, . . . , 0) = 0.

(b) u · v = u1v1 + · · ·+ unvn = v1u1 + · · ·+ vnun = v · u.

(c) We’ll prove linearity in the first coordinate; the proof for the second coordinate is

identical.

Fix v ∈ Rn and let x,y ∈ Rn and r ∈ R. Define L(x) = x · v. Then

L(rx) = (rx) · v = (rx1)v1 + · · ·+ (rxn)vn = r(x1v1 + · · ·+ xnvn) = rL(x)

L(x+ y) = (x+ y) · v = (x1 + y1)v1 + · · ·+ (xn + yn)vn

= (x1v1 + · · ·+ xnvn) + (y1v1 + · · ·+ ynvn) = L(x) + L(y).

The dot product also allows us to compute the angle between two vectors.

Proposition 6.5. If u,v are two nonzero vectors in Rn, and the angle between them is θ,

then

u · v = ∥u∥∥v∥ cos θ.

Proof. We can form a triangle with sides u,v, and u−v. Then by the law of cosines (which

I’m sure you all remember from high school trigonometry), we have

∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cos θ.

Then we compute

∥x∥∥y∥ cos θ =
1

2

(
∥x∥2 + ∥y∥2 − ∥y − x∥2

)
=

1

2
(x · x+ y · y − (y − x) · (y − x))

=
1

2
(x · x+ y · y − (y · y − x · y − y · x+ x · x))

=
1

2
(x · y + y · x) = x · y.
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Thus the angle between two vectors is given by cos θ = u·v
∥u∥∥v∥ .

Example 6.6. Let u = (3, 4) and v = (−1, 7). Then u · v = 3 · (−1) + 4 · 7 = 25.

We can compute ∥u∥ =
√
32 + 42 = 25 and ∥v∥ =

√
(−1)2 + 72 = 5

√
2. The distance

between them is ∥u− v∥ = ∥(4,−3)∥ =
√
42 + (−3)2 = 5.

The angle between them is given by

cos θ =
u · v

∥u∥∥v∥
=

25

5 · 5
√
2
=

1√
2
=

√
2

2

θ = arccos

(√
2

2

)
=

π

4
.

We’d like to extend this idea to other vector spaces. But first we have to think a bit

about other fields. In particular, we have to say something about the complex numbers C.
In the real numbers we can define the absolute value as |x| =

√
x2. But in the complex

numbers that doesn’t quite work, because z2 may not be a positive real number. So, you

may recall, we defined |z| =
√
zz. In order to get our positive definiteness, we need to do

something similar.

Definition 6.7. Let u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Cn. We define the dot product of

u and v by

u · v = u1v1 + · · ·+ unvn =
n∑

i=1

uivi.

Then just as we did before, we can define

∥u∥ =
√
u · u

=
√
u1u1 + · · ·+ unun

=
√

|u1|2 + · · ·+ |un|2.

This resulting product is positive definite, just as the real dot product was. But it’s not

quite symmetric or bilinear. In particular, we can see that

u · v = u1v1 + · · ·+ unvn

= v1u1 + · · ·+ vnun

= v1u1 + · · ·+ vnun

= v · u.
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Similarly, we still see that (ru) · v = r(u · v), but u · (rv) = r(u · v). Thus the complex dot

product is linear in the first coordinate, but conjugate linear in the second coordinate; we

call such a product sesquilinear.

(Note that the real dot product is also conjugate linear and sesquilinear: because the

conjugate of a real number is just the original number, we can just ignore the conjugation.)

And now we are ready to define:

Definition 6.8. Let F = R or C, and let V be a vector space over F. An inner product

on V is an operation that takes in two vectors u,v ∈ V and returns a real number ⟨u,v⟩,
satisfying the following conditions:

(a) (Positive Definite) ⟨u,u⟩ ≥ 0, and ⟨u,u⟩ = 0 if and only if u = 0.

(b) (Conjugate Symmetric) ⟨u,v⟩ = ⟨v,u⟩.

(c) (Sesquilinear) ⟨αu+βv,w⟩ = α⟨u,w⟩+β⟨v,w⟩, and ⟨u, αv+βw⟩ = α⟨u,v⟩+β⟨u,w⟩.

We write the norm of a vector v as ∥v∥ =
√
⟨v,v⟩; the norm is always ≥ 0, and is equal

to zero if and only if v = 0.

Remark 6.9. Why are we limiting ourselves to just the reals and complexes? We could study

symmetric bilinear products (or “bilinear symmetric forms”) over any field. The sticking

point is the first issue: we require ⟨u,u⟩ ≥ 0, and this requires us to have a field with some

sense of “positive number”, which a finite field does not. Similarly, we want to define the

norm, which requires the square root to be a real thing.

The dot products, both real and complex, are examples of inner products, but there are

other important examples we can see.

Example 6.10. Let V = C([a, b],R) be the space of continuous functions on [a, b], and define

an inner product by

⟨f, g⟩ =
∫ b

a

f(t)g(t) dt.

Then

(a) ⟨f, f⟩ =
∫ b

a
f(t)2 dt ≥ 0 since f(t)2 ≥ 0; and further the integral is zero if and only if

f(t)2 = 0 everywhere.

(b) ⟨f, g⟩ =
∫ b

a
f(t)g(t) dt =

∫ b

a
g(t)f(t) dt = ⟨g, f⟩.
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(c) ⟨αf +βg, h⟩ =
∫ b

a
(αf(t)+βg(t))h(t) dt = α

∫ b

a
f(t)h(t) dt+β

∫ b

a
g(t)h(t) dt = α⟨f, h⟩+

β⟨g, h⟩.

Thus this is an inner product on C([a, b],R) by definition.

In fact, we can extend this to a complex inner product easily enough. Let V = C([a, b],C)
be the space of continuous functions on [a, b] with values in C. We can define an inner product

by

⟨f, g⟩ =
∫ b

a

f(t)g(t) dt.

Example 6.11. Let V = Pn(x) and fix real numbers x0, x1, . . . , xn be distinct real numbers.

For f, g ∈ V , define

⟨f, g⟩ =
n∑

i=0

f(xi)g(xi).

Then we can see ⟨f, f⟩ =
∑n

i=0 f(xi)
2 ≥ 0, and the sum is equal to zero if and only if

f(xi) = 0 for all i. But then f is a degree n polynomial with n + 1 roots, and so must be

constantly zero.

You will check the other two conditions on your homework.

6.2 Properties of the Inner Product

Proposition 6.12. Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F, the

following are true.

(a) ⟨0,x⟩ = ⟨x,0⟩ = 0.

(b) ⟨x,x⟩ = 0 if and only if x = 0.

(c) If ⟨x,y⟩ = ⟨x, z⟩ for all x ∈ V , then y = z.

Proof. (1) Since ⟨0,x⟩ = ⟨0+ 0,x⟩ = ⟨0,x⟩+ ⟨0,x⟩, this implies that ⟨0,x⟩ = 0. You can

use the same argument in the other component.

(2) If x ̸= 0, then by positivity, we know ⟨x,x⟩ > 0. Conversely, if x = 0, then part (1)

says that ⟨x,x⟩ = ⟨0,0⟩ = 0.

(3) If ⟨x,y⟩ = ⟨x, z⟩ for every x ∈ V , then by additivity in the second component, we

have ⟨x,y− z⟩ = 0 for all x ∈ V . In particular, this is true for x = y− z, whence y− z = 0

and so y = z.
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We remarked that the norm ∥v∥ =
√

⟨v,v⟩ should be thought of as some notion of the

length of a vector. So we should check that the norm actually behaves like a length, in the

following theorem. (For (c), keep in mind that for the dot product on Rn, x·y = ∥x∥∥y∥ cos θ
where θ is the angle between them.)

Proposition 6.13. Let V be an inner product space over F. Suppose x, y ∈ V and c ∈ F.
Then

(a) ∥cx∥ = |c| · ∥x∥.

(b) ∥x∥ = 0 if and only if x = 0. In any case, ∥x∥ ≥ 0.

(c) (Cauchy–Schwarz inequality). |⟨x, y⟩| ≤ ∥x∥∥y∥.

(d) (Triangle inequality). ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. (a) We compute

∥cx∥2 = ⟨cx, cx⟩ = cc⟨x, x⟩ = |c|2∥x∥2.

(b) By positivity of inner products, we know that ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if

x = 0. And ∥x∥ = ⟨x, x⟩2 so ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0.

(c) If y = 0, then the result is immediate, since both sides are then equal to 0. So assume

that y ̸= 0. For any c ∈ F, we have

0 ≤ ⟨x− cy, x− cy⟩ = ⟨x, x− cy⟩ − c⟨y, x− cy⟩ = ⟨x, x⟩ − ⟨x, cy⟩ − c⟨y, x⟩ − c⟨y,−cy⟩

= ⟨x, x⟩ − c⟨x, y⟩ − c⟨y, x⟩+ cc⟨y, y⟩.

In particular, if we set c =
⟨x, y⟩
⟨y, y⟩

, then we have

⟨x, y⟩⟨y, x⟩
⟨y, y⟩

= c⟨x, y⟩ = c⟨y, x⟩ = cc⟨y, y⟩.

Hence, the preceding inequality becomes

0 ≤ ⟨x, x⟩ − ⟨x, y⟩⟨y, x⟩
⟨y, y⟩

= ⟨x, x⟩ − |⟨x, y⟩|2

⟨y, y⟩
= ∥x∥2 − |⟨x, y⟩|2

∥y∥2

and the Cauchy–Schwarz inequality follows.
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(d) We have

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨y, y⟩+ ⟨x, y⟩+ ⟨y, x⟩

= ⟨x, x⟩+ ⟨y, y⟩+ ⟨x, y⟩+ ⟨x, y⟩ = ∥x∥2 + ∥y∥2 + 2ℜ⟨x, y⟩

≤ ∥x∥2 + ∥y∥2 + 2|⟨x, y⟩|
C–S

≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥

= (∥x∥+ ∥y∥)2.

Taking square roots (noting that norms are nonnegative) gives the result.

Definition 6.14. Let ∥·∥ : V → R≥0 be a function that satisfies properties a–d of proposition

6.13, that is:

(a) ∥cx∥ = |c| · ∥x∥.

(b) ∥x∥ = 0 if and only if x = 0. In any case, ∥x∥ ≥ 0.

(c) (Cauchy–Schwarz inequality). |⟨x, y⟩| ≤ ∥x∥∥y∥.

(d) (Triangle inequality). ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Then we say that ∥ · ∥ is a norm on V .

Proposition 6.13 tells us that any inner product gives us a norm. However it is not true

that every norm comes from an inner product. A good example is the norm on Rn given

by ∥(a1, a2, . . . , an∥1 = |a1|+ |a2|+ · · ·+ |an|. But norms that come from inner product are

especially nice, and we tend to like them best.

You will sometimes hear the term Hilbert space tossed around here. A Hilbert space

is a space with an inner product which is complete, which means that limits and calculus

behave well. Every finite-dimensional inner product space is a Hilbert space, but not every

infinite-dimensional inner product space is complete.

So now we’d like to see some of the extra value we get from the inner product. We already

saw we got distances, but what about angles? We start by looking at the most important

angle: a right angle. In Rn, if two vectors are perpendicular then their dot product is

u · v = ∥u∥ · ∥v∥ cos(θ) = ∥u∥ · ∥v∥ cos(π/2) = ∥u∥ · ∥v∥ · 0 = 0.

That leads to the following definition:
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Definition 6.15. Let u,v be elements of an inner product space V . If ⟨u,v⟩ = 0, we say

that u and v are orthogonal.

If vectors are orthogonal, they’re independent in a very specific way: we can break any

vector up into two pieces that are orthogonal, and re-combine into the original vector. To

see this we should start by considering R2 again.

Suppose we have two vectors u and v, with angle θ between them. These form two sides

of a triangle, with the third side given by u − v. But we can also draw a line from the

endpoint of u that is perpendicular to v.

We now have a right trangle. The hypotenuse has length ∥u∥, so by definition of cosine

the length of the adjacent side is ∥u∥ cos θ. But we know that

u · v = ∥u∥∥v∥ cos θ

u · v

∥v∥
= ∥u∥ cos θ

so the length of the adjacent side is u · v
∥v∥ . We sometimes call this number the scalar

projection of u onto v.

Further, we know the direction that the adjacent side is pointing: it’s the same direction

as v! So we can find this adjacent side as a vector with the formula

p = u · v

∥v∥
v

∥v∥
=

u · v
v · v

v.

It is not immediately obvious that this is a vector; but most of the dot products give us

scalars, with the final v giving direction.
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Finally, we can write w = u−p. We will have that p ·v = ∥p∥∥v∥ since the two vectors

point in the same direction; we will have

w · v = (u− p) · v = u · v − p · v

= u · v − u · v
v · v

(v · v)

= u · v − u · v = 0.

Thus w is orthogonal to v. We have written u = p + w so that w is orthogonal to v,

and p points in the same direction as v.

Definition 6.16. If u,v are two vectors in Rn, we define the projection map onto v by

projvu =
u · v
v · v

v.

Example 6.17. Let’s look back at our earlier vectors u = (3, 4) and v = (−1, 7). Then we

compute

projvu =
u · v
v · v

v =
25

50

[
−1

7

]
=

[
−1/2

7/2

]

u− projvu =

[
3

4

]
−

[
−1/2

7/2

]
=

[
7/2

1/2

]
.

Now that all worked in R2, and even in Rn. So what does it look like in another vector

space?

Definition 6.18. Suppose u,v are vectors in an inner product space V , and v ̸= 0. We

define the projection of u onto v by

projvu =
⟨u,v⟩
⟨v,v⟩

v.
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Proposition 6.19. Let u,v be vectors in an inner product space V , with v ̸= 0. Let

p = projvu. Then:

(a) ⟨u− p,p⟩ = 0—that is, u− p is orthogonal to p.

(b) u = p if and only if u is a scalar multiple of v.

Proof. (a) See Homework 13

(b) If u = βv, then

projvu =
⟨βv,v⟩
⟨v,v⟩

v = βv = u.

Conversely, suppose u = projvu. Then by definition

u =
⟨u,v⟩
⟨v,v⟩

v,

so set β = ⟨u,v⟩
⟨v,v⟩ and we have u = βv.

Example 6.20. Let V = C([−1, 1],R) be the space of continuous functions on the closed

interval [−1, 1], with the inner product given as above. Consider the vectors 1, x. We

compute:

∥1∥ =

√∫ 1

−1

1 dx =
√
x|1−1 =

√
2

∥x∥ =

√∫ 1

−1

x2 dx =
√
x3/3|1−1 =

√
2/3

⟨1, x⟩ =
∫ 1

−1

x dx = x2/2|1−1 = 0

so 1 and x are orthogonal. Thus the projection of x onto 1 will give the zero vector: the two

vectors have no “direction” in common.

Let’s consider now the vector 1 + x. We have

⟨1 + x, 1⟩ =
∫ 1

−1

1 + x dx = x+ x2/2|1−1 = 2

⟨1 + x, x⟩ =
∫ 1

−1

x+ x2 dx = x2/2 + x3/3|1−1 = 2/3.

Now we compute

proj11 + x =
⟨1 + x, 1⟩
⟨1, 1⟩

1 =
2

2
1 = 1

projx1 + x =
⟨1 + x, x⟩
⟨x, x⟩

x =
2/3

2/3
x = x.
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Thus we can use the inner product to decomopose 1 + x into its 1 component and its x

component (and the remainder, if there were any).

We can squeeze some extra geometry out of this. If two vectors are orthogonal, then

they are independent; they don’t have any reasonable sub-components pointing in the same

direction. This means their lengths are in some sense independent.

Proposition 6.21 (Pythagorean Law). If u,v are orthogonal, then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. See homework 13.

Example 6.22. Returning to our previous example, we can compute that

∥1 + x∥ =

√∫ 1

−1

1 + 2x+ x2 dx =
√

x+ x2 + x3/3|1−1 =
√
8/3.

We can confirm that indeed,

∥1 + x∥2 = 8/3 = 2 + 2/3 = ∥1∥+ ∥x∥.

Using projections we can prove that the Cauchy-Schwarz Inequality, which we saw briefly

in our discussion of the dot product, holds for any inner product.

Theorem 6.23 (Cauchy-Schwarz Inequality). If u,v are in an inner product space V , then

|⟨u,v⟩| ≤ ∥u∥∥v∥. (1)

Equality holds if and only if u and v are linearly dependent.

Proof. If v = 0, both sides are zero. So assume v ̸= 0.

Let p = projvu. By the Pythagorean law 6.21, we know that

∥u∥2 = ∥p∥2 + ∥u− p∥2.

But we know that

∥p∥2 =
∥∥∥∥⟨u,v⟩⟨v,v⟩

v

∥∥∥∥2 = (⟨u,v⟩
⟨v,v⟩

)2

∥v∥2 = ⟨u,v⟩2

⟨v,v⟩
.

Thus we have

⟨u,v⟩2

⟨v,v⟩
= ∥u∥2 − ∥u− p∥2

⟨u,v⟩2 = ∥u∥2∥v∥2 − ∥u− p∥2∥v∥2 ≤ ∥u∥2∥v∥2

|⟨u,v⟩| ≤ ∥u∥∥v∥.
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Further, we can easily see that we get equality if and only if u−p = 0, if and only if u = p,

if and only if u is a scalar multiple of v.

Notice that this allows us to define an “angle” between two vectors. Cauchy-Schwarz

tells us that

−1 ≤ ⟨u,v⟩
∥u∥∥v∥

≤ 1,

so we can coherently define:

Definition 6.24. If u,v are non-zero vectors in an inner product space, we define the angle

between them to be

θ = arccos

(
⟨u,v⟩
∥u∥∥v∥

)
.

6.3 Orthonormal Bases

Throughout the course, we’ve been suggesting that we would often like to change from one

coordinate system into another which is easier to work with. In this section we’ll discuss one

particular type of nice basis: one in which all the basis elements are orthogonal.

Definition 6.25. A set S = {u1, . . . ,un} is said to be orthogonal if ⟨ui,uj⟩ = 0 whenever

i ̸= j. We say it is orthonormal if every vector has magnitude 1.

Proposition 6.26. Any orthogonal set of non-zero vectors is linearly independent.

Proof. Suppose

a1u1 + · · ·+ anun = 0.

Then dotting the equation with itself, we get

⟨a1u1 + · · ·+ anun, a1u1 + · · ·+ anun⟩ = 0
n∑

i,j=1

aiaj⟨ui,uj⟩ = 0

But since the ui are orthogonal, ⟨ui,uj⟩ = 0 when i ̸= j, so this just gives us

n∑
i=1

a2i ⟨ui,ui⟩ = 0

a21∥u1∥2 + · · ·+ a2n∥un∥2 = 0.

And thus, since ∥ui∥ > 0, we must have ai = 0 for each i.
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Thus every orthogonal set is a basis for its span.

Definition 6.27. Let E = {e1, . . . , en} be a basis for V . We say that E is an orthogonal

basis if ⟨ei, ej⟩ = 0 whenever i ̸= j.

We say that E is an orthonormal basis if, furthermore, ∥ei∥ = 1. Thus E is an orthonor-

mal basis if and only if

⟨ei, ej⟩ =

{
1 i = j

0 i ̸= j
.

Example 6.28. � The standard basis for R3 is orthonormal.

� The basis {(1, 1, 0), (1,−1, 0), (0, 0, 1)} for R3 is orthogonal but not orthonormal.

But {(
√
2/2,

√
2/2, 0), (

√
2/2,−

√
2/2, 0), (0, 0, 1)} is orthornormal.

� Let V = P2(x) with inner product given by ⟨f, g⟩ =
∫ 1

−1
f(t)g(t) dt. The basis E =

{1, x, 3x2 − 1} is an orthogonal basis for V , but not orthonormal.

The basis F =
{

1√
2
, x

√
3√
2
,

√
5

2
√
2
(3x2 − 1)

}
is orthonormal.

� Let V = P2(x) with inner product given by ⟨f, g⟩ = f(−1)g(−1)+f(0)g(0)+f(1)g(1).

Then E = {1, x, x2 − 2/3} is an orthogonal basis for V .

An orthonormal basis is F =
{√

3
3
, x

√
2

2
,
√
3√
2

(
x2 − 2

3

)}
.

Orthonormal bases are particularly nice, for a few reasons.

Proposition 6.29. Suppose E = {e1, . . . , en} is an orthonormal basis for V . Then if

u =
∑n

i=1 aiei and v =
∑n

i=1 biei, then ⟨u,v⟩ =
∑n

i=1 aibi.

Consequently ∥u∥ = |a1|2 + · · ·+ |an|2.

Remark 6.30. We use this all the time when we’re computing the norm of vectors in Rn.

This also gives us our “normal” dot product.

Mor importantly, orthonormal bases make projection, coordinates, and changes of basis

very easy.

Proposition 6.31. Let E = {e1, . . . , en} be a basis for V , with ⟨ei, ej⟩ = 0 when i ̸= j.

Then if v ∈ V , we have

v =
n∑

i=1

(
projeiv

)
ei =

(
proje1v

)
e1 + · · ·+

(
projenv

)
en.

Proof. Write v = a1e1 + · · ·+ anen and compute each projection.
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Corollary 6.32. Let E = {e1, . . . , en} be an orthonormal basis for V . Then

v =
n∑

i=1

⟨v, ei⟩ei = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en.

Example 6.33. E = {(1, 1, 0), (1,−1, 0), (0, 0, 1)} is orthogonal. Find the E coordinates of

(6, 2, 1).

We compute:

proje1(6, 2, 1) =
(6, 2, 1) · (1, 1, 0)
(1, 1, 0) · (1, 1, 0)


1

1

0

 =
8

2


1

1

0

 = 4


1

1

0



proje2(6, 2, 1) =
(6, 2, 1) · (1,−1, 0)

(1,−1, 0) · (1,−1, 0)


1

−1

0

 =
4

2


1

−1

0

 = 2


1

−1

0



proje3(6, 2, 1) =
(6, 2, 1) · (0, 0, 1)
(0, 0, 1) · (0, 0, 1)


0

0

1

 =
1

1


0

0

1

 =


0

0

1


[(6, 2, 1)]E = (4, 2, 1)

Example 6.34. Let V = P2(x), with inner product given by ⟨f, g⟩ =
∫ 1

−1
f(t)g(t) dt. Then

E = {1, x, 3x2 − 1) is orthogonal. Write 3x2 − 6x+ 4 in E-coordinates.

We compute

proje13x
2 − 6x+ 4 =

⟨3x2 − 6x+ 4, 1⟩
⟨1, 1⟩

(1) =
1

2

∫ 1

−1

3x2 − 6x+ 4 dx(1)

=
1

2

(
x3 − 3x2 + 4x | |1−1

)
(1) = 5(1)

proje23x
2 − 6x+ 4 =

⟨3x2 − 6x+ 4, x⟩
⟨x, x⟩

(x) =
3

2

∫ 1

−1

3x3 − 6x2 + 4x dx(x)

=
3

2

(
x4

4
− 2x3 + 2x2 | |1−1

)
(x) = −6(x)

proje33x
2 − 6x+ 4 =

⟨3x2 − 6x+ 4, 3x2 − 1⟩
⟨3x2 − 1, 3x2 − 1⟩

(3x2 − 1)

=
5

8

∫ 1

−1

(3x2 − 6x+ 4)(3x2 − 1) dx(3x2 − 1)

=
5

8

(
9x5/5− 9x4/2 + 3x3 + 3x2 − 4x | |1−1

)
(3x2 − 1) = 1(3x2 − 1)[

3x2 − 6x+ 4
]
E
= (5,−6, 1).
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Example 6.35. Let V = R3 with the usual dot product. Then the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
is an orthonormal basis. Use the dot product to find the coordinates of (2, 3, 4).

We don’t need to use the full projection operator; we just need to compute the inner

products, since our basis is orthonormal and not just orthogonal.

proje1(2, 3, 4) = (2, 3, 4) · (1, 0, 0)


1

0

0

 = 2


1

0

0



proje2(2, 3, 4) = (2, 3, 4) · (0, 1, 0)


0

1

0

 = 3


0

1

0



proje3(2, 3, 4) = (2, 3, 4) · (0, 0, 1)


0

0

1

 = 4


0

0

1


[(2, 3, 4)]E = (2, 3, 4).

This isn’t a surprise because it was already in coordinates with respect to the standard

basis. But this also illustrates a more general principle: if your vector is already written in

orthonormal coordinates, your inner product just becomes a dot product.

We’d like a way to generate an orthonormal basis if we don’t already have one. This

turns out to be straightforward; start with any basis, and one-by-one “fix” elements so that

they’re orthogonal to all the others.

Proposition 6.36 (Gram-Schmidt Process). Let E = {e1, . . . , en} be a basis for V . Then

there is an orthonormal basis {u1, . . . ,un}, where we set:

f1 = e1 u1 =
f1
∥f1∥

f2 = e2 − proju1
e2 u2 =

f2
∥f2∥

f3 = e3 −
(
proju1

e3 + proju2
e3
)

u3 =
f3

∥f3∥
...

...

fn = en − (proju1
en + · · ·+ projun−1

en) un =
fn

∥fn∥
.

Proof. It’s clear that each ui has norm 1, so we just need to check that they are pairwise

orthogonal, which is the same as checking that the fi are all orthogonal
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But we have constructed the fi to be orthogonal by subtracting off the pieces they have

in common. For instance, we see that

⟨f1, f2⟩ =
〈
e1, e2 −

⟨e2, e1⟩
⟨e1, e1⟩

e1

〉
= ⟨e1, e2⟩ −

⟨e2, e1⟩
⟨e1, e1⟩

⟨e1, e1⟩

= ⟨e1, e2⟩ − ⟨e2, e1⟩ = 0.

In general, we see that

⟨fj, projfj fi⟩ =
〈
fi,

⟨fj, fj⟩
⟨fj, fj⟩

fj

〉
= ⟨fi, fj⟩

and all the other projections will be zero since the fi are orthogonal, so each fj is orthogonal

to all the previous fi.

Example 6.37. Let V = R3 with the usual dot product, and let E = {(1, 1,−1), (1,−1, 1), (−1, 1, 1)}.
Use Gram-Schmidt to orthonormalize this basis.

We take f1 = (1, 1,−1), and then we compute ∥f1∥ =
√
3 so u1 =

(
1√
3
, 1√

3
, −1√

3

)
.

Then we set

f2 =


1

−1

1

− Proj(1,1,−1)


1

−1

1

 =


1

−1

1

− (1,−1, 1) · (1, 1,−1)

(1, 1,−1) · (1, 1,−1)


1

1

−1



=


1

−1

1

− −1

3


1

1

−1

 =


4/3

−2/3

2/3



u2 =
f2

∥f2∥
=

(4/3,−2/3, 2/3)√
24/9

=

√
3

2
√
2


4/3

−2/3

2/3

 =


√
6/3

−
√
6/6

√
6/6

 .
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Finally we have

f3 =


−1

1

1

− proj(1,1,−1)


−1

1

1

− proj(4,−2,2)


−1

1

1



=


−1

1

1

− (−1, 1, 1) · (1, 1,−1)

(1, 1,−1) · (1, 1,−1)


1

1

−1

− (−1, 1, 1) · (4,−2, 2)

(4,−2, 2) · (4,−2, 2)


4

−2

2



=


−1

1

1

− −1

3


1

1

−1

− −4

24


4

−2

2

 =


0

1

1



u3 =
f3
∥f3∥

=
(0, 1, 1)√

2
=


0

√
2/2

√
2/2

 .

Thus an orthonormal basis for R3 is


√
3/3

√
3/3

−
√
3/3

 ,


√
6/3

−
√
6/6

√
6/6

 ,


0

√
2/2

√
2/2


 .

Notice that while this is an orthonormal basis for R3, it is not the usual one. We will get

different orthonormal bases out of the end, depending on which vector we start with.

Example 6.38. Let V = P2(x) with the inner product given by ⟨f, g⟩ =
∫ 1

0
f(t)g(t) dt. (Note

this is a different inner product from the one we’ve been using!) Let’s form an orthonormal

basis from the set {1, x, x2}.
We set f1 = 1. We compute that

∥1∥2 = ⟨1, 1⟩ =
∫ 1

0

1 dx = 1

so this is already a unit vector; we set u1 = 1.

We take

f2 = x− ⟨1, x⟩
⟨1, 1⟩

(1) = x− 1

2
(1) = x− 1/2.

We compute

∥f2∥ =

√∫ 1

0

(x− 1/2)2 dx =
√
12 = 2

√
3
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so we set

u2 =
f2

∥f2∥
= 2

√
3(x− 1/2) =

√
3(2x− 1).

Finally, we have

f3 = x2 − ⟨1, x2⟩
⟨1, 1⟩

(1)− ⟨
√
3(2x− 1), x2⟩

⟨
√
3(2x− 1),

√
3(2x− 1)

√
3(2x− 1)

= x2 −
∫ 1

0

x2 dx(1)−
√
3

∫ 1

0

2x3 − x2 dx(
√
3(2x− 1))

= x2 − 1

3
− 1

2
(2x− 1) = x2 − x+

1

6
.

Then we compute

∥f3∥ =

√∫ 1

0

(x2 − x+ 1/6)2 dx =

√
1

180
=

1

6
√
5

u3 =
f3

∥f3∥
= 6

√
5x2 − 6

√
5x+

√
5.

Thus an orthonormal basis for P2(x) with this inner product is

{1,
√
3(2x− 1),

√
5(6x2 − 6x+ 1)}.

6.4 Orthogonal Subspaces

We have used orthogonality to give a vector space a particularly nice basis. We can also

break the vector space into two (or more) independent subspaces.

Definition 6.39. If V is an inner product space and U,W are subspaces, we say that U and

W are orthogonal and write U ⊥ W if ⟨u,w⟩ = 0 for every u ∈ U,w ∈ W .

If U ⊂ V , we define the orthogonal complement of U to be the set of all vectors perpen-

dicular to everything in U :

U⊥ = {v ∈ V : ⟨v,u⟩ = 0∀u ∈ U}.

Example 6.40. � In R2, the orthogonal complement of a line is a line. The orthogonal

complement to a set with two points in it is also a line.

� In R3, the orthogonal complement of a line is a plane, and the orthogonal complement

of a plane is a line.

Proposition 6.41. If U is a subset of V , then U⊥ is a subspace of V .
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Proof. (a) 0 is orthogonal to everything, and thus is in U⊥.

(b) Suppose v ∈ U⊥, and r ∈ R. Then for any u ∈ U we have ⟨rv,u⟩ = r⟨v,u⟩ = r ·0 = 0,

so rv ∈ U⊥ by definition.

(c) Suppose v,w ∈ U⊥, and let u ∈ U . Then

⟨v +w,u⟩ = ⟨v,u⟩+ ⟨w,u⟩ = 0 + 0 = 0.

Thus v +w is orthogonal to u for every u ∈ U , and so v +w ∈ U⊥.

Thus by the subspace theorem, U⊥ is a subspace of V .

Remark 6.42. We will usually consider cases where U is also a subspace of V , but this isn’t

necessary; nothing above assumes anything about the structure of U .

A basic thing we want to do is, given a subspace, find a basis for the subspace and for its

orthogonal complement. As with everything else, we can solve this problem by row-reducing

matrices.

Proposition 6.43. Let A be a matrix. Then ker(A) = (row(A))⊥.

Remark 6.44. In three dimensions, we can use this exact formula to find the normal vector

to a plane.

Proof. If ri are the rows of the matrix A, then

Ax =


r1 · x
...

rm · x


and thus x ∈ ker(A) precisely if x is orthogonal to every row of A. But if x is orthogonal

to every row vector of A, it is orthogonal to every linear combination of them, and thus is

orthogonal to their span, which is the rowspace.

Example 6.45. Suppose we want to find the orthogonal complement to U = span{(1, 4, 2), (1, 1, 1)}.
Then we write down the matrix

A =

[
1 4 2

1 1 1

]
→

[
1 1 1

0 3 1

]
→

[
1 0 2/3

0 3 1

]

so U⊥ = ker(A) = {(−2α,−α, 3α)} = span{(2, 1,−3)}. We can check that this is in fact

orthogonal to the original two vectors.
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There are a couple more useful facts we’d like to know about orthogonal complements,

which show that they relate spaces in useful ways.

Proposition 6.46. If U is a subspace of V and v ∈ V , then there exist unique vU ∈ U,vU⊥ ∈
U⊥ such that v = vU + vU⊥.

We say that this is an orthogonal decomposition of v.

Proof. Let E = {e1, . . . , en} be an orthogonal basis for U and F = {f1, . . . , fm} an orthogonal

basis for U⊥.

We claim that E ∪ F = {e1, . . . , en, f1, . . . , fm} is an orthogonal basis for V . It must be

orthogonal since E and F are orthogonal sets, and thus it is linearly independent. So we

need to show that it spans V .

Suppose v ∈ V , and consider the element

v′ = v −
n∑

i=1

projeiv.

This is an element of V , and by construction it is orthogonal to every ei and thus all of U ,

so v′ ∈ U⊥. Thus v′ ∈ span(F ) and so v ∈ span(E ∪ F ). Thus E ∪ F spans V .

Then every element of V can be expressed uniquely as a linear combination of elements

of E and F . This gives us a unique representation as a sum of an element of U and an

element of U⊥.

Corollary 6.47. dimU + dimU⊥ = dimV .

Example 6.48. Give the orthogonal decomposition of (3,−1, 2) with respect to the subspace

given by x− y + 2z = 0 and its complement.

We need to find an orthonormal basis for either x− y+2z = 0 or its orthogonal comple-

ment. But we can see that the normal vector to this plane is in the orthogonal complement,

so {(1,−1, 2)} is a basis for U⊥.

We project (3,−1, 2) onto span{(1,−1, 2)}. We have

proj(1,−1,2)


3

−1

2

 =
(3,−1, 2) · (1,−1, 2)

(1,−1, 2) · (1,−1, 2)


1

−1

2

 =
8

6


1

−1

2

 =


4/3

−4/3

8/3


So this is the projection into U⊥. The projection into U then is just what’s left over: it’s

3

−1

2

− proj(1,−1,2)


3

−1

2

 =


3− 4/3

−1 + 4/3

2− 8/3

 =


5/3

1/3

−2/3

 .
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(We check that this vector is in fact in the plane U). Then we have an orthogonal decom-

position: (3,−1, 2) = (5/3, 1/3,−2/3) + (4/3,−4/3, 8/3).

Example 6.49. Let V = R4 and let U = span{(1, 2, 3, 4), (2, 1,−1,−2)}. Find the orthog-

onal decomposition of (1, 1, 1, 1) into its components in U and U⊥.

We write a matrix

A =

[
1 2 3 4

2 1 −1 −2

]
→

[
3 0 −5 −8

0 3 7 10

]

so ker(A) = (5α + 8β,−7α− 10β, 3α, 3β) = span{(5,−7, 3, 0), (8,−10, 0, 3)}.
We need to find an orthogonal basis for either U or U⊥.We compute

f1 =


1

2

3

4



f2 =


2

1

−1

−2

− proj(1,2,3,4)


2

1

−1

−2

 =


2

1

−1

−2

− (2, 1,−1,−2) · (1, 2, 3, 4)
(1, 2, 3, 4) · (1, 2, 3, 4)


1

2

3

4



=


2

1

−1

−2

− −7

30


1

2

3

4

 =
1

30


67

44

−9

−32


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We compute

projf1


1

1

1

1

 =
(1, 2, 3, 4) · (1, 1, 1, 1)
(1, 2, 3, 4) · (1, 2, 3, 4)


1

2

3

4

 =
10

30


1

2

3

4

 =


1/3

2/3

1

4/3



projf2


1

1

1

1

 =
(1, 1, 1, 1) · (67, 44,−9,−32)

(67, 44,−9,−32) · (67, 44,−9,−32)


67

44

−9

−32

 =
70

7530


67

44

−9

−32

 =
7

753


67

44

−9

−32



1

1

1

1


U

=


1/3

2/3

1

4/3

+
7

753


67

44

−9

−32

 =
10

251


24

27

23

26



1

1

1

1


U⊥

=


1

1

1

1

−


1

1

1

1


U

=


1

1

1

1

− 10

251


24

27

23

26

 =
1

251


11

−19

21

−9

 .

Proposition 6.50. If U is a subspace of V , then (U⊥)⊥ = U .

Proof. If u ∈ U , then u is orthogonal to every w ∈ U⊥ by definition. So U ⊂ (U⊥)⊥.

Conversely, suppose w ∈ (U⊥)⊥. We can write w = wU +wU⊥ . Then w ∈ (U⊥)⊥ so we

know ⟨w,wU⊥⟩ = 0.

But ⟨w,wU⊥⟩ = ⟨wU⊥ ,wU⊥⟩ = 0 if and only if wU⊥ = 0. Thus wU⊥ = 0, and w = wU ∈
U .
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