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1 Fields

From calculus we should be used to working with the real numbers, which we denote R.
We’re used enough to them that we don’t really think about them a lot, honestly. But the

real numbers aren’t the only kind of numbers out there, and we want flexibility to consider

other kinds as well. So we want to describe the important properties of the real numbers

that we use frequently, and then see what else has those properties.

1.1 Introduction to Fields

Definition 1.1. Suppose F is a set with two binary operations, + and ×. We say F is a

field if it satisfies the following axioms:

1. (Closure) If x, y ∈ F then x+ y, xy ∈ F.

2. (Commutativity) x+ y = y + x and xy = yx for all x, y ∈ F.

3. (Associativity) (x+ y) + z = x+ (y + z) and (xy)z = x(yz) for all x, y, z ∈ F.

4. (Identities) There is an element 0 ∈ F such that x + 0 = x for all x ∈ F. There is an

element 1 ∈ F such that 1x = x for all x ∈ F.

5. (Inverses) For every x ∈ F there is a −x ∈ F such that x + (−x) = 0. For every

non-zero x ∈ F there is an element x−1 ∈ F such that xx−1 = 1.

6. (Distributivity) x(y + z) = xy + xz for all x, y, z ∈ F.

Remark 1.2. The real numbers, of course, have more properties than this—barely. The real

numbers are the unique complete ordered field. “Ordered” means that if we have two distinct

real numbers, we can say which one is bigger. “Complete” means that it’s good for doing

calculus. Neither of those properties will be important in this course very often, so we will

be able to do almost everything over “fields” in general.

Example 1.3. The set Q of rational numbers is a field. The sets R and C of real and

complex numbers are fields.

The set Z of integers is not a field, because it does not have multiplicative inverses. (We

call this set a ring).

The set N of natural numbers is not a field. It does not have multiplicative or additive

inverses.
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The set Z/nZ of integers modulo n is is a field if n is prime, and is not a field if n is

composite. We sometimes call these the finite fields Z/pZ or Fp. These may come up from

time to time in this course.

Example 1.4. Consider specifically the set F2 = Z/2Z = {0, 1}, the integers mod 2. We

have the operations

0 + 0 = 0 0 + 1 = 1 + 0 = 1 1 + 1 = 0

0× 0 = 0 0× 1 = 1× 0 = 0 1× 1 = 1.

We can check the field axioms and see this is a field.

Proposition 1.5. Let F be a field. For all a, b, c ∈ F, we have

1. (Cancellation of addition) If a+ b = a+ c, then b = c.

2. (Cancellation of multiplication) If a · b = a · c and a ̸= 0, then b = c.

3. a · 0 = 0.

4. (−a) · b = a · (−b) = −(a · b).

5. (−a) · (−b) = a · b.

But the two main examples we will see in this course are the real numbers and the complex

numbers. We’ll assume you’re familiar with the real numbers from calculus, so we won’t talk

to much more about their specific properties. But we do need to do a quick overview of the

complex numbers.

1.2 The complex numbers

Definition 1.6. A complex number is a number z = a + bi where a, b ∈ R. We say that

a = R(z) is the real part and b = I(z) is the imaginary part. The set of all complex numbers

is C = {a+ bi : a, binR}.

We can add complex numbers in the obvious way. We can also multiply them, once we

take the rule that i2 = −1.
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(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2

= ac+ adi+ bci+ bd(−1)

= (ac− bd) + (ad+ bc)i

Example 1.7. Let z = 3− i and w = π + 4i. Then z + w = 3 + pi+ 3i, and

zw = (3− i)(π + 4i) = 3π + 4 + (12− π)i.

We want to check that C is also a field, which means we need to check the six properties

in definition 1.1. We just showed that addition and multiplication are closed; most of the

properties are very easy to check, given that we know that the real numbers have those

properties.

Proposition 1.8 (Commutativity of complex numbers). If z, w ∈ C, then z + w = w + z

and zw = wz.

Proof. Let z = a+ bi and w = c+ di. Then

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

w + z = (c+ di) + (a+ bi) = (c+ a) + (d+ b)i

= (a+ c) + (b+ d)i by additive commutatitivity

Similarly,

zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

wz = (c+ di)(a+ bi) = (ca− db) + (cb+ da)i

= (ac− bd) + (bc+ ad)i by multiplicative commutativity

= (ac− bd) + (ad+ bc)i by additive commutativity.

The important thing to notice about this proof, as a matter of proof technique, is that

we don’t need to do anything weird and fancy, or special to the complex numbers, to check

these properties. We’re just using the fact that the complex numbers are made up of real

numbers, and we know the real numbers are a field. We’ll use this approach constantly

throughout the semester.
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But there’s one property that isn’t trivial: multiplicative inverses. How do we divide by

a complex number? We can start by defining a useful operation:

Definition 1.9. Let z = a + bi. Then the complex conjugate of z is the complex number

z = a− bi.

This complex conjugate has a number of useful properties, but the one we’re interested

in here is that

zz = (a+ bi)(a− bi) = a2 + b2 + (ab− ab)i = a2 + b2,

which is a real number. And we know how to divide by real numbers!

So if z = a+ bi ∈ C is not zero, then we can define a new number

w =
z

zz
=

a− bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

This is a complex number since a
a2+b2

, −b
a2+b2

∈ R, and we can check that

zw = (a+ bi)

(
a

a2 + b2
− b

a2 + b2
i

)
=

(
a2

a2 + b2
+

b2

a2 + b2

)
+

(
ab

a2 + b2
− ab

a2 + b2

)
i

=
a2 + b2

a2 + b2
+ 0i = 1 + 0i.

Example 1.10. We’ll still take z = 3− i and w = π + 4i. Then z = 3 + i, and

z−1 =
z

zz
=

3 + i

32 + 11
=

3

10
+

i

10
.

So we can compute

w

z
= (π + 4i)

(
3

10
+

i

10

)
=

3π

10
− 4

10
+

(
12

10
+

π

10

)
i

=
3π − 4

10
+

12− π

10
i.

Proposition 1.11 (Properties of the complex conjugate). Let z, w ∈ C. Then:

(a) z = z.

(b) z + w = z + w.
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(c) zw = z · w.

(d)
( z

w

)
=

z

w
if w ̸= 0.

(e) z is a real number if and only if z = z.

Proof. The proofs of (b) and (c) are in the book, so we’ll prove the other parts.

(a) Let z = a+ bi. Then z = a− bi and so z = a− (−b)i = a+ bi = z.

(d) Let z = a+ bi and w = c+ di where w ̸= 0. Then we can compute

( z

w

)
=

(
a+ bi

c+ di

)
=

(
(a+ bi)(c− di)

c2 + d2

)
=

(
ac+ bd

c2 + d2
+

−ad+ bc

c2 + d2
i

)
=

ac+ bd

c2 + d2
+

ad− bc

c2 + d2
i.

But we can also compute out the other side, and see

z

w
=

a− bi

c− di
=

(a− bi)(c+ di)

c2 + d2

=
(ac+ bd) + (ad− bc)i

c2 + d2
.

and so
( z

w

)
=

z

w
.

(e) If z is real, then z = a+ 0i for some c ∈ R. Then z = a− 0i = a+ 0i = z.

Conversely, suppose z = a + bi and z = z. We know that z = a − bi, so we have

a + bi = a − bi. This implies that bi = −bi and thus that b = −b, so b = 0. Thus

z = a+ 0i ∈ R.

One of the lenses this course will keep returning to is the idea of geometry, and a little

of that can help us right now. If we have a pair of real numbers, we can graph it on a plane,

using the first number for the horizontal coordinate and the second number for the vertical

coordinate. But a complex number z = a + bi is a pair of real numbers. And that means

that, just like we can think of the real numbers as forming a line:

we can think of the complex numbers as forming a plane:
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We’ll return to this geometric picture soon, but for right now I want to think about

distance. You can see each complex number implies a right triangle, so we can find the

distance from the origin 0 + 0i with the Pythagorean Theorem. If z = a+ bi the lengths of

these sides are just a and b, so we have

Definition 1.12. Let z = a+ bi where a, b ∈ R. The absolute value or modulus of z is

|z| =
√
a2 + b2.

Conveniently we can compute this in terms of more fundamental operations, because we

saw that z · z = a2 + b2. Thus |z| =
√
zz.

We can derive the following properties for the complex absolute value:

Proposition 1.13. Let z, w ∈ C. Then

(a) |zw| = |z| · |w|.

(b)
∣∣ z
w

∣∣ = |z|
|w| if w ̸= 0.

(c) |z + w| ≤ |z|+ |w| (Triangle Inequality).

(d) |z| − |w| ≤ |z + w| (Reverse Triangle Inequality).
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