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2 Vector Spaces

In this course we want to study “high-dimensional spaces” and “vectors”. That’s not very

specific, though, until we explain exactly what we mean by those things.

An important idea of this course is that it is helpful to study the same things from more

than one perspective; sometimes a question that is difficult from one perspective is easy from

another, so the ability to have multiple viewpoints and translate between them is extremely

useful.

In this course we will take three different perspectives, which I am calling “geometric”,

“algebraic”, and “formal”. The first involves spatial reasoning and pictures; the second

involves arithmetic and algebraic computations; the third involves formal definitions and

properties.

A common definition of a vector is “something that has size and direction.” This is a

geometric viewpoint, since it calls to mind a picture. We can also view it from an algebraic

point of view by giving it a set of coordinates. For instance, we can specify a two-dimensional

vector by giving a pair of real numbers (x, y), which tells us where the vector points from

the origin at (0, 0).

The formal perspective is the most abstract and sometimes the most confusing, but often

the most fruitful. This is the approach we took in section 1.1 when we defined a field: there,

we took the properties the real numbers satisfy, and looked for other types of numbers that

work the same way. Here we’re going to start with the “ordinary” types of vectors we see in

physics or in multivariable calculus, and abstract out their properties.

In the table below I have several concepts, and ways of thinking about them in each

perspective. It’s fine if you don’t know what some of these things mean, especially in the

“formal” column; if you knew all of this already you wouldn’t need to take this course.

Geometric Algebraic Formal

size and direction n-tuples vectors

consecutive motion pointwise addition vector addition

stretching, rotations, reflections matrices linear functions

number of independent directions number of coordinates dimension

plane system of linear equations subspace

angle dot product inner product

Length magnitude norm
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2.1 Motivation: Geometric Vectors

You should be familiar with the Cartesian plane from high school geometry. (It is named

after the French mathematician René Descartes, who is credited with inventing the idea of

putting numbered cordinates on the plane.)

As probably looks familiar from high school geometry, given two points A and B in the

plane, we can write
−→
AB for the vector with initial point A and terminal point B.

Since a vector is just a length and a direction, the vector is “the same” if both the initial

and terminal points are shifted by the same amount. If we fix an origin point O, then any

point A gives us a vector
−→
OA. Any vector can be shifted until its initial point is O, so each

vector corresponds to exactly one point. We call this standard position.

We represent points algebraically with pairs of real numbers, since points in the plane

are determined by two coordinates. We use R2 = {(x, y) : x, y ∈ R} to denote the set of

all ordered pairs of real numbers; thus R2 is an algebraic description of the Cartesian plane.

(We use R to denote the set of real numbers, and the superscript 2 tells us that we need two

of them). We define the origin O to be the “zero” point (0, 0).

Definition 2.1. If A = (x, y) is a point in R2, then we denote the vector
−→
OA by

[
x

y

]
.

We can do something very similar with threespace.

Definition 2.2. We define Euclidean threespace to be the three-dimensional space described

by three real coordinates. We notate it R3. The point (0, 0, 0) is called the origin and often

notated O.

If A = (x, y, z) is a point, then the vector
−→
OA is denoted


x

y

z

 .

There are two operations we can do on these vectors:

1. We can add two vectors together. Geometrically, this corresponds to following one

vector and then the other; you can picture this as laying them tip-to-tail. Algebraically,

we just add the coordinates.

2. We can multiply a vector by a scalar. Geometrically corresponds to stretching a vector

by some factor. Algebraically we just multiply each coordinate by the scalar.
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Example 2.3. Let v =


1

2

3

 and w =


4

−2

3

 . Then

v +w =


5

0

6

 , 3 · v =


3

6

9

 , and (−2) ·w =


−8

4

−6

 .
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2.2 An Algebraic Generalization

There are two straightforward ways we can generalize our Cartesian space R3. The most

obvious is just to replace the 3 with a 4, or a 5, or a 6. If R2 is ordered pairs of real numbers,

and R3 is ordered triples, then Rn is ordered n-tuples.
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Definition 2.4. We define real n-dimensional space to be the set of n-tuples of real numbers,

Rn = {(x1, x2, . . . , xn) : xi ∈ R}.
By “abuse of notation” we will also use Rn to refer to the set of vectors in Rn. We define

scalar multiplication and vector addition by

r ·


x1

x2

...

xn

 =


rx1

rx2

...

rxn




x1

x2

...

xn

+


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

Example 2.5. Let v =


1

3

2

4

 and w =


5

−1

2

8

 be vectors in R4. Then

v +w =


1

3

2

4

+


5

−1

2

8

 =


6

2

4

12

 , −3 · v =


−3

−9

−6

−12

 .

The other way we can generalize this is to not work over the real numbers. The real

numbers are a good model for every-day geometry, so we started there. But algebraically we

could do all of these same operations with any other field.

Definition 2.6. Let F be any field. Then Fn = {(x1, x2, . . . , xn) : xi ∈ F} is the set of

ordered n-ples over F. We then define scalar multiplication and vector addition by

r ·


x1

x2

...

xn

 =


rx1

rx2

...

rxn




x1

x2

...

xn

+


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

Notice that definition 2.6is exactly the same as definition 2.4, except we don’t specify

what the field is.

Example 2.7. Let v = (3 + i, 1, 2i) and w = (2, 5i, 4− 2i) be vectors in C3. Then

v +w = (5 + i, 1 + 5i, 4)

(2− i)v = (7− i, 2− i, 2 + 4i).

Notice that the scalar is a complex number, because we’re working over C.
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Example 2.8. Let v = (1, 2, 3) and w = (3, 4, 1) be vectors in F5. Then

v +w = (4, 1, 4)

2v = (2, 4, 1).

Our scalar is indeed an element of F5, and all the arithmetic is being done mod 5.

2.3 Defining Vector Spaces

We want to figure out what properties we’re actually using to work with these sets of vectors.

Obviously, we have a set of vectors, and a set of scalars; and we have two operations, addition

and scalar multiplication. These operations also behave “nicely”, following all of the rules

in this long and tedious definition:

Definition 2.9. Let F be a field, and V be a set, together with two operations:

� A vector addition which allows you to add two elements of V and get a new element

of V . If v,w ∈ V then the sum is denoted v +w and must also be an element of V .

� A scalar multiplication which allows you to multiply an element of V by a “scalar”

element of F and get a new element of V . If a ∈ F and v ∈ V then the scalar multiple

is denoted a · v and must also be an element of V .

Further, suppose the following axioms hold for any u,v,w ∈ V , and any a, b ∈ F:

1. (Closure under addition) u+ v ∈ V

2. (Closure under scalar multiplication) au ∈ V

3. (Additive commutativity) u+ v = v + u

4. (Additive associativity) (u+ v) +w = u+ (v +w)

5. (Additive identity) There is an element 0 ∈ V called the “zero vector”, such that

u+ 0 = u for every u.

6. (Additive inverses) For each u ∈ V there is another element −u ∈ V such that u +

(−u) = 0.

7. (Distributivity) a(u+ v) = au+ av

8. (Distributivity) (a+ b)u = au+ bu
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9. (Multiplicative associativity) a(bu) = (ab)u

10. (Multiplicative Identity) 1u = u.

Then we say V is a Vector Space over F, and we call its elements vectors.

Remark 2.10. Technically, those first two axioms are superfluous; if you can add two elements,

you can add two elements and also get something. But they still need to be true: if adding

two vectors doesn’t give you another vector, you don’t have a vector space. And we have to

check them to make sure our vector space definition makes sense.

Example 2.11. Fn is a vector space, with the previously defined vector addition and scalar

multiplication. We check:

Let u = (u1, . . . , un).v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Fn, r, s ∈ F. Then, knowing
the usual rules of commutativity and associativity of basic arithmetic, we can compute:

1. u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) ∈ Fn.

2.

ru = r(u1, . . . , un) = (ru1, . . . , run) ∈ F.

3.

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

= (v1 + u1, . . . , vn + un) = (v1, . . . , vn) + (u1, . . . , un) = v + u

4.

(u+ v) +w = (u1 + v1, . . . , un + vn) + (w1, . . . , wn) = (v1 + u1 + w1, . . . , vn + un + wn)

= (v1, . . . , vn) + (u1 + w1, . . . , un + wn) = v + (u+w)

5. We have 0 = (0, . . . , 0). Then

0+ v = (0 + v1, . . . , 0 + vn) = (v1, . . . , vn) = v.

6. Set −u = (−u1, . . . ,−un). Then

u+ (−u) = (u1 + (−u1), . . . , un + (−un)) = (0, . . . , 0) = 0.
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7.

r(u+ v) = r(u1 + v1, . . . , un + vn) = (r(u1 + v1), . . . , r(un + vn))

= (ru1 + rv1, . . . , run + rvn) = (ru1, . . . , run) + (rv1, . . . , rvn) = ru+ rv.

8.

(r + s)u = (r + s)(u1, . . . , un) = ((r + s)u1, . . . , (r + s)un)

= (ru1 + su1, . . . , run + sun) = (ru1, . . . , run) + (su1, . . . , sun) = ru+ su.

9.

r(su) = r(su1, . . . , sun) = (rsu1, . . . , rsun) = rs(u1, . . . , un).

10.

1u = 1(u1, . . . , un) = (1 · u1, . . . , 1 · un) = (u1, . . . , un) = u.

So what else is a vector space and “looks like Rn”? The most important example in this

course will be matrices.

Definition 2.12. A matrix over a field F is a rectangular array of elements of F. A matrix

with m rows and n columns is a m × n matrix, and we notate the set of all such matrices

by Mm×n(F), or just Mm×n if the field is clear from context. .

A m× n matrix is square if m = n, that is, it has the same number of rows as columns.

We will sometimes represent the set of n× n square matrices by Mn.

We will generally describe the elements of a matrix with the notation

(aij) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .

We can define operations on these matrices:

� If A = (aij) is an m × n matrix over a field F, and r ∈ F, then we can multiply each

entry of the matrix A by the r. This is called scalar multiplication and we say that r

is a scalar.

rA = (raij) =


ra11 ra12 . . . ra1n

ra21 ra22 . . . ra2n
...

...
. . .

...

ram1 ram2 . . . ramn

 .
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� If A = (aij) and B = (bij) are two m× n matrices over a field F, we can add the two

matrices by adding each individual pair of coordinates together.

A+B = (aij + bij) =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Example 2.13. The set Mm×n(F) of m × n matrices is a vector space under the addition

and scalar multiplication defined above, with zero vector given by

0 = (0) =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 .

I’m not going to prove this, but you can see that it should be true for the same reason

FRmn is a vector space: they’re both just lists of numbers, but one is arranged in a column

and the other in a rectangle. The operations are the same.

Example 2.14. Pick a field F, and let PF(x) = {a0 + a1x + · · · + anx
n : n ∈ N, ai ∈ F} be

the set of polynomials with coefficients in F. Define addition by

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n

and define scalar multiplication by

r(a0 + a1x+ · · ·+ anx
n) = ra0 + ra1x+ · · ·+ ranx

n.

Then PF(x) is a vector space.

Example 2.15. Fix a field F, and let S be the space of all doubly infinite sequences

{yk} = {. . . , y−2, y−1, y0, y1, y2, · · · : yi ∈ F}. We call this the space of (discrete) signals :

it represents a sequence of measurements taken at regular time intervals. These sorts of

regular measurements are common in engineering and digital information applications (such

as digital music).

We define addition and scalar multiplication on the space of signals componentwise, so

that

{. . . , x−1, x0, x1, . . . }+ {. . . , y−1, y0, y1, . . . } = {. . . x−1 + y−1, x0 + y0, x1 + y1, . . . }
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and

r{. . . , y−1, y0, y1, . . . } = {. . . , ry−1, ry0, ry1, . . . }.

(In essence, S is composed of vectors that are infinitely long in both directions). Then S is

a vector space.

Example 2.16. Let F(R,R) = F be the set of functions from R to R—that is, functions

that take in a real number and return a real number, the vanilla functions of single-variable

calculus. Define addition by (f + g)(x) = f(x) + g(x) and define scalar multiplication by

(rf)(x) = r · f(x). Then F is a vector space. You will prove this is a vector space in your

homework.

Example 2.17. The integers Z are not a vector space (under the usual definitions of addition

and multiplication). For instance, 1 ∈ Z but .5 · 1 = .5 ̸∈ Z.
(We only need to find one axiom that doesn’t hold to show that a set is not a vector

space, since a vector space must satisfy all the axioms).

Example 2.18. The closed interval [0, 5] is not a vector space (under the usual operations)

, since 3, 4 ∈ [0, 5] but 3 + 4 = 7 ̸∈ [0, 5].

Example 2.19. Let V = R with scalar multiplication given by r ·x = rx and addition given

by x⊕ y = 2x+ y. Then V is not a vector space, since x⊕ y = 2x+ y ̸= 2y + x = y ⊕ x; in

particular, we see that 3⊕ 5 = 11 but 5⊕ 3 = 13.

There are many more examples of vector spaces, but as you can see it’s fairly tedious to

prove that any particular thing is a vector space. In section 2.4 we’ll develop a much easier

way to establish that something is a vector space, so we won’t develop any more examples

now.

2.3.1 Properties of Vector Spaces

The great thing about the formal approach is that we can show that anything that satisfies

the axioms of a vector space must aso follow some other rules. We’ll establish a few of those

rules here, though of course, there’s a sense in which the entire rest of this course will be

spent establishing those rules.

As before, you shouldn’t think of these rules as new facts; all of them are “obvious”. The

point is that if we get the list of properties from definition 2.9, then all of these other things

still have to occur. It’s a guarantee that vector spaces behave how we expect—that they all

do behave like Fn, or indeed like R3, in all the ways we will expect.
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Proposition 2.20 (Cancellation). Let V be a vector space and suppose u,v,w ∈ V are

vectors. If u+w = v +w, then u = v.

Remark 2.21. We stated this law for fields earlier; now we’re also claiming it holds for vector

spaces. But the proof is essentially the same in both cases. (This is the shadow of something

called “universal algebra”; there are many other algebraic structures we could define, which

will all have this same cancellation law for the same reason.)

Proof. By axiom we know that w has an additive inverse −w. Then we have

u+w = v +w

(u+w) + (−w) = (v +w) + (−w)

u+ (w + (−w)) = v + (w + (−w)) Additive associativity

u+ 0 = v + 0 Additive inverses

u = v Additive identity.

Proposition 2.22. The additive inverse −v of a vector v is unique. That is, if v+ u = 0,

then u = −v.

Proof. Suppose v + u = 0. By the additive inverses property we know that v + (−v) = 0,

and thus v + u = v + (−v). By cancellation we have u = −v.

Remark 2.23. In our axioms we asserted that every vector has an inverse, but didn’t require

that there be only one.

Proposition 2.24. Suppose V is a vector space with u ∈ V a vector and r ∈ R a scalar.

Then:

1. 0u = 0

2. r0 = 0

3. (−1)u = −u.

Remark 2.25. We would actually be pretty sad if any of those statements were false, since it

would make our notation look very strange. (Especially the last statement). The fact that

these statements are true justifies us using the notation we use.
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Proof. 1.

u = 1 · u = (0 + 1)u Multiplicative identity

= 0u+ 1u Distributivity

= 0u+ u Multiplicative identity

0+ u = 0u+ u Additive identity

0 = 0u Cancellation

2. We know that 0 = 0+0 by additive identity, so r0 = r(0+0) = r0+r0 by distributivity.

Then we have

0+ r0 = r0+ r0 additive identity

0 = r0 cancellation.

3. We have

v + (−1)v = 11+ (−1)v multiplicative inverses

= (1 + (−1))v distributivity

= 0v = 0.

Then by uniqueness of additive inverses, we have (−1)v = −v.

Example 2.26. We’ll give one last example of a vector space, which is both important and

silly.

We define the zero vector space to be the set {0} with addition given by 0+ 0 = 0 and

scalar multiplication given by r · 0 = 0. It’s easy to check that this is in fact a vector space.

Notice that we didn’t ask what “kind” of object this is; we just said it has the zero vector

and nothing else. As such, this could be the zero vector of any vector space at all. In section

2.4 we will talk about vector spaces that fit inside other vector spaces, like this one.

2.4 Vector Space Subspaces

Our very first two examples of a vector space were the Cartesian plane and Euclidean three-

space. But we see that while we can think of them as totally distinct vector spaces, the plane

sits inside threespace, as a subset. In fact it sits inside it in a number of different ways; we

can start by taking the xy plane, the xz plane, or the yz plane.
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Definition 2.27. Let V be a vector space. A subset W ⊆ V is a subspace of V if W is also

a vector space with the same operations as V .

Example 2.28. The Cartesian plane R2 is a subset of threespace R3. Similarly the line R1

is a subset of the plane R2. (And we can stack this up as high as we want; R7 ⊆ R8.

In general, if n < m then Fn is a subspace of Fm.

Example 2.29.

Example 2.30. Let V = R3 and let W = {(x, y, x + y) ∈ R3}. Geometrically, this is a

plane (given by z = x + y). We could in fact write W = {(x, y, z) : z = x + y}; this is a

more useful way to write it for multivariable calculus, but less useful for lienar algebra. W

is certainly a subset of V , so we just need to figure out if W is a subspace.

We could do this by checking all ten axioms, but that would take a very long time; we

want a better tool. And it seems like we should be able to avoid a lot of that work since we

already know many of the axioms hold in R3.

In fact, one major reason to care about subspaces is that it allows us to avoid a lot of

work. If W ⊆ V , it seems like most of the vector space axioms should hold automatically.

After all, if elements of V add commutatively, and elements of W are in V , then the elements

of W must add commutatively. And in fact there’s very little we have to check.

Proposition 2.31. Let V be a vector space over a field F and W ⊆ V . Then W is a subspace

of V if and only if the following three “subspace” conditions hold:

1. 0 ∈ W (zero vector);

2. Whenever u,v ∈ W then u+ v ∈ W (Closed under addition); and

3. Whenever r ∈ F and u ∈ W then ru ∈ W (Closed under scalar multiplication).

Proof. Suppose W is a subspace of V . Then W is a vector space, so it contains a zero vector

and is closed under addition and multiplication by the definition of vector spaces.

Conversely, suppose W ⊆ V and the three subspace conditions hold. We need to check

the ten axioms of a vector space. But most of these properties are inherited from the fact

that any element of W is also an element of V , and W has the same operations as V . The

only really non-trivial one is that the additive inverse exists.

Let u,v,w ∈ W (and thus u,v,w ∈ V ), and r, s ∈ F.

1. W is closed under addition by hypothesis.
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2. W is closed under scalar multiplication by hypothesis.

3. u+ v = v + u since V is a vector space.

4. (u+ v) +w = u+ (v +w) since V is a vector space.

5. 0 ∈ W by hypothesis, and u+ 0 = u since V is a vector space.

6. −u = (−1)u ∈ W by closure under scalar multiplication.

7. r(u+ v) = ru+ rv since V is a vector space.

8. (r + s)u = ru+ su since V is a vector space.

9. (rs)u = r(su) since V is a vector space.

10. 1u = u since V is a vector space.

Thus W satisfies the axioms of a vector space, and is itself a vector space.

Example 2.32 (Continued). Let’s continute to take V = R3 and W = {(x, y, x+ y) ∈ R3}.
To show that W is a subspace of V we only need to check three things.

If (x1, y1, x1 + y1), (x2, y2, x2 + y2) ∈ W then
x1

y1

x1 + y1

+


x2

y2

x2 + y2

 =


x1 + x2

y1 + y2

(x1 + x2) + (y1 + y2)

 ∈ W.

If r ∈ R, then

r


x

y

x+ y

 =


rx

ry

(rx) + (ry)

 ∈ W.

And the zero vector is 
0

0

0

 =


0

0

0 + 0

 ∈ W.

Thus W is a subspace of V .

Example 2.33. If V is a vector space, then 0 and V are both subspaces of V . We don’t

actually need to check anything here, since both are clearly subsets of V , and both are

already known to be vector spaces.

(When we want to ignore this possibility we will refer to “proper” or “nontrivial” sub-

spaces, which are neither the trivial space nor the entire space).
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Example 2.34. Let V = R2 and let W = {(x, x2)} = {(x, y) : y = x2} ⊆ V . Then W is not

a subspace.

W does in fact contain the zero vector (0, 0) = (0, 02). But we see that (1, 1) ∈ W , and

(1, 1) + (1, 1) = (2, 2) ̸∈ W . Thus W is not a subspace.

Example 2.35. Let V = F2
3 and let W = {(0, 0), (1, 2), (2, 1)} ⊂ V . Is W a subspace?

It’s easy to see that 0 = (0, 0) ∈ W . We just need to check it’s closed under addition

and scalar multiplication.

It’s a little hard to check this without just testing elements. But we compute:

(0, 0) + (0, 0) = (0, 0) ∈ W (0, 0) + (1, 2) = (1, 2) ∈ W

(0, 0) + (2, 1) = (2, 1) ∈ W (1, 2) + (1, 2) = (2, 1) ∈ W

(1, 2) + (2, 1) = (0, 0) ∈ W (2, 1) + (2, 1) = (1, 2) ∈ W.

And similarly

0 · (0, 0) = (0, 0) ∈ W 0 · (1, 2) = (0, 0) ∈ W 0 · (2, 1) = (0, 0) ∈ W

1 · (0, 0) = (0, 0) ∈ W 1 · (1, 2) = (1, 2) ∈ W 1 · (2, 1) = (2, 1) ∈ W

2 · (0, 0) = (0, 0) ∈ W 2 · (1, 2) = (2, 1) ∈ W 2 · (2, 1) = (1, 2) ∈ W

So W is closed under addition and scalar multiplication, so it’s a subspace.

Example 2.36. Let V = P(x) and let W = {a1x + · · · + anx
n} = xP(x) be the set of

polynomials with zero constant term. Is W a subspace of V ?

1. The zero polynomial 0 + 0x+ · · ·+ 0xn = 0 certainly has zero constant term, so is in

W .

2. If a1x+ · · ·+ anx
n and b1x+ · · ·+ bnx

n ∈ W , then

(a1x+ · · ·+ anx
n) + (b1x+ · · ·+ bnx

n) = (a1 + b1)x+ · · ·+ (an + bn)x
n ∈ W.

Alternatively, we can say that if we add two polynomials with zero constant term, their

sum will have zero constant term.

3. If r ∈ R and a1x+ · · ·+ anx
n ∈ W , then

r (a1x+ · · ·+ anx
n) = (ra1)x+ · · ·+ (ran)x

n

has zero constant term and is in W .
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Thus W is a subspace of V .

Example 2.37. Let V = P(x) and let W = {a0 + a1x} be the space of linear polynomials.

Then W is a subspace of V .

1. The zero polynomial 0 + 0x ∈ W .

2. If a0 + a1x, b0 + b1x ∈ W , then (a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x ∈ W .

3. If r ∈ R and a0 + a1x ∈ W , then r(a0 + a1x) = ra0 + (ra1)x ∈ W .

Example 2.38. Let V = P(x) and let W = {1 + ax} be the space of linear polynomials

with constant term 1. Is W a subspace of V ?

No, because 0 = 0 + 0x ̸∈ W .

Exercise 2.39. Fix a natural number n ≥ 0. Let V = P(x) and let W = Pn(x) = {a0 +
a1x+ · · ·+ anx

n} be the set of polynomials with degree at most n. Then Pn(x) is a subspace

of P(x).

Example 2.40. Let V = F(R,R) be the space of functions of one real variable, and let

W = D(R,R) be the space of differentiable functions from R to R. Is W a subspace of V ?

1. The zero function is differentiable, so the zero vector is in W .

2. From calculus we know that the derivative of the sums is the sum of the derivatives; thus

the sum of differentiable functions is differentiable. That is, (f+g)′(x) = f ′(x)+g′(x).

So if f, g ∈ W , then f and g are differentiable, and thus f +g is differentiable and thus

in W .

3. Again we know that (rf)′(x) = rf ′(x). If f is in W , then f is differentiable. Thus rf

is differentiable and therefore in W .

Example 2.41. Let V = F(R,R) and let W = F([a, b],R) be the space of functions from

the closed interval [a, b] to R. We can view W as a subset of V by, say, looking at all the

functions that are zero outside of [a, b]. Is W a subspace of V ?

1. The zero function is in W .

2. If f and g are functions from [a, b] → R, then (f + g) is as well.

3. If f is a function from [a, b] → R, then rf is as well.
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Example 2.42. Let V = F(R, R). Then C(R,R) the space of continuous real-valued func-

tions is a subspace of V . So iare D(R,R) the space of differentiable functions and C∞(R,R)
the space of infinitely differentiable functions.

Example 2.43. Let V = F(R, R) and let W = {f : f(x) = f(−x)∀x ∈ R} be the set of even

real-valued functions, the functions that are symmetric around 0. Then W is a subspace of

V .

Example 2.44. Let V = F(R,R) and let W = F(R, [a, b]) be the space of functions from R
to the closed interval [a, b]. Is W a subspace of V ?

No! The simplest condition to check is scalar multiplication. Let f(x) = b be a function

in V . Let r = (b+ 1)/b. Then (rf)(x) = fb = b+ 1 and thus rf ̸∈ W .

Example 2.45. Let V = S be the space of signals, and let W be the space of signals that are

eventually zero. That is, W = {{yk} : ∃n such that ym = 0∀m > n}. Then W is a subspace

of V .

The space {{yk} : y0 = 0} is a subspace of V . But the space {{yk} : y0 = 1} is not.

Theorem 2.46. Any intersection of subspaces of a vector space V is a subspace of V .

Proof. Let C be any collection of subspaces of V (there might be two, or three, or infinitely

many subspaces in C). Let W be the intersection of all subspaces in C.

Since every subspace contains 0, therefore, zero ∈ W . Now let a ∈ F and x, y ∈ W . Since

x and y are in the intersection of every subspace of C, they are contained in each subspace

in C. Because each subspace is closed under addition, therefore x + y is contained in each

subspace in C and so x+ y ∈ W .

Similarly, each subspace in C is closed under scalar multiplication, so each subspace

contains ax. Hence ax ∈ W . Since W contains zero and is closed under addition and scalar

multiplication, by our subspace theorem, W is a subspace of V .

2.5 Linear Combinations and Linear Equations

We have defined many vector spaces, but we started by looking at Rn, which is much easier

to think about. One of the nicest and most helpful things about Rn is the existence of

coordinates. Rather than, say, just drawing a point on a graph, or perhaps giving an angle

and a distance, we can specify a point in R3 by giving its x-coordinate, its y-coordinate, and

its z-coordinate. And similarly, we can specify a point in R7 by specifying seven real-number

coordinates.
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In contrast, it’s not really clear what it means to talk about coordinates for F(R,R). But
if we had coordinates there, it would make our life much easier. (In particular, physicists

often want to talk about subspaces of F(R,R) and then put coordinates on them and treat

them like Rn). So we would like to find a way to put coordinates on any vector space V .

There are a few ideas that will mix in here, but the first one is that coordinate let us

express a vector as a sum of simple vectors. If I have a vector (1, 3, 2), one way I can think

of this is 
1

3

2

 = 1 ·


1

0

0

+ 3 ·


0

1

0

+


0

0

1

 .

Definition 2.47. If V is a vector space S = {v1,v2, . . . ,vn} is a list of vectors in V , then

a linear combination of of the vectors in S is a vector of the form
n∑

i=1

aivi = a1v1 + a2v2 + · · ·+ anvn

where ai ∈ R are (real number) scalars.

A linear combination of vectors in V will always itself be an element of V , since V is

closed under scalar multiplication and under vector addition.

Geometrically, a linear combination of vectors represents some destination you can reach

only going in the directions of your chosen vectors (for any distance. So if I can go north or

west, any distance“northwest” will be a linear combination of those vectors. And “southeast”

will as well, since we can always go in the “opposite” direction. But “up” will not be.

Remark 2.48. This is a “linear” combination because it combines the vectors in the same

way a line or plane does—adding all the vectors together, but with some coefficient. We will

revisit this terminology in the next section when we discuss linear functions.

It’s totally possible to have a linear combination of infinitely many vectors. But studying

these requires some sense of convergence, and thus calculus/analysis. So we won’t talk about

it in this class, except for the occasional aside.

Example 2.49. Here is a table of the number of grams of protein, fats, and carbohydrates

in 10g portions of certain foods (rounded to give us easier numbers):1

Food (10g) Protein (g) Fats (g) Carbs (g)

ground beef 4 4 0

lentils 2 1 3

rice (brown) 1 0 5

cauliflower 1 0 1
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We could record each different food as a vector in R3. So we have

g =


4

4

0

 , ℓ =


2

1

3

 , r =


1

0

5

 , c =


1

0

1

 .

Then if we prepare a meal consisting of 100g of ground beef, 150g of rice, and 200g of

cauliflower, the macronutrient content is the linear combination

10g + 15r + 20c = 10


4

4

0

+ 15


1

0

5

+ 20


1

0

1

 =


75

40

95

 .

A very reasonable question to ask here is: if we have a fixed vector b, and a set of vectors

u1,u2, . . . ,un, can we express b as a linear combination of the other vectors?

Example 2.50. Can we write (1, 3, 2) as a linear combination of (1, 0, 0) and (1, 1, 1)?

In this case it’s pretty easy to see that we can’t, because any linear combination of these

two vectors would have the same second and third coordinate. In other words, if we had
1

3

2

 = a


1

0

0

+ b


1

1

1



=


a+ b

b

b


which implies 3 = b = 2.

Example 2.51. Is it possible to prepare a meal using the four ingredients if we want to get

exactly 70g of protein, 30g of fat, and 40g of carbs? This is asking if the vector (70, 30, 40)

is a linear combination of the vectors g, ℓ, r, c.

In other words, we must determine if there are scalars a1, a2, a3, a4 such that
70

30

40

 = a1


4

4

0

+ a2


2

1

3

+ a3


1

0

5

+ a4


1

0

1



=


4a1 + 2a2 + a3 + a4

4a1 + a2

3a2 + 5a3 + a4
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And that means we need to solve the following system of linear equations :

4a1 + 2a2 + a3 + a4 = 70

4a1 + a2 = 30

3a2 + 5a3 + a4 = 40.

Definition 2.52. A system of linear equations is a system of the form

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

with the aij and bis all real numbers. We say this is a system of m equations in n unknowns.

Importantly, these equations are restricted to be relatively simple. In each equation

we multiply each variable by some constant real number, add them together, and set that

equal to some constant real number. We aren’t allowed to multiply variables together, or

do anything else fancy with them. This means the equations can’t get too complicated, and

are relatively easy to work with.

Thus our question about vectors became a question about linear equations. (Or maybe

originally our question about linear equations became a question about vectors; they’re two

ways of seeing the same thing. As the course develops we’ll see a few other ways we can

think of the same questions.)

There are a few ways to approach solving systems of equations like this. One is by

substitution: solve for one variable in terms of the other variables, and substitute into

another equation. But this gets quite cumbersome. A better way is to add copies of one

equation to another.

Example 2.53 (Continued). We have the system of equations

4a1 + 2a2 + a3 + a4 = 70

4a1 + a2 = 30

3a2 + 5a3 + a4 = 40.

We can eliminate the a1 terms from all but the first equation by subtracting the first

equation from the second, giving:
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4a1 + 2a2 + a3 + a4 = 70

− a2 − a3 − a4 = −40

3a2 + 5a3 + a4 = 40.

We might flip the second equation to make it easier to look at:

4a1 + 2a2 + a3 + a4 = 70

a2 + a3 + a4 = 40

3a2 + 5a3 + a4 = 40.

Now we can get rid of most of the a2 terms. We subtract 2 times the second equation from

the first and 3 times the second equation from the third to obtain

4a1 − a3 − a4 = −10

a2 + a3 + a4 = 40

2a3 − 2a4 = −80.

Divide the third equation by 2 (or multiply by 1/2) to get

3a1 − a3 − a4 = −10

a2 + a3 + a4 = 40

a3 − a4 = −40.

Then add it to the first equation and subtract it from the second equation to yield

4a1 − 2a4 = −50

a2 + 2a4 = 80

a3 − a4 = −40.

And now we still have a system of three equations in four unknowns. But it should be clear

now that if we pick any real number for a4, that will give us exactly one solution to the

whole system:

(
−50 + 2a4

4
, 80− 2a4,−40 + a4, a4

)
=

(
−25 + a4

2
, 80− 2a4,−40 + a4, a4

)
.

We want a general approach to solving these equations. We say that two systems of

equations are equivalent if they have the same set of solutions. Thus the process of solving a
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system of equations is mostly the process of converting a system into an equivalent system

that is simpler.

There are three basic operations we can perform on a system of equations to get an

equivalent system:

1. We can write the equations in a different order.

2. We can multiply any equation by a nonzero scalar.

3. We can add a multiple of one equation to another.

All three of these operations are guaranteed not to change the solution set; proving this is a

reasonable exercise. Our goal now is to find an efficient way to use these rules to get a useful

solution to our system.

But, it’s possible for us to be lazy about this by encoding our system in a matrix.

Right now, we will just use this as a convenient notational shortcut; we will see later on

in the course that this has a number of theoretical and practical advantages.

Definition 2.54. The coefficient matrix of a system of linear equations given by

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

is the matrix 
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


and the augmented coefficient matrix is

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm

 .
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Example 2.55. Suppose we have a system

4x+ 2y + 2z = 8

3x+ 2y + z = 6.

Then the coefficient matrix is [
4 2 2

3 2 1

]
and the augmented coefficient matrix is[

4 2 2 8

3 2 1 6.

]

Earlier we listed three operations we can perform on a system of equations without

changing the solution set: we can reorder the equations, multiply an equation by a nonzero

scalar, or add a multiple of one equation to another. We can do analogous things to the

coefficient matrix.

Definition 2.56. The three elementary row operations on a matrix are

I Interchange two rows.

II Multiply a row by a nonzero real number.

III Replace a row by its sum with a multiple of another row.

Example 2.57. What can we do with our previous matrix? We can[
4 2 2

3 2 1

]
I→

[
3 2 1

4 2 2

]
II→

[
3 2 1

2 1 1

]
III→

[
1 1 0

2 1 1

]
.

So how do we use this to solve a system of equations? The basic idea is to remove variables

from successive equations until we get one equation that contains only one variable—at which

point we can substitute for that variable, and then the others. To do that with this matrix,

we have[
4 2 2 8

3 2 1 6

]
III→

[
1 0 1 2

3 2 1 6

]
III→

[
1 0 1 2

0 2 −2 0

]
II→

[
1 0 1 2

0 1 −1 0

]
.
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What does this tell us? That our system of equations is equivalent to the system

x+ z = 2

y − z = 0.

This gives us the answer: z = 2− x and y = z = 2− x. So the set of solutions is the set of

triples {(x, 2− x, 2− x)}.

Example 2.58. In P3(R), we claim that the polynomial

f = 2x3 − 2x2 + 12x− 6

is a linear combination of the polynomials

g1 = x3 − 2x2 − 5x− 3 and g2 = 3x3 − 5x2 − 4x− 9

but that the polynomial

h = 3x3 − 2x2 + 7x+ 8

is not.

To show that f is a linear combination of g1 and g2, we need to find scalars a1, a2 ∈ R
such that f = a1g1 + a2g2, that is

2x3 − 2x2 + 12x− 6 = a1(x
3 − 2x2 − 5x− 3) + a2(3x

3 − 5x2 − 4x− 9)

= (a1 + 3a2)x
3 + (−2a1 − 5a2)x

2 + (−5a1 − 4a2)x+ (−3a1 − 9a2).

Therefore, we want to solve the following system of linear equations for a1 and a2:

a1 + 3a2 = 2

−2a1 − 5a2 = −2

−5a1 − 4a2 = 12

−3a1 − 9a2 = −6.

We write this as a matrix:
1 3 2

−2 −5 −2

−5 −4 12

−3 −9 −6

 →


1 3 2

0 1 2

0 11 22

0 0 0

 →


1 0 −4

0 1 2

0 0 0

0 0 0
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which corresponds to the system

a1 = −4

a2 = 2

0 = 0

0 = 0

and thus we have a single solution. And indeed we can verify that f = −4g1 + 2g2.

Now let’s show that h is not a linear combination of g1 and g2? If it were, then there

would be scalars a1, a2 ∈ R such that

3x3 − 2x2 + 7x+ 8 = a1(x
3 − 2x2 − 5x− 3) + a2(3x

3 − 5x2 − 4x− 9)

= (a1 + 3a2)x
3 + (−2a1 − 5a2)x

2 + (−5a1 − 4a2)x+ (−3a1 − 9a2).

In other words, there would be a solution to the following system:

a1 + 3a2 = 3

−2a1 − 5a2 = −2

−5a1 − 4a2 = 7

−3a1 − 9a2 = 8.

This becomes the matrix 
1 3 3

−2 −5 −2

−5 −4 7

−3 −9 8

 →


1 3 3

0 1 4

0 11 22

0 0 17


and we can already see this system will have no solutions, because the fourth line gives us

0 = 17, which is false.

Definition 2.59. A matrix is in row echelon form if

� Every row containing nonzero elements is above every row containing only zeroes; and

� The first (leftmost) nonzero entry of each row is to the right of the first nonzero entry

of the above row.

Remark 2.60. Some people require the first nonzero entry in each nonzero row to be 1. This

is really a matter of taste and doesn’t matter much, but you should do it to be safe; it’s an

easy extra step to take by simply dividing each row by its leading coefficient.
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Example 2.61. The following matrices are all in Row Echelon Form:
1 3 2 5

0 3 −1 4

0 0 −2 3



5 1 3 2 8

0 0 1 1 1

0 0 0 0 −7



1 1 5

0 −2 3

0 0 7

 .

The following matrices are not in Row Echelon Form:


1 1 1 1

1 1 1 1

1 1 1 1



3 2 5 1

0 0 1 3

0 5 1 2



1 3 5

0 1 2

0 0 3

0 0 1

 .

A system of equations sometimes has a solution, but does not always. We say a system

is inconsistent if there is no solution; we say a system is consistent if there is at least one

solution.

Definition 2.62. A matrix is in reduced row echelon form if it is in row echelon form, and

the first nonzero entry in each row is the only entry in its column.

This means that we will have some number of columns that each have a bunch of zeroes

and one 1. Other than that we may or may not have more columns, which can contain

basically anything; we’ve used up all our degrees of freedom to fix those columns that contain

the leading term of some row.

Note that the columns we have fixed are not necessarily the first columns, as the next

example shows.

Example 2.63. The following matrices are all in reduced Row Echelon Form:
1 0 0 5

0 1 0 4

0 0 1 3



1 17 0 2 8

0 0 1 1 0

0 0 0 0 1



1 0 5

0 1 3

0 0 0

 .

The following matrices are not in reduced Row Echelon Form:
1 1 1 1

0 1 1 1

0 0 1 1



3 0 0 1

0 3 0 3

0 0 2 2



1 0 15 3

0 0 1 2

0 0 0 1

 .
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2.6 Spanning and Linear Independence

Recall we want to put a set of “coordinates” on our vector spaces. Any “coordinate system”

will need to have two basic properties: first, we want it to represent any vector in our vector

space; second, we want it to represent each vector only once. So we first want to talk about

the vectors that can be represented by a given collection of vectors.

Definition 2.64. Let V be a vector space S = {v1, . . . ,vn} be a set of vectors in V . We

say the span of S is the set of all linear combinations of vectors in S, and write it span(S)

or span(v1, . . . ,vn).

For notational consistency, we define the span of the empty set span({}) to be the trivial

vector space 0 = {0}.

Example 2.65. As before, take V = R3 and S = {(1, 0, 0), (0, 1, 0)}. Then

span(S) = {a(1, 0, 0) + b(0, 1, 0)} = {(a, b, 0)} .

Now let T = {(3, 2, 0), (13, 7, 0)}. Then

span(T ) = {a(3, 2, 0) + b(13, 7, 0)} = {(3a+ 13b, 2a+ 7b, 0)} .

Spans are really convenient to work with because the span of any set will always be a

subspace.

Proposition 2.66. If V is a vector space over a field F and S = {u1,u2, . . . ,un} ⊂ V , then

span(S) is a subspace of V .

Proof. If S = ∅ then span(S) = {0} by definition, so it is the trivial subspace of V .

So now suppose S is non-empty. We know that S ⊂ V , and since any linear combination

of vectors in V is itself a vector in V , we know that span(S) ⊂ V . So we just need to check

the three subspace conditions.

1. Because S ̸= ∅, there is some vector v ∈ S, and then 0 · v = 0. This is a linear

combination of vectors in S, so it is in span(S).

2. Suppose v1,v2 ∈ span(S). This implies that we can write

v1 = a1u1 + · · ·+ anvn v2 = b1w1 + · · ·+ bmwm

for some ai, bj ∈ F, and some vi,wj ∈ S. Thus

v + v2 =
(
a1u1 + · · ·+ anvn

)
+
(
b1w1 + · · ·+ bmwm

)
= a1u1 + · · ·+ anvn + b1w1 + · · ·+ bmwm

is a linear combination of vectors in S, and thus an element of span(S).
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3. Suppose r ∈ F and v ∈ span(S). Then we can write

v = a1u1 + · · ·+ anun

for some ai ∈ F. Then

rv = r (a1u1 + · · ·+ anvn) = (ra1)u1 + · · ·+ (ran)un ∈ span(S).

Thus we see that span(S) is a subspace of V .

Corollary 2.67. Let V be a vector space over F, let W be a subspace of V , and let S ⊂ V .

If W contains V then W contains span(S).

Proof. We know that W is a vector space containing S, so span(S) must be a subspace of

W .

Corollary 2.68. If V is a vector space and S ⊆ V , then span(S) is the smallest subspace

of V containing S.

Proof. We just showed in proposition 2.66 that span(S) is a subspace of V , and of course

it contains S. So we just need to show that there’s no smaller subspace. In particular, I’ll

prove that if W is a subspace of V , and S ⊆ W , then span(S) ⊆ W .

So suppose W is a subspace of V and S ⊆ W . Let v ∈ span(S). The v is a linear

combination of vectors in S. But S ⊆ W , so v is a linear combination of vectors in W , and

thus an element of W since W is a vector space. Thus any element of span(S) is an element

of W , so span(S) ⊆ W .

Definition 2.69. Let V be a vector space and S ⊂ V . If span(S) = V then we say S spans

V , or generates V , or is a spanning set for V .

If S spans V , then we can express any element of V purely in terms of elements of S.

But this expression might not be unique! Thus we need to introduce a second concept.

Definition 2.70. Let V be a vector space over F , and S ⊂ V . We say S is linearly

independent if, for any finite collection of vectors v1, . . . ,vn ∈ S, the only scalars solving the

equation

a1v1 + · · ·+ anvn = 0

are a1 = · · · = an = 0.

If a set of vectors is not linearly independent, we call it linearly dependent and there is

a linear dependence relationship among the vectors.
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Remark 2.71. This is one of the more subtle definitions in this course, and often gives people

a lot of trouble when they first start working with it. In particular, it features a problem with

nested conditionals : a set of vectors is linearly independent if, if there is a linear combination

equal to zero, then all of the coefficients must be zero. I didn’t use that phrasing in the formal

definition because it’s incredibly awkward to have to instances of the word “if” in a row, but

that does highlight the problem.

In particular, to prove a set is linearly independent, you shouldn’t try to prove that any

linear combination is equal to zero. And you shouldn’t try to prove that a particular set

of coefficients is zero. Instead you should start out with the hypothesis that a finite linear

combination of vectors produces zero, and then prove that all of the coefficients must have

been zero.

(In practice this will almost always involve solving a system of linear equations, and thus

row reducing a matrix.)

Example 2.72. 1. The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly independent: sup-

pose 
0

0

0

 = a


1

0

0

+ b


0

1

0

+ c


0

0

1

 =


a

b

c

 .

Then we have the system of equations a = 0, b = 0, c = 0 and thus all the scalars are

zero.

2. The set S = {(1, 0, 0), (0, 1, 0)} is linearly independent. Suppose
0

0

0

 = a


1

0

0

+ b


0

1

0

 =


a

b

0

 .

Then we have the system of equations a = 0, b = 0 and thus all the scalars are zero.

3. The set S = {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not linearly independent, since

1


1

0

0

+ 1


0

1

0

+ (−1)


1

1

0

 =


0

0

0

 = 0.

4. Any set containing the zero vector is linearly dependent, since 1 · 0 = 0 but 1 ̸= 0.
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Example 2.73. The set S = {1, x, x2, x3} is linearly independent in P3(x). So is the set

T = {1 + x+ x2 + x3, 1 + x+ x2, 1 + x, 1}.

Theorem 2.74. Let V be a vector space and let S1 ⊆ S2 ⊆ V . If S1 is linearly dependent,

then S2 is linearly dependent.

Proof. If S1 is linearly dependent, then there are vectors u1, . . . , un ∈ S1 and scalars not all

zero a1, . . . , an ∈ F such that

a1u1 + · · ·+ anun = 0.

But since S1 ⊆ S2, therefore each ui ∈ S2. So the previous equation shows that S2 is linearly

dependent by definition.

Corollary 2.75. Let V be a vector space and let S1 ⊆ S2 ⊆ V . If S2 is linearly independent,

then S1 is linearly independent.

Proof. This is just the contrapositive of the previous theorem.

From an intuitive standpoint, these two results make sense. If S1 is linearly dependent,

then has some sort of redundancy. But since S1 ⊆ S2, therefore S2 also contains redundant

vectors. Adding more vectors to a redundant set cannot make the set less redundant. So S2

must be linearly dependent.

Similarly, if S2 is linearly independent, then the vectors in S2 point in “genuinely different

directions”. Taking a subset, those vectors will still point in “genuinely different directions”.

Recall that earlier we saw that the set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} was linearly dependent.

But we might notice that we can remove a vector and get a linearly independent set with

the same span—we can just get rid of the redundancy. Conversely, we can start with the

linearly independent set {(1, 0, 0), (0, 1, 0)} and try to add a vector. If that vector is in the

span, then it will be redundant, and we get a linearly dependent set. But if it’s not in the

span, it’s not redundant, and we get an independent set.

Theorem 2.76. Let S be a linearly independent subset of a vector space V , and let v ∈ V .

Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).

Proof. Suppose S is a linearly independent subset of a vector space V and let v ∈ V .

[⇒]. Suppose that S ∪ {v} is linearly dependent. Then there are distinct vectors

u1, . . . ,un ∈ S and scalars a1, . . . , an, b ∈ F not all zero such that

a1u1 + · · ·+ anun + bv = 0.
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Now we claim that b ̸= 0, since if it were 0, then we could delete it from the above equation

to get a nontrivial linear combination of the ui’s to equal 0, which is not possible since S

itself is linearly independent.

Since b ̸= 0, it has a multiplicative inverse, so we can write

v = b−1(−a1u1 − a2u2 − · · · − anun).

This shows that v ∈ span(S).

[⇐]. Conversely, suppose v ∈ span(S). Then there exist vectors v1, . . . ,vm ∈ S and

scalars b1, . . . , bm ∈ F such that

v = b1v1 + · · ·+ bmvm.

Hence,

b1v1 + · · ·+ bmvm − v = 0.

Note that v ̸= vi for any i, since we are assuming v ̸∈ S. Hence, this is a nontrivial linear

combination of the vectors in S ∪{v} which equals 0 (it is nontrivial since the coefficient on

v is −1). Thus, S ∪ {v} is linearly dependent.

2.7 Bases and Dimension

Now we’re ready to introduce our idea of coordinates. Recall we wanted a set S such that

we could write any vector in V as a sum of vectors in S, but only one way. With our new

notation, we can define:

Definition 2.77. If V is a vector space and S is a spanning set for V that is also linearly

independent, we say that S is a basis for V .

Example 2.78. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3, as we have seen before.

We call this set the standard basis for R3, and we write the three elements e1, e2, e3.

We can generalize this to Rn. We define the standard basis vectors for Rn by

e1 =



1

0

0
...

0

0


e2 =



0

1

0
...

0

0


. . . en =



0

0

0
...

0

1
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and the set of standard basis vectors is the standard basis. You can check that the standard

basis is in fact a basis.

Example 2.79. Every (non-trivial) vector space has more than one basis. The set S =

{(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis for R3:

First we show that it is a spanning set. Let (a, b, c) ∈ R3. Then we want to solve
a

b

c

 = α1


1

0

0

+ α2


1

1

0

+ α3


1

1

1


which gives the augmented matrix

1 1 1 a

0 1 1 b

0 0 1 c

 →


1 0 0 a− b

0 1 0 b− c

0 0 1 c


which tells us that α3 = c, α2 = b−c, α1 = a−b. Thus there is a solution for any (a, b, c) ∈ R3,

and the set spans.

We also need to prove linear indepencence. So suppose

0 = α1


1

0

0

+ α2


1

1

0

+ α3


1

1

1

 .

This gives us a system of linear equations corresponding to the homogeneous system
1 1 1

0 1 1

0 0 1

 →


1 0 0

0 1 0

0 0 1


so the only solution here is α1 = α2 = α3 = 0.

Thus S is linear independent, and since it also spans, it is a basis.

Example 2.80. The set S = {(1, 0, 0), (0, 1, 0)} is not a basis for R3. It is linearly indepen-

dent (since it is a subset of the standard basis, which is linear independent), but it is not a

spanning set, since (0, 0, 1) is not in the span of S.

Example 2.81. The set S = {(2, 3), (3, 4), (4, 4)} is a spanning set for R2 but not a basis.

To see that it’s a spanning set we solve[
a

b

]
= α1

[
2

3

]
+ α2

[
3

4

]
+ α3

[
4

4

]
=

[
2α1 + 3α2 + 4α3

3α1 + 4α2 + 4α3

]
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giving the system of equations

a = 2α1 + 3α2 + 4α3 b = 3α1 + 4α2 + 4α3

and the augmented matrix[
2 3 4 a

3 4 4 b

]
→

[
1 1 0 b− a

2 3 4 a

]
→

[
1 1 0 b− a

0 1 4 3a− 2b

]
→

[
1 0 −4 3b− 4a

0 1 4 3a− 2b

]
.

Thus for any (a, b) ∈ R2, at least one solution exists; in fact we can pick α3 to be any real

number and we get a corresponding solution (3b− 4a+4α3, 3a− 2b− 4α3, α3). Thus the set

spans.

But S is not linearly independent. We can see this in a few ways. Most easily we can

observe that (2, 3)+ (1/4)(4, 4) = (3, 4). If we can’t see that on our own, we can do a couple

things. We can find the nullspace:[
2 3 4

3 4 4

]
→

[
1 1 0

2 3 4

]
→

[
1 1 0

0 1 4

]
→

[
1 0 −4

0 1 4

]

and we see the nullspace {(4α,−4α, α)} is non-trivial, so the set is not linearly independent.

But if these row operations seem familiar, that’s because we did exactly the same thing

to check spanning! So we can look at our spanning equations and try to find all the solutions

when we take a = b = 0. We see that there’s more than one solution there, so the vectors

aren’t linearly independent.

Determining whether a set is a basis is sometimes annoying, but doesn’t involve anything

we haven’t already done: a basis is just a set that both spans and is linearly independent,

and we can check both properties individually. But we’d like to make things a little simpler.

Further, we want to talk about how “big” a space is, and this should plausibly be deter-

mined by how many elements there are in the basis. But since every space has more than

one basis, talking about the size of “the” basis is potentially problematic. Fortunately, this

is not an actual problem, as we shall see.

Lemma 2.82. If S = {v1, . . . ,vn} spans a vector space V , and T = {u1, . . . ,um} is a

collection of vectors in V with m > n, then T is linearly dependent.

Proof. There are two possible ways to prove this. One involves simply writing out a bunch

of linear equations and solving them; this works, but is more tedious than informative. We’ll

use a more formal and abstract approach to proving this instead, which, hopefully, will

actually explain some of why this is true.
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We will start with the set S, and one by one we will trade out vectors in S for vectors

in T , and show that we always still have a spanning set. We will suppose T is linearly

independent, and show that m ≤ n.

Since S is a spanning set, we know that u1 ∈ span(S), and thus {v1, . . . ,vn,u1} is linearly
dependent.. Then we can rewrite our linear dependence equation to express v1 (without loss

of generality) as a linear combination of {u1,v2, . . . ,vn} = S1, and thus

span(S) = span({v1, . . . ,vn,u1}) = span(S1).

We can repeat this process: at every step we add the next vector from T to get the set

{u1, . . . ,uk,vk, . . . ,vn}. Since Sk−1 is a spanning set, this set is linearly dependent; since

the ui are linearly independent by hypothesis, we can remove one of the vi, and without loss

of generality we can remove vk, to obtain the set Sk = {u1, . . . ,uk,vk+1, . . . ,vn}.
If m > n, we can continue until we have replaced every vi. Then we have Sn =

{u1, . . . ,un} is a spanning set, and thus un+1 ∈ span(Sn) and so T is linearly dependent,

which contradicts our assumption.

Thus if T is linearly independent, we must have m ≤ n. Conversely, if m > n then T is

linearly dependent, as we stated.

Corollary 2.83. S = {v1, . . . ,vn} and T = {u1, . . . ,um} are two bases for a space V , then

they are the same size, i.e. m = n.

Proof. S is a spanning set and T is linearly independent, so we can’t have m > n by lemma

2.82. But T is a spanning set and S is linearly independent, so we can’t have n > m by

lemma 2.82. Thus n = m.

Definition 2.84. Let V be a vector space. If V has a basis consisting of n vectors, we say

that V has dimension n and write dimV = n. The trivial vector space {0} has dimension 0.

We say that V is finite–dimensional if there is a finite set of vectors that spans V . (Thus if

V is n-dimensional it is finite-dimensional). Otherwise, we say that V is infinite–dimensional.

In this course we will primarily discuss finite dimensional vector spaces; but there are

many important infinite-dimensional examples.

Example 2.85. The set of standard basis vectors {e1, . . . , en} is a basis for Rn, so Rn is

n-dimensional.

The set {1, x, . . . , xn} is a basis for Pn(x). This set has n+1 vectors, so dimPn(x) = n+1.

P(x) does not have a finite basis. We can see this since the set S = {1, x, . . . , xn} is

linearly independent for any n; but every spanning set is at least as big as any linearly
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independent set, so we can never have a finite spanning set. However, if we allow infinite

bases, then {1, x, . . . , xn, . . . } is a basis for P(x).

Remark 2.86. C([a, b],R) is infinite–dimensional, but if we allow infinite sums and make

convergence arguments it is possible to think of the set {1, x, . . . , xn, . . . } as a sort of (“sep-

arable”) basis. But this requires analysis and is outside the scope of this course. We can

also build a (separable) basis out of the functions sin(nx) and cos(nx) for n ∈ N; this is the
foundation of Fourier analysis and Fourier series.

The set F(R,R) is absurdly huge, and does not have a countable basis. If you believe

the axiom of choice it has a basis, as all sets do, but you can’t possibly write it down. You

can think of it has having “coordinates” given by functions like

fr(x) =

{
1 x = r

0 x ̸= r

but this isn’t a basis because it would require uncountable sums, which you can’t really

define.

How do we find bases? There are two basic ways we can build them.

Lemma 2.87 (Basis Reduction). Suppose S = {v1, . . . ,vn} is a spanning set for V . Then

S can be reduced to a basis for V . That is, there is a subset B ⊆ S that is a basis for V .

Proof. If S is linearly independent, then it is a basis and we’re done.

So suppose S is linearly dependent. Then we know at least one vector is redundant,

so without loss of generality we can reorder the set so that we can write vn as a linear

combination of the other vectors in S.

But then span(S) = span({v1, . . . ,vn−1}), and S1 = {v1, . . . ,vn−1} is a spanning set for

V and a proper subset of S. If S1 is linearly independent, then it is a basis; if not, we can

repeat this process until we reach a linearly independent set, which is our basis B.

Remark 2.88. This proof assumes that S is finite. The result is still (mostly) true if S

is infinite, but if the space is finite-dimensional this isn’t interesting, and if the space is

infinite-dimensional things get very complicated and we don’t want to worry about them

here.

Example 2.89. Let S = {(1, 1, 0), (1, 1, 1), (0, 0, 1), (2, 7, 0)} be a spanning set for R3. Find

a basis B ⊆ S for R3.

We’ll take as given that this is a spanning set, which is not difficult to check. We see

that we can write (1, 1, 1) = (1, 1, 0) + (0, 0, 1), so we can remove (1, 1, 1) without changing

the span, and we have B = {(1, 1, 0), (0, 0, 1), (2, 7, 0)} ⊆ S is a basis for R3.
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Lemma 2.90 (Basis Padding). Suppose S = {v1, . . . ,vn} is linearly independent in V .

Then if V has any finite spanning set T = {u1, . . . ,um}, we can obtain a basis by padding

S. That is, there is a basis B for V with S ⊆ B.

Proof. If T ⊂ span(S), then span(T ) ⊂ span(S), so S is a spanning set for V and thus a

basis, so we’re done.

So suppose without loss of generality that u1 ̸∈ span(S). Then S1 = {v1, . . . ,vn,u1} is

linearly independent since we can’t write any element as a linear combination of the others.

If S1 spans V , then it is a basis and we’re done. If not, there is some other ui ̸∈ span(S1),

so we can repeat the process, and after at most m steps this process will terminate (since

we run out of elements in T ). When we reach a spanning set, this is our basis.

Example 2.91. Let S = {1 + x, x2 − 3} ⊂ P2(x). Can we find a basis B for P2(x) that

contains T?

We need to find a vector (or quadratic polynomial) that isn’t in S. There are lots of

choices here, but it looks to me like 1 is not in the span of S. Then we check: suppose

a(1 + x) + b(x2 − 3) = 1. Then we have

(a− 3b) + ax+ bx2 = 1

which gives the system 
1 −3 1

1 0 0

0 1 0

 →


1 0 0

0 1 0

0 0 1


which has no solution. Thus indeed 1 ̸∈ span(S), so {1, 1 + x, x2 − 3} is a basis for P3(x).
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