Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle

- These are the instructions you will see on the real test, next week. I include them here so you know what to expect.
- You will have 75 minutes for this test.
- You are not allowed to consult books or notes during the test, but you may use a one-page, one-sided, handwritten cheat sheet you have made for yourself ahead of time.
- You may not use a calculator.
- This test has seven questions, over five pages. You should not answer all seven questions.
 - The first two problems are two pages, representing topics M1 and M2. You should do both of them, and they are worth 30 points each.
 - The remaining six problems represent topics S1 through S6. You will be graded on your best three, with a few possible bonus points if you also do well on the other two.
 - Doing three secondary topics well is much better than doing five poorly.
 - If you perform well on a question on this test it will update your mastery scores. Achieving a 27/30 on a major topic or 9/10 on a secondary topic will count as getting a 2 on a mastery quiz.

Problem 1 (M1). Compute the following using methods we have learned in class. Show enough work to justify your answers.

(a) Find the tangent line to $h(x) = \arcsin(e^x)$ at $\ln(1/2)$.

(b)
$$\int_{1}^{2} \frac{e^{1/x}}{x^2} dx =$$

(c)
$$\int \frac{\cos(x)\sin(x)}{1+\cos^4(x)} dx =$$

Problem 2 (M2). Compute the following integrals using methods we have learned in class. Show enough work to justify your answers.

(a)
$$\int \frac{2x+1}{\sqrt{x^2-1}} \, dx$$

(b)
$$\int x \sec^2 x \, dx$$

(c)
$$\int_0^1 \frac{3x^2 - 6x + 1}{(x^2 - x - 1)(x - 2)} dx$$

Problem 3 (S1). Let $f(x) = \sqrt[3]{x^5 + x^4 + x^3 + x^2 + 2x}$. Find $(f^{-1})'(4)$.

Problem 4 (S2). Find $\lim_{x\to 0} \frac{2\sin(x)-\sin(2x)}{x-\sin(x)}$.

Problem 5 (S3). Use Simpson's rule and six intervals to estimate $\int_0^6 x^4 dx$. Give an upper bound for the error on this approximation.

Problem 6 (S4). Compute $\int_{1}^{10} \frac{1}{\sqrt[3]{x-2}} dx$.

Problem 7 (S5). Find the surface area of the surface obtained by rotating $y = \sqrt{5+4x}$ for $-1 \le x \le 1$ about the x-axis.