Math 1231 Midterm Solutions

Instructor: Jay Daigle

Problem 1 (M1). Compute the following limits if they exist. Show enough work to justify your computation,
or your claim that the limit does not exist.
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Problem 2 (M2). Compute the derivatives of the following functions using methods we have learned in
class. Show enough work to justify your answers.
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Problem 3 (S1). Suppose f(z) = 3z — 5, and we want an output of approximately 4. What input a should
we aim for? Find a formula for ¢ in terms of € so that if our input is @ £ § then our output will be 4 + ¢.
Explain how you found this 6 and why it should give us what we want.

Solution: We want an input of about a = 3. We want

|3z —5—4]| <e
[Bx — 9] < ¢
lz—3|<e
|z — 3| < &/3.

So we take § = ¢/3.

Problem 4 (S2). Directly from the definition of derivative, compute the derivative of f(z) = & —2
at a = 11.
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Problem 5 (S3). If f(x) = fj;’, use a linear approximation centered at 3 to estimate f(2.9).
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Problem 6 (S4). If ¢ Calories of heat are added to a cup of water, the temperature of the cup will be
T(c) = 20 + 4c degrees celsius.

(a) What are the units of 7"(c)? What does it represent physically? What would it mean if 7" is b ig?

(b) Compute T"(4). What is the physical interpretation of this number? What physical observation could
you make to check your calculation?

Solution:

(a) The units are degrees celsius per Calorie. This represents the change in the temperature of the water
when you add energy [or change the amount of energy added]. If 7" is big then adding a little bit of
energy will change the temperature by a lot.

(b) T'(4) = 4. This tells us that if the temperature is currently 20 degrees Celsius, then adding one Calorie
to the cup of water will will increase the temperature by 4 degrees celsius. [Alternatively: since the
derivative is constant, every Calorie you add will increase the temperature by 4 degrees Celsius.] We
could test this by starting with a cup of water that’s at 20 degrees Celsius and adding one Calorie; the
temperature should rise to about 24 degrees.



