Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle



Problem 1 (M3). (a) Find and classify all the critical points of f(x) = (x — 5)v/x2. [Note: this is quite
hard but it’s good practice.]

Solution: We compute

2 2z —1
f(z) = \3/x72+(x—5)§x*1/3 :x2/3+u

_330—1—23:—10_53:—2
N 3Yx - T3z

This is equal to zero when x = 2 and is undefined when x = 0, so the two critical points are x = 0 and

T =2
We could try to use the second derivative test here, but it won’t really work. We get
10z + 10
" o
f (:E) - 9I4/3
5

£(2) ~ 3 >0

so we see that f has a local minimum at = 2, but f”(0) is undefined so it doesn’t help us classify
z=0.

Instead we compute a chart

5z-2) 355 [f(2)

3z
<0 - - +
0<o<?2 - + -
2<zx + + +

Thus we conclude that f has a local maximum at x = 0 and a local minimum at x = 2.

(b) The function g(z) = (22 — 3z)/x — 3 has absolute extrema either on (=4, —1) or on [1,4]. Pick one of
those intervals, explain why g has extrema on that interval, and find the absolute extrema.

Solution: We compute
g (x) =2z —3)Vr — 3+ (2% — 31‘)%(1‘ —3)72/3,

This is undefined when = = 3, and to find the zeroes we compute
0= (20— 3) Yz =3+ (a2 — 33;)%(95 _3)-2/

2
_ 3 x° — 3z
=2z —-3)Vor -3+ 3w —3)
0= (22 —3)Vx —3-3(x —3)%° + (2% — 32)
= (22 — 3)3(z — 3) + (2* — 32) = 3(22® — 32 — 62 + 9) + 2% — 3z
=Tz — 302 + 27 = (Tz — 9)(z — 3)
which is zero when z = 3 or = 9/7. So then we have
g(1) = —29—2=2vV2
1 2 1
g0/7) = (B Z 20N /gy = W eian
49 7 49
9(3)=0
g(4)=4-V1=4.



All of these numbers are non-negative, so the minimum value is 0, at = 3. We can see that
292 <2-2= 4, and maybe convince ourselves that

108 ,
8 o aa.1 <4
10 V12/ <

Thus the maximum value is 4, which occurs at 4.

Problem 2 (S5). Find a tangent line to the curve given by z* — 222y? + y* = 16 at the point (v/5,1).

Solution: We use implicit differentiation, and find that

d d
4a® — 2| (2zy° + m22y—y + 4y3—y =0
dx dx

d d
423 — 4ay? = 4m2y—y — 4y3—y

dx dz
423 — dxy? _dy

dx2y — 4y®  dw
Thus at the point (v/5,1) we have
3
d 45" — 44512 20 -4
_y:c—\/_:\/g(_>:\/g.
dx 45 1 —-4-13 20 —4

Thus the equation of our tangent line is

Yy —yo = m(x — xo)
y—1=+5(z—V5).
Problem 3 (S6). Consider this baseball diamond, which is a square with 90ft sides. A batter hits the ball

and runs from home toward first base at a speed of 22ft/s. At what rate is the distance between the runner
and second base changing when the runner has run 30ft?

Solution: We use the Pythagorean theorem, a? + b? = ¢2, where a is the distance of the runner from first

base and b is the distance of second base from first base. Then c is the distance between the runner and

second base, which we want to know about, and we have it related to a and b, which we do know about.
When the runner has run 30ft, then we have a = 60ft and b = 90ft is a constant. Then we have

? =a® +b* = 60% 4+ 90% = 3600 + 8100 = 11700
c=10V117 = 30V/13.



Alternatively,
¢ = 60% + 902 = 30%(22 + 3?)
c = 30V13.

We know that a’ = —22ft/s, so we compute
2aa’ + 2bb' = 2¢c
aa’ +bb = cc
60ft - (—22)ft/s + 90ft - 0ft /s = 30V13ft -
2. —22V13ft/s = ¢

So the distance between the runner and second base is decreasing at j—% ~ 12.2 feet per second.
32 8 —a? 223 — 40

Problem 4 (S7). Let f(z) = a +— We compute that f'(z) = 7: and f"(z) = xiﬁ. Sketch a
x x x

graph of f.
Your answer should discuss the domain, asymptotes, roots, limits at infinity, critical points and values,
intervals of increase and decrease, and concavity.

Solution: The function is defined everywhere except at 0. Near zero, we can see the top is always negative
and the bottom is always positive, so lim,_,o f(z) = —oco and we should have a downwards asymptote on
either side.

We see there is a root at = ¥/2, and lim,_, 1 o f(z)=0.

We see that f’(z) is undefined at & = 0, and is zero when 22 = 8 and thus when x = 2. So our critical

points occur at 0 and 2. We calculate f(2) = &, and f isn’t defined at 0. By making a chart, we get

16°
8§—az3 2° f(x)

—~

z <0 + — —
0<zx<?2 + + +
2<x — + -

so f is decreasing for values less than zero or greater than 2, and increasing for values between 0 and 2.
The second derivative is undefined at 0, and is zero when 2> — 40 and so when x = /20, so our potential

points of inflection are 0, v/20. We compute f(+v/20) = 5 0%. We can make a chart again, but we see that

the denominator of f”(x) >0, so f”(z) > 0 if 2 > /20 and f"(x) < 0 if 2 < 3/20.
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Problem 5 (S8). We want to build a rectangular fence that will enclose 200m?2. One pair of parallel sides
cost $3/m and the other pair costs $8/m. What dimensions minimize the cost of the fence? Justify your
claim that this is a minimum.



$3/m

$8/m 200m "2 $8/m

$3/m

Solution: We want to minimize 3w + 8¢ subject to the constraint fw = 200. Thus we have w = 200/¢,
and then our function is C'(¢) = 600/¢ + 8¢. We get

C' = —600/4>+8=0
—8¢% = —600
> =75
{=5V3.

_ _ 200 __ 40
Then we have £ = 5v/3 and w = v ?\/3.

We have two options for proving this is a maximum (we only need one):
(a) Extreme Value Theorem: We can’t really use the EVT here because we don’t have a closed interval.

(b) First Derivative Test: For £ < 5v/3 we have C’ < 0 so the function is decreasing, and for £ > 5v/3 we
have C’ <> so the function is increasing. Thus we have a unique minimum at 5v/3.

(c) Second derivative test: C”(¢) = —1200/¢3. Then C”(¢) > 0 for £?0, which implies there is a single
relative minimum, at ¢ = 5v/3. This doesn’t really rigorously prove that this is an absolute maximum
but I'll take it.



