
Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle
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Problem 1 (M3). (a) Find and classify all the critical points of f(x) = (x− 5)
3
√
x2. [Note: this is quite

hard but it’s good practice.]

Solution: We compute

f ′(x) =
3
√
x2 + (x− 5)

2

3
x−1/3 = x2/3 +

2x− 10

3 3
√
x

=
3x+ 2x− 10

3 3
√
x

= 5
x− 2

3 3
√
x

This is equal to zero when x = 2 and is undefined when x = 0, so the two critical points are x = 0 and
x = 2.

We could try to use the second derivative test here, but it won’t really work. We get

f ′′(x) =
10x+ 10

9x4/3

f ′′(2) =
5

3 3
√
2
> 0

so we see that f has a local minimum at x = 2, but f ′′(0) is undefined so it doesn’t help us classify
x = 0.

Instead we compute a chart

5(x− 2) 1
3 3
√
x

f ′(x)

x < 0 − − +
0 < x < 2 − + −
2 < x + + +

Thus we conclude that f has a local maximum at x = 0 and a local minimum at x = 2.

(b) The function g(x) = (x2 − 3x) 3
√
x− 3 has absolute extrema either on (−4,−1) or on [1, 4]. Pick one of

those intervals, explain why g has extrema on that interval, and find the absolute extrema.

Solution: We compute

g′(x) = (2x− 3) 3
√
x− 3 + (x2 − 3x)

1

3
(x− 3)−2/3.

This is undefined when x = 3, and to find the zeroes we compute

0 = (2x− 3) 3
√
x− 3 + (x2 − 3x)

1

3
(x− 3)−2/3

= (2x− 3) 3
√
x− 3 +

x2 − 3x

3(x− 3)2/3

0 = (2x− 3) 3
√
x− 3 · 3(x− 3)2/3 + (x2 − 3x)

= (2x− 3)3(x− 3) + (x2 − 3x) = 3(2x2 − 3x− 6x+ 9) + x2 − 3x

= 7x2 − 30x+ 27 = (7x− 9)(x− 3)

which is zero when x = 3 or x = 9/7. So then we have

g(1) = −2 3
√
−2 = 2

3
√
2

g(9/7) =

(
81

49
− 27

7

)
3
√

−12/7 =
108

49
3
√

12/7

g(3) = 0

g(4) = 4 · 3
√
1 = 4.
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All of these numbers are non-negative, so the minimum value is 0, at x = 3. We can see that
2 3
√
2 < 2 · 2 = 4, and maybe convince ourselves that

108

49
3
√
12/7 ≈ 2 · 1 < 4.

Thus the maximum value is 4, which occurs at 4.

Problem 2 (S5). Find a tangent line to the curve given by x4 − 2x2y2 + y4 = 16 at the point (
√
5, 1).

Solution: We use implicit differentiation, and find that

4x3 − 2

(
(2xy2 + x22y

dy

dx

)
+ 4y3

dy

dx
= 0

4x3 − 4xy2 = 4x2y
dy

dx
− 4y3

dy

dx
4x3 − 4xy2

4x2y − 4y3
=

dy

dx

Thus at the point (
√
5, 1) we have

dy

dx
=

4
√
5
3 − 4

√
5 · 12

4
√
5
2 · 1− 4 · 13

=
√
5

(
20− 4

20− 4

)
=

√
5.

Thus the equation of our tangent line is

y − y0 = m(x− x0)

y − 1 =
√
5(x−

√
5).

Problem 3 (S6). Consider this baseball diamond, which is a square with 90ft sides. A batter hits the ball
and runs from home toward first base at a speed of 22ft/s. At what rate is the distance between the runner
and second base changing when the runner has run 30ft?

Solution: We use the Pythagorean theorem, a2 + b2 = c2, where a is the distance of the runner from first
base and b is the distance of second base from first base. Then c is the distance between the runner and
second base, which we want to know about, and we have it related to a and b, which we do know about.

When the runner has run 30ft, then we have a = 60ft and b = 90ft is a constant. Then we have

c2 = a2 + b2 = 602 + 902 = 3600 + 8100 = 11700

c = 10
√
117 = 30

√
13.
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Alternatively,

c2 = 602 + 902 = 302(22 + 32)

c = 30
√
13.

We know that a′ = −22ft/s, so we compute

2aa′ + 2bb′ = 2cc′

aa′ + bb′ = cc′

60ft · (−22)ft/s + 90ft · 0ft/s = 30
√
13ft · c′

2 · −22
√
13ft/s = c′.

So the distance between the runner and second base is decreasing at 44√
13

≈ 12.2 feet per second.

Problem 4 (S7). Let f(x) =
x3 − 2

x4
. We compute that f ′(x) =

8− x3

x5
and f ′′(x) =

2x3 − 40

x6
. Sketch a

graph of f .
Your answer should discuss the domain, asymptotes, roots, limits at infinity, critical points and values,

intervals of increase and decrease, and concavity.

Solution: The function is defined everywhere except at 0. Near zero, we can see the top is always negative
and the bottom is always positive, so limx→0 f(x) = −∞ and we should have a downwards asymptote on
either side.

We see there is a root at x = 3
√
2, and limx→±∞ f(x) = 0.

We see that f ′(x) is undefined at x = 0, and is zero when x3 = 8 and thus when x = 2. So our critical
points occur at 0 and 2. We calculate f(2) = 6

16 , and f isn’t defined at 0. By making a chart, we get

8− x3 x5 f ′(x)
x < 0 + − −

0 < x < 2 + + +
2 < x − + −

so f is decreasing for values less than zero or greater than 2, and increasing for values between 0 and 2.
The second derivative is undefined at 0, and is zero when 2x3−40 and so when x = 3

√
20, so our potential

points of inflection are 0, 3
√
20. We compute f( 3

√
20) = 18

20 3√20
. We can make a chart again, but we see that

the denominator of f ′′(x) ≥ 0, so f ′′(x) > 0 if x > 3
√
20 and f ′′(x) < 0 if x < 3

√
20.

Problem 5 (S8). We want to build a rectangular fence that will enclose 200m2. One pair of parallel sides
cost $3/m and the other pair costs $8/m. What dimensions minimize the cost of the fence? Justify your
claim that this is a minimum.
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Solution: We want to minimize 3w + 8ℓ subject to the constraint ℓw = 200. Thus we have w = 200/ℓ,
and then our function is C(ℓ) = 600/ℓ+ 8ℓ. We get

C ′ = −600/ℓ2 + 8 = 0

−8ℓ2 = −600

ℓ2 = 75

ℓ = 5
√
3.

Then we have ℓ = 5
√
3 and w = 200

5
√
3
= 40

3

√
3.

We have two options for proving this is a maximum (we only need one):

(a) Extreme Value Theorem: We can’t really use the EVT here because we don’t have a closed interval.

(b) First Derivative Test: For ℓ < 5
√
3 we have C ′ < 0 so the function is decreasing, and for ℓ > 5

√
3 we

have C ′ <> so the function is increasing. Thus we have a unique minimum at 5
√
3.

(c) Second derivative test: C ′′(ℓ) = −1200/ℓ3. Then C ′′(ℓ) > 0 for ℓ?0, which implies there is a single
relative minimum, at ℓ = 5

√
3. This doesn’t really rigorously prove that this is an absolute maximum

but I’ll take it.
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