Math 1232: Single-Variable Calculus 2 George Washington University Fall 2024 Recitation 11

Jay Daigle

November 14, 2023

Problem 1. We want to compute $\int_3^4 \frac{1}{1-(x-4)^3} dx$

- (a) Find a power series for to compute $\frac{1}{1-(x-4)^3}$.
- (b) Integrate the power series from 3 to 4. Does this converge?
- (c) Sum the first five terms to estimate $\int_3^4 \frac{1}{1-(x-4)^3} dx$.
- (d) Use an online integral calculator to find the integral. How close is your answer to the true answer?

Solution:

(a)

$$\frac{1}{1 - (x - 4)^3} = \sum_{n=0}^{\infty} (x - 4)^{3n}$$

(b)

$$\int_{3}^{4} \frac{1}{1 - (x - 4)^{3}} dx = \sum_{n=0}^{\infty} \int (x - 4)^{2n} dx \Big|_{3}^{4}$$
$$= \sum_{n=0}^{\infty} \frac{(x - 4)^{3n+1}}{3n+1} \Big|_{3}^{4}$$
$$= 0 - \sum_{n=0}^{\infty} \frac{(-1)^{3n+1}}{3n+1}$$

which converges by the Alternating Series Test.

(c)

$$\sum_{n=0}^{5} \frac{(-1)^{3n+1}}{3n+1} = 1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \frac{1}{13} - \frac{1}{16} = \frac{5877}{7280} \approx 0.80728.$$

(d) The true answer is about 0.835649 so this is prety decent.

Problem 2. Let's find the Taylor series of $f(x) = e^x$ centered at a = 1.

- (a) Compute f', f'', f'''. Find a formula for $f^{(n)}(x)$.
- (b) Give a formula for $T_f(x, 1)$.
- (c) We want to know if $f(x) = T_f(x, 1)$. Find a formula for $R_k(x, 1)$. Can you show this goes to 0 as k goes to infinity?
- (d) We already have another power series for f:

$$T_f(x,0) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

You should have a different power series; but can you convince yourself it *should* give the same function? (What happens if you plug x - 1 into this series?)

Solution:

- (a) $f^{(n)}(x) = e^x$.
- (b) We know that $e^1 = e$, so we have

$$T_f(x,1) = \sum_{n=0}^{\infty} \frac{e}{n!} (x-1)^n.$$

(c) We compute that

$$R_k(x,1) = \frac{e^z}{(k+1)!}(x-1)^{k+1}.$$

If x > 0, we know that $e^z < e^x$; if x < 0 then $e^z < 1$. Either way, we can fix x, and as k goes to infinity this goes to 0. So f is equal to its Taylor series centered at 1.

(d) We see that

$$T_f(x-1,0) = \sum_{n=0}^{\infty} \frac{1}{n!} (x-1)^n$$

which is almost the same as $T_f(x, 1)$. This makes sense: from properties of e^x , we know that

$$e^{x} = e \cdot e^{x-1} = e \cdot \sum_{n=0}^{\infty} \frac{1}{n!} (x-1)^{n}$$
$$= \sum_{n=0}^{\infty} \frac{e}{n!} (x-1)^{n} = T_{f}(x,1).$$

Problem 3. Let's do something silly, and compute the Taylor series of a polynomial.

- (a) Let $f(x) = x^3 + 3x^2 + 1$. Find the Taylor series centered at zero. Was that what you expected?
- (b) Now find the Taylor series centered at 2. Do you get the same thing? What's useful about this?

Solution:

(a) Let $f(x) = x^3 + 3x^2 + 1$. Then we have $f'(x) = 3x^2 + 6x$, f''(x) = 6x + 6, f'''(x) = 6, and $f^{(n)}(x) = 0$ for n > 3. Thus the Taylor series centered at 0 is

$$T_f(x,0) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3$$
$$= 1 + 0x + \frac{6}{2}x^2 + \frac{6}{6}x^3 = 1 + 3x^2 + x^3.$$

Hopefully this is what you expected.

If we take the Taylor series centered at 2, for instance, we have

$$T_f(x,2) = f(2) + f'(2)x + \frac{f''(2)}{2}x^2 + \frac{f'''(2)}{6}$$

= 21 + 24(x - 2) + $\frac{18}{2}(x - 2)^2 + \frac{6}{6}(x - 2)^3$
= 21 + 24(x - 2) + 9(x - 2)^2 + (x - 2)^3.

If you multiply this out you will get your original polynomial back, so this is the same thing. But sometimes it is very useful to have a polynomial expressed in terms of x - 2, say, instead of in terms of x. This is the easiest way I know of to rewrite your polynomial that way.

Problem 4. Back in section 2 we talked about the bell curve function $p(x) = e^{-x^2}$. (Technically we should be talking about $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ but that's annoying and doesn't change the details enough to be interesting.)

3

- (a) Find a power series for p(x) centered at zero. (This should not require any real calculations.)
- (b) Find an antiderivative for p(x), using power series.
- (c) Write down a series that computes $\int_0^1 p(x) dx$.
- (d) Add up the first three or four terms of this series. What do you get? Can you estimate the error in this calculation?

Solution:

$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}$$

(b)

$$\int e^{-x^2} dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)(n!)} + C.$$

(c)

$$\int_0^1 e^{-x^2} dx = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)(n!)} \Big|_0^1$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)(n!)}$$

(d)

$$\int_0^1 e^{-x^2} dx \approx \sum_{n=0}^3 \frac{(-1)^n}{(2n+1)(n!)}$$
$$= 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} = \frac{26}{35} \approx 0.74.$$

This is an alternating series, so the error has to be smaller than the next term $\frac{1}{9\cdot 24} = \frac{1}{216} \approx .005$. So this is correct to two decimal places.

(In fact the true integral is 0.746824.)