
Math 1232 Fall 2024
Single-Variable Calculus 2 Section 11

Mastery Quiz 13
Due Monday, December 2

This week’s mastery quiz has three topics. Everyone should submit M4 and S9. If you
have a 4/4 on M3, you don’t have to submit it.

Don’t worry if you make a minor error, but try to demonstrate your mastery of the
underlying material. Feel free to consult your notes, but please don’t discuss the actual
quiz questions with other students in the course.

Remember that you are trying to demonstrate that you understand the concepts involved.
For all these problems, justify your answers and explain how you reached them. Do not just
write “yes” or “no” or give a single number.

Please turn this quiz in class on Monday. You may print this document out and write
on it, or you may submit your work on separate paper; in either case make sure your name
and recitation section are clearly on it. If you absolutely cannot turn it in in person, you
can submit it electronically but this should be a last resort.

Topics on This Quiz

• Major Topic 3: Series Convergence

• Major Topic 4: Taylor Series

• Secondary Topic 9: Applications of Taylor Series

Name:

Recitation Section:
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Name: Recitation Section:

M3: Series Convergence

(a)
∞∑
n=4

(−1)n

(n2)/5 + 3n

Solution: This clearly converges by the alternating series test, since limn→∞
1

n2/5−3n
=

0, but does it absolutely converge? The ratio test won’t work; if we work it out we’ll
get a limit of 1. But we have

∞∑
n=4

∣∣∣∣ (−1)n

n2/5 + 3n

∣∣∣∣ = ∞∑
n=4

1

n2/5 + 3n
,

so we can use the Limit Comparison Test to 1
n2 . We compute

lim
n→∞

1
n2/5+3n

1
n2

= lim
n→∞

n2

n2/5 + 3n
= 1/5.

This is a nonzero real number, so since
∑∞

n=4
1
n2 converges, by the Limit Comparison

Test,
∑∞

n=4
1

n2/5+3n
converges. Thus our original series converges absolutely. (And thus

we don’t actually need to check for whether the alternating series test applies.)

(b) Analyze the convergence of the series
∞∑
n=1

(−1)n
3n4 − 1

n5 + 1
.

Solution: We know that
∑∞

n=1
1
n
diverges. But

lim
n→∞

3n4 − 1/n5 + 1

1/n
= lim

n→∞

3n5 − n

n5 + 1
= 3

which is a finite non-zero number, so by the limit comparison test,
∑∞

n=1
3n4−1
n5+1

diverges.
So the series does not converge absolutely.

However, limn→∞
3n4−1
n5+1

= 0, so by the alternating series test,
∑∞

n=1(−1)n 3n4−1
n5+1

con-
verges. So the series converges conditionally.

(c) Analyze the convergence of the series
∞∑
n=1

(−3)n

n25n
.

Solution: We compute that

L = lim
n→∞

∣∣∣∣ (−3)n+1/(n+ 1)25n+1

(−3)n/n25n

∣∣∣∣
= lim

n→∞

3n+15nn2

3n5n+1(n+ 1)2

= lim
n→∞

3n2

5(n+ 1)2
=

3

5
.

Since L < 1, by the ratio test this series converges absolutely.
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Name: Recitation Section:

M4: Taylor Series

(a) In class we computed a Taylor series for sin(x) centered at zero. Use the degree-seven
Taylor polynomial to approximate sin(3) ≈ T7(3, 0). (You don’t need to numerically
simplify this.)

Using the Taylor series remainder, find an upper bound for the error in this approxi-
mation.

Solution: We know that

sin(x) =
∞∑
n=1

(−1)n
x2n+1

(2n+ 1)!

T7(x, 0) = x− x3

3!
+

x5

5!
− x7

7!

T7(x, 3) = 3− 27

3!
+

35

5!
− 37

7!
= 3− 37

6
+

243

120
− 2187

5040

= 3− 9

2
+

81

40
− 243

560
=

51

560
≈ 0.091.

We know that fn+1(x) = ± cos(x) or ± sin(x) so |fn+1(z)| ≤ 1, and thus

|Rn(x)| =
∣∣∣∣f (n+1)(z)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!

|R7(x)| ≤
x7+1

(7 + 1)!

|R7(3)| ≤
38

8!
=

729

4480
≈ 0.16.

It would also be okay to observe that the eighth term is zero, so we could actually
compute

|Rn(x)| =
∣∣∣∣f (n+1)(z)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!

|R8(x)| ≤
x8+1

(8 + 1)!

|R8(3)| ≤
39

9!
=

243

4480
≈ 0.054.

(b) Using series we already know, write down a formula for the (infinite) Taylor series for
x3e(x

5/4), and then write down the first four non-zero terms of this series.
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Name: Recitation Section:

Solution:

ex =
∞∑
n=0

1

n!
xn

ex
5/4 =

∞∑
n=0

1

n!
(x5/4)n =

∑
n=0

1

n! · 4n
x5n

x3ex
5/4 =

∑
n=0

1

n! · 4n
x5n+3

The first four non-zero terms are

x3 +
1

4
x8 +

1

32
x13 +

1

6 · 64
x18.

(Note: this is not T3 or T4. It’s T18!)

(c) Using series we already know, write down a formula for the (infinite) Taylor series for
(1− 2x)−3, and then write down the degree-four polynomial explicitly.

Solution: We can take this from the binomial series. So we have

f(x) =
∞∑
n=0

(
−3

n

)
(−2x)n =

∞∑
n=0

(
−3

n

)
(−2)nxn

T4(x, 0) = 1 + (−2)
−3

1
x+ 4

12

2
x2 + (−8)

−60

6
x3 + (16)

360

24
x4

= 1 + 6x+ 24x2 + 80x3 + 240x4

S9: Applications of Taylor Series

(a) Use a degree-three Taylor polynomial to estimate
√
1.2.

Solution:

√
1 + x = 1 +

1

2
x+

(1/2)(− 1/2)

2!
x2 +

(1/2)(− 1/2)(− 3/2)

3!
x3

= 1 +
x

2
− x2

8
+

x3

16
√
1.2 = 1 +

.2

2
− .04

8
+

.008

16
= 1 + .1− .005 + .0005 = 1.0955.

(b) Use a Taylor series to compute lim
x→0

xex
3 − x− x4

x7
=
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Name: Recitation Section:

Solution:

lim
x→0

xex
3 − x− x4

x7
= lim

x→0

(x+ x4 + x7/2 + x10/3! + . . . )− x+ x4

x7

= lim
x→0

x7/2 + x10/3! + . . .

x7

= lim
x→0

1

2
− x3

3!
+ · · · = 1

2
.

(c) Using series, compute
∫ π

0
2x cos(x5) dx.

Solution:

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

cos(x5) =
∞∑
n=0

(−1)n

(2n)!
x10n

2x cos(x5) =
∞∑
n=0

2(−1)n

(2n)!
x10n+1

∫
2x cos(x5) dx =

∞∑
n=0

2(−1)n

(2n)!(10n+ 2)
x10n+2 + C∫ π

0

2x cos(x5) dx =
∞∑
n=0

2(−1)n

(2n)!(10n+ 2)
π10n+2
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