Math 1232: Single-Variable Calculus 2 George Washington University Spring 2023 Recitation 3

Jay Daigle

February 2, 2024

Problem 1. Consider the integral $\int_e^{e^4} \frac{1}{x\sqrt{\ln x}} dx$.

- (a) We're going to have to do a *u*-substitution here. What *u* looks like it should work?
- (b) What do we need to change the bounds to when we do the u-substitution?
- (c) Compute $\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx$.
- (d) Now try computing $\int \frac{1}{x\sqrt{\ln x}} dx$ to get the antiderivative.
- (e) Now plug e^4 and e in to your antiderivative. What do you notice? How is this related to part (c)?

Problem 2. Compute the following integrals.

(a)
$$\int \frac{e^x}{1+e^x} dx$$
.

(b)
$$\int \frac{\ln(x)}{x} dx$$
.

Problem 3 (Challenge). Compute $\int \frac{dx}{1+e^x}$.

Problem 4. (a) Compute $\sin(\arctan(5))$.

(b) Compute
$$\frac{d}{dx}\arccos(\sqrt{x})$$

(c) Compute
$$\frac{d}{dx}\arctan(x+\sec(x))$$

Problem 5. Compute the following integrals:

(a)
$$\int \frac{\arcsin(x)}{\sqrt{1-x^2}} \, dx.$$

(b)
$$\int_0^1 \frac{e^{2x}}{1 + e^{4x}} \, dx.$$