Math 1232: Single-Variable Calculus 2 George Washington University Fall 2024 Recitation 4

Jay Daigle

September 20, 2024

Problem 1. (a) In class, we saw that $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. What is $\lim_{x \to +\infty} \frac{\ln(x^2)}{x}$?

- (b) Compute $\lim_{x \to +\infty} \frac{\ln(x^n)}{x}$ for n > 0.
- (c) Compute $\lim_{x\to+\infty} \frac{\ln(x)}{x^{\epsilon}}$ for $\varepsilon > 0$.
- (d) What do parts (a-c) tell you about the relationship between polynomials and $\ln(x)$?
- (a) In class we saw that $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$. Compute $\lim_{x\to+\infty} \frac{e^x}{x^2}$.
- (b) Compute $\lim_{x\to+\infty} \frac{e^x}{x^n}$ for n > 0.
- (c) What do parts (e-f) tell you about the relationship between e^x and polynomials?

Problem 2. (a) We want to compute $\lim_{x\to\pi/2} \sec(x) - \tan(x)$.

- (b) Can we use L'Hospital's Rule on this as written? Can we change it to a form where L'Hospital's Rule works?
- (c) What is the limit?

Problem 3. Let's compute $\lim_{x\to 0^+} x^{\frac{1}{\ln(x)-1}}$

- (a) What indeterminate form is this?
- (b) If $y = x^{\frac{1}{\ln(x)-1}}$, what is $\ln |y|$?
- (c) Compute $\lim_{x\to 0^+} \ln |y|$.

- (d) Compute $\lim_{x\to 0^+} x^{\frac{1}{\ln(x)-1}}$.
- **Problem 4.** (a) We want to compute $\int x^2 e^{-3x} dx$. Why do we want to use integration by parts? What should be our u and dv, and why?
 - (b) Compute the integral.
 - (c) Now we want to compute $\int \cos(3x)e^{2x} dx$. Why do we want to use integration by parts? What should be our u and dv, and why? When we need to make another choice, what forces us to make that choice?
 - (d) Compute the integral.
- **Problem 5.** Compute $\int \arctan(x) dx$.