Math 1232: Single-Variable Calculus 2 George Washington University Fall 2024 Recitation 5

Jay Daigle

September 27, 2023

Problem 1. Compute $\int \sin^6(x) dx$.

Problem 2. Compute $\int \sec^6(x) \tan^5(x) dx$ with two different approaches. Do you get the same answer either way?

Problem 3 (Bonus). Do one of the following two integrals. Explain why you don't want to do the other one.

(a)
$$\int \tan^2(x) \sec^3(x) dx$$

(b) $\int \tan^3(x) \sec^3(x) dx$

Problem 4. Consider the integral $\int \frac{dx}{\sqrt{4x^2-1}}$.

- (a) Which trig function would let us simplify that square root, and what identity are we using?
- (b) What trigonometric substitution should we use here?
- (c) Compute the antiderivative.
- (d) Make sure to substitute your x back into the equation!

Problem 5. We want to find $\int \frac{x^5 + x - 1}{x^3 + 1} dx$.

(a) What's the first tool we need to apply here? (Hint: not partial fractions!)

(b) Once we get it in a more manageable form, things should simplify out nicely. What is the final integral?

Problem 6. We've looked briefly at the integral $\int \frac{1}{1+e^x} dx$. Let's try it again with our new tools.

- (a) Try the substitution $u = e^x$. What do you get? What tools can apply to the result?
- (b) Do a partial fractions decomposition to get the integral.

Problem 7 (Bonus). Let's see if we can work out the integral of secant. This isn't at all obvious!

- (a) We want $\int \sec(x) dx = \int \frac{1}{\cos(x)} dx$. Since this is a fraction, we can multiply the top and bottom through by $\cos(x)$. This makes the expression more complicated, but it does allow us to use a trig identity. What do we get?
- (b) Now we can do a u substitution. What u substitution seems reasonable? Does it help us at all?
- (c) Now we can use partial fractions to finish the problem off. We wind up with an awkward answer, but an answer.
- (d) The most common formula for the integral of $\sec(x)$ is $\ln|\sec(x) + \tan(x)| + C$. Is that the same as what you got? (Hint: use logarithm laws and multiplication by the conjugate.)

Problem 8 (Bonus). What if we want to find $\int \frac{x^4 + 6x^3 + 4x^2 + 8x + 11}{(x-1)^2(2x+1)(x^2+4x+5)} dx$?