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1 Functions and Limits

1.1 Quick Review Facts

Functions

Recall that a function is a rule that takes an input and assigns a specific output. Note that

a function always gives exactly one output, and always gives the same output for a given

input. Here we remember some facts about common functions.

Polynomials: You should remember the quadratic formula, which says that if ax2 +

bx+ c = 0 then

x =
−b±

√
b2 − 4ac

2a

It is also useful to recall that

• (a+ b)2 = a2 + 2ab+ b2

• (a+ b)(a− b) = a2 − b2

• (a2 + ab+ b2)(a− b) = a3 − b3.

Rational functions are the ratio of two polynomials.

Trigonometric functions: In this course we will always use radians, because they are

unitless and thus easier to track (especially when using the chain rule). Useful facts include:

• The most important trigonometric identity, and really the only one you probably need

to remember, is cos2(x) + sin2(x) = 1.

• From this you can derive the fact that 1 + tan2(x) = sec2(x).

• sin(−x) = − sin(x). We call functions like this “odd”.

• cos(−x) = cos(x). We call functions like this “even.”

• sin(x+ π/2) = sin(π/2− x) = cos(x)

• A fact that we will probably use exactly twice is the sum of angles formula for sine:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

• Similarly, cos(x+ y) = cos(x) cos(y) + sin(x) sin(y)
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Set and interval notation

We write {x : condition} to represent the set of all numbers x that satisfy some condition.

We will sometimes write R to refer to all the real numbers. We will also refer to various

intervals:

(a, b) = {x : a < x < b} open interval [a, b] = {x : a ≤ x ≤ b} closed interval

[a, b) = {x : a ≤ x < b} half-open interval (a, b] = {x : a < x ≤ b} half-open interval

1.2 Approximation

Let’s start with an easy question:

Question 1.1. What is the square root of four?

Everyone can probably tell me that the answer is “two”. So now let’s do a harder one:

Question 1.2. What is the square root of five?

Without a calculator, you probably can’t tell me the answer. But you should be able to

make a pretty good guess. Five close to four; so
√
5 should be close to two.

We call this sort of estimate a zeroth-order approximation. In a zeroth-order approxi-

mation, we only get to use one piece of information: the value of our function at a specific

number. Then we use that information to estimate its value at nearby numbers.

We can only do so good a job with that limited amount of information, but we can still

do a surprising amount.

Example 1.3. The high temperatures in Washington DC on August 25-27 2022 were 88,

91, 88. It’s not surprising that the high temperature on August 28 was 90.

Example 1.4. The high temperatures on January 1-2 were 59 and 63. Can we estimate the

high on January 3?

The obvious guess is that it’s roughly 60. But it turns out the actual answer is 30. Often

the weather stays similar from day to day, but not always; we can’t approach this question

the same way we did the square root function, because some times the weather is just erratic.

This example shows that we can’t always do what we did with
√
5. Some functions jump

around too much for this sort of approximation thing to work; values of similar inputs don’t

have similar outputs.

And sometimes this is pretty important!
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Example 1.5. Used cars that have been driven more are worth less money when sold. A

2012 study by Nicola Lacetera, Devin G. Pope, and Justin Sydnor (Heuristic Thinking and

Limited Attention in the Car Market) collected data on average car price by mileage. The

found (among other things) the following approximate data:

Mileage Average Price

36000 $11500

37000 $11400

38000 $11350

39000 $11250

Based on this, what would you expect the average price of a car with 40000 miles to be?

Based just on this data it seems like you’d maybe expect a price of something like $11200
or $11150. But in fact the price they found was $11000. And we see a pattern like this if we

zoom out and consider all the data:

Figure 1.1: Average price of a used car at given mileages

There’s a noticeable step-down every time the first digit of the mileage changes, because

that’s more noticeable to people than a change in the second or third digit. The difference

between 39000 and 40000 looks bigger that the difference between 38000 and 3900, so there’s

an unexpectedly large drop in price.
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On the other hand, this is all a matter of degree. The temperature dropping thirty

degrees overnight is unusual, and dropping sixty is even more so; in real-world contexts we

can almost always approximate things a little bit. So maybe a better question is: how well

can we approximate a given function?

Example 1.6. Suppose I want to run a current of 5 amps, to within half of an amp, through

a wire with a resistance of 2 ohms. How much voltage do I need to apply?

The formula we need is Ohm’s Law, which says that I = V/R; in this case, we want to

solve 5 = V/2 so we get V = 10.

But what about the error? We want to be correct to within half an ampere, so we really

want I between 4.5 and 5.5. There are a couple of ways we could write this down.

One is to say 4.5 < V/2 < 5.5. Then we can multiply through by 2, and get 9 < V < 11;

so we need between 9 and 11 volts, or V in (9, 11), or V = 10 ± 1. If we want the error in

our current to be less than .5, the error in our voltage has to be less than 1.

Figure 1.2: Left: We want our output to stay between the black dashed lines. Right: If our

input stays between the red dashed lines, we’ll hit our error threshold.

Maybe the more sophisticated way to write it is to talk about the error. We want the

difference between our current I and our target 5 to be less than .5. We could just try

writing

I − 5 < .5

but that’s not quite right; it’s still bad if I is too small, not just if it’s too big. So instead

we use the absolute value function:

|I − 5| < .5.
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Since I = V/2, we get

|V/2− 5| < .5

−.5 < V/2− 5 < .5

4.5 < V/2 < 5.5

9 < V < 11

which gives us our original answer.

We sometimes use the Greek letter ε, which is basically the Greek lower-case “e”, to

represent the error in our output. So in this past example we can say that we had ε = .5.

What if we change the error margin? If we want ε = .1, we do the same setup, but

instead we have

|V/2− 5| < ε = .1

−.1 < V/2− 5 < .1

4.9 < V/2 < 5.1

9.8 < V < 10.2.

So our voltage needs to be 10± .2, and the allowable error in our input voltage is .2. Just like

we use the Greek letter ε for the desired error in our output, we sometimes use the Greek

letter δ for the error in input. So we see here that if we want ε = .1 we need δ = .2.

Here’s a similar problem but with a more complicated function.

Example 1.7. Suppose we want to make a square platform that’s 16 square meters, plus or

minus 1. How long do the sides need to be?

If the side length is s then the area is s2, so we want s2 = 16 or s = 4. (Why can’t

we have s = −4? The number −4 is also a solution to that equation, but it doesn’t reflect

something physically possible so we can ignore it.)

But what do we need to do to stay within our error margin ε = 1? Obviously, we want s

to be between
√
15 and

√
17, but that’s not helpful if we don’t know what

√
17 is. Instead

we’re going to estimate again.

We want |s2 − 16| < ε = 1, and factoring the left hand side gives |s − 4| · |s + 4| < 1.

We can’t solve this exactly, but we can make the following lazy decision: We know s should

be approximately 4. It might be a little bigger, so s + 4 might be bigger than 8, but it’s
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certainly less than 10. Then we just need to solve

10|s− 4| < 1

|s− 4| < .1

−.1 < s− 4 < .1

3.9 < s < 4.1.

And indeed we can compute 3.92 = 15.21 and 4.12 = 16.81, both of which are within one

meter of 16. We can say that we want s in the interval (3.9, 4.1), or that we want s to be

4± .1. Thus we need δ = .1 for our ε = 1.

Remark 1.8. The answer we got in example 1.7 isn’t the optimal or exact bound. 4.122 =

16.9744 < 17 so δ = .12 still works; but this is a reasonably easy-to-compute error margin

that we know will work.

In fact, the true bound doesn’t have to be symmetric. If we plug in more numbers, we see

that 3.8752 = 15.0156, which is within one square meter of 16. But 4.1252 = 17.0156, which

gives us an error bigger than 1. We generally want to pick a δ that works in both directions,

because we don’t know whether we’re going to overshoot or undershoot our targts.

Example 1.9 (recitation). How does this change if we want an area of 25 square meters

instead? We know we need s ≈ 5. We want |s2 − 25| < 1, which gives |s − 5| · |s + 5| < 1.

And here we cannot assume that |s + 5| < 10, because s might be a little bigger than 10.

But we can assume it’s smaller than 11, so we want s = 5± 1/11, or s in (54/11, 56/11) ≈
(4.909, 5.091).

And again we have (54/11)2 ≈ 24.0992 and (56/11)2 ≈ 25.9174 so δ = 1/11 is in fact an

acceptable amount of error in the input.

(And similarly to the last example: 4.92 = 24.01 keeps us within our error margin; but

5.12 = 26.01 does not. So if we want to be safe not matter which direction our error is,

δ = .1 is too big.)
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Figure 1.3: Left: ε = 1. Right: ε = .1.

Example 1.10 (recitation). What if we want a smaller error, say ε = .1 square meters? Then

we run the same calculations, and we want |s−5| · |s+5| < .1, and thus |s−5| < .1/11 = 1
110

.

So we want s = 5± 1
110

, and δ = 1/110.

You might be noticing at this point that if we change ε but leave everything else the

same, we can generally find the new δ pretty quickly by reusing our old work.

Example 1.11 (recitation). Now let’s return to the square root function we started the

section with. We know that
√
4 = 2. If we want to allow an output error of ε = 1, how large

of an input error can we tolerate? We know that
√
1 = 1 and

√
9 = 3, so we need to stay in

the interval (1, 9). Since we’re aiming for 4, this means we can get away with undershooting

by 3, or overshooting by 5. So we have to take δ = 3.

What if we want ε = .5? Well, that means we want 1.5 <
√
x < 2.5; squaring the

equation gives 2.25 < x < 6.25. Thus we can undershoot by 1.75 or overshoot by 2.25; we

have to take δ = 1.75.

Figure 1.4: Left: ε = 1. Right: ε = .5.

Here’s an example that’s more complicated still—in fact, so complicated we’re going to

cheat:
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Example 1.12 (Bonus). We want to dilute an acid by a factor of ten, so that we produce a

solution that’s ten percent acid and 90 percent water. If we have one liter of acid, how much

water do we need to add to get within one percentage point of our desired concentration?

Ideally we’d add nine liters of water, to get exactly 10% acid. But what’s the error

margin there, to land between 9% and 11%?

Our concentration will be f(x) = 1
1+x

where x is the number of liters of water we add.

We could, if we wanted, do some algebra:∣∣∣∣ 1

1 + x
− 1

10

∣∣∣∣ < .01∣∣∣∣10− (1 + x)

10(1 + x)

∣∣∣∣ < .01

|9− x| < .1(1 + x)

and since x ≈ 9 we can assume 1+x is close to 10; say it’s between 9 and 11. Then we need

|9− x| < .9

−.9 < 9− x < .9

−9.9 < −x < −8.1

8.1 < x < 9.9.

And we can check that if x = 9.9 we get a concentration of
1

1 + 9.9
≈ .09174 and if x = 8.1

we get a concentration of
1

1 + 8.1
≈ .10989.

But honestly, that algebra is kind of nasty. And this function isn’t even that complicated,

right? It gets worse. So if we really need to know the answer, we can be lazy.

f(9) = .1 f(8.9) ≈ .10101 f(8.8) ≈ .10204

f(8.7) ≈ .10309 f(8.6) ≈ .10417 f(8.5) ≈ .10526

f(8.4) ≈ .10538 f(8.3) ≈ .10753 f(8.2) ≈ .10870

f(8.1) ≈ .10989 f(8.0) ≈ .11111
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And in the other direction

f(9.1) ≈ .09901 f(9.2) ≈ .09804 f(9.3) ≈ .09709

f(9.4) ≈ .09615 f(9.5) ≈ .09524 f(9.6) ≈ .09434

f(9.7) ≈ .09346 f(9.8) ≈ .09259 f(9.9) ≈ .09174

f(10.0) ≈ .09091 f(10.1) ≈ .09009 f(10.2) ≈ .08929.

so we can get away with anywhere between 8.1 and 10.1 liters of water.

Then we’d have to pick δ = .9, if we want to be safe in both directions.

Example 1.13. The Heaviside function is used to describe the behavior of a lightswitch.

Before you flip the switch, no current is flowing through the circuit; when you flip the switch,

current instantly jumps to 1 amp.

H(t) =

{
0 t < 0

1 t ≥ 0
.

Now we’re going to ask some kind-of-dumb questions.

Suppose we want a current of 1 amp, plus or minus 2 amps (so ε = 2). What range of

inputs will land us within the target range? Here we want a current between −1 amp and 3

amps, so literally any input will work.

Now let’s reduce ε. What if we want a current of 1± .5? That means we want a current

between .5 and 1.5. Any value t ≥ 0 will work. But no negative value will work.

If we reduce ε still further, nothing changes. If we want a current of 1± .000001, we can

still take any t ≥ 0 and no t < 0.

But with just those questions, we can’t really pick a δ, right? Because I didn’t give you

a center point. So now suppose we can take t = 1± δ, and we want H(t) = 1± .5. What’s

the biggest δ we can possibly pick? Well, we need t > 0 to get H(t) > .5, so the biggest δ

can be is 1, giving us t in (0, 2).
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On the other hand, what if we want t = 0± δ? From the definition of H, we know that

H(0) = 1 exactly. But how far away from 0 can we get, and still land H(t) in the 1 ± .5

target zone we’re aiming for? A little thought, and maybe sketching some pictures, should

convince you that we cannot do this. If we’re aiming for t = 0 we cannot tolerate any error

at all.

1.3 Limits

In the last subsection we talked about error margins: we have some function, and some

amount of error we can accept in the output, and then we ask how much error we’re allowed

to make in the input. And we saw that if we picked a smaller error margin ε, we would get

a smaller input tolerance δ.

But we also saw that in many of the functions we looked at, we had no problem hitting

a smaller ε margin as long as we could make δ smaller at the same time.

Example 1.14. In example 1.6 we had current as a function of voltage: we got the formula

I = V/2. And we worked out that if we want an output of 5 ± 1/2, we need an input of

10± 1.

But algebraically, we said that we want |V/2 − 5| < ε, and multiplying through by 2

we get |V − 10| < 2ε, which implies that V = 10 ± 2ε will be precise enough to serve our

purposes. But we can do that whole argument without saying what ε is in the first place!

If ε = .5 then we get δ = 1. But if ε = .1 we get δ = .2. And if ε = .000001 then

δ = .000002. No matter how precise we need our output, if we make our input precise

enough we can match it.

Example 1.15. In example 1.7 we were looking for the area of a square as a function of its

side length. We wanted an area of 16 square meters, so we found that our error would be
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|s2 − 16|; after doing some tricky algebra, we saw that the condition we wanted was

10|s− 4| < ε

|s− 4| < ε/10.

At the time we said we wanted an error margin of 1, so we got a δ of 1/10 and wanted

s = 4 ± 1/10. But we can see that if we wanted to hit ε = 1/100 we’d just need to take

δ = 1/1000; we can get the area as precise as we want, as long as we can control the side

length precisely.

When we have a value that we can approximate as precisely as we want, we call that a

limit. And we can turn all the discussion we’ve done so far into a technical and scary-looking

definition:

Definition 1.16. Suppose a is a real number, and f is a function defined on some open

interval containing a, except possibly for at a. We say the limit of f(x) as x approaches a is

L, and write

lim
x→a

f(x) = L,

if for every real number ε > 0 there is a real number δ > 0 such that whenever 0 < |x−a| < δ

then |f(x)− L| < ε.

There’s a lot of notation here, but this is just putting all the work we’ve been doing

together. We have some target output L, and some target input a. And we have a margin

of acceptable error around L, given by the number ε: we want f(x) = L ± ε, or in other

words we want our error |f(x) − L| < ε. If we can always hit that margin of error just by

making δ small, then we say there’s a limit.

Example 1.17. If f(x) = x/2, prove limx→10 f(x) = 5.

This is exactly what we saw in our current and voltage argument in examples 1.6 and

1.14.

Let ε > 0, and set δ = 2ε. Then if 0 < |x− 10| < δ, we have

|f(x)− 5| = |x/2− 5| = 1

2
|x− 10|

<
1

2
δ =

1

2
(2ε) = ε.

Thus |f(x)− 5| < ε, and so limx→10 f(x) = 5.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 11

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Example 1.18. If f(x) = 3x then prove limx→1 f(x) = 3.

Let ε > 0 and set δ = ε/3. Then if 0 < |x− 1| < δ then

|f(x)− 3| = |3x− 3| = 3|x− 1| < 3δ = ε.

Example 1.19. If f(x) = x2 then prove limx→0 f(x) = 0.

Let ε > 0 and set δ =
√
ε. Then if |x− 0| < δ, then

|f(x)− 0| = |x2| = |x|2 < (
√
ε)2 = ε.

Figure 1.5: Left: ε = 1/2 and δ = 1/
√
2. Right: ε = 1/4 and δ = 1/2.

What does it look like when we don’t have a limit?

Example 1.20. If H(t) is the Heaviside function from example 1.13, can we compute

limt→0H(t)?

From the work we’ve done already, we’ve already seen that althoughH(0) = 1, limt→0H(t) ̸=
1. If we take ε = .5, we’re asking all our inputs to lie between .5 and 1.5. But as long as our

input is 0± δ, then no matter how small we make δ we’re still allowing negative numbers as

inputs, so our outputs will include 0.

It’s a little harder and more annoying to really rigorously prove that there’s no limit,

because we somehow need to talk about every possible limit at once. But just like 0 ± δ

always includes negative numbers, it also always includes positive numbers, so 1 will always

be an output we get. But if we ask for any number that isn’t 1, then if ε is really small then

1 won’t be between L− ε and L+

varepsilon. We can’t make epsilon as small as we like, so we don’t have a limit.

However, the Heaviside function clearly behaves well if look only at one side or the other

of it. And just as we could talk about continuity to one side or the other, we can talk about

one-sided limits.
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Definition 1.21. Suppose a is a real number, and f is a function which is defined for all

x < a that are “near” the number a. We say “The limit of f(x) as x approaches a from the

left is L,” and we write

lim
x→a−

f(x) = L,

if we can make f(x) get as close as we want to L by picking x that are very close to (but

less than) a.

Suppose a is a real number, and f is a function which is defined for all x > a that are

“near” the number a. We say “The limit of f(x) as x approaches a from the right is L,” and

we write

lim
x→a+

f(x) = L,

if we can make f(x) get as close as we want to L by picking x that are very close to (but

greater than) a.

Under this definition, we see that limx→0− H(x) = 0 and limx→0+ H(x) = 1.

The most subtle aspect of the definition is that we don’t actually care what happens

when we get our input exactly right. We’re only asking if we can approximate the desired

output, not if we can get it exactly. This makes limits incredibly useful for talking about

functions that are undefined at individual points.

Example 1.22. If f(x) = x2−1
x−1

then limx→1 f(x) = 2.

This is harder to see at first, until we recall or notice that this function is mostly the

same as x+ 1.

Let ε > 0 and let δ = ε. Then if 0 < |x− 1| < δ, we have

|f(x)− 2| =
∣∣∣∣x2 − 1

x− 1
− 2

∣∣∣∣
= |x+ 1− 2| since x ̸= 1

= |x− 1| < δ = ε.

This formal definition of limits is useful for a lot of technical work, and also for when

we’re trying to control the error in our output when we don’t have precise control of our

inputs. But it’s often useful to think of it a bit more informally.

Definition 1.23 (informal). Suppose a is a real number, and f is a function which is defined

for all x “near” the number a. We say “The limit of f(x) as x approaches a is L,” and we

write

lim
x→a

f(x) = L,
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if we can make f(x) get as close as we want to L by picking x that are very close to a.

Graphically, this means that if the x coordinate is near a then the y coordinate is near

L. Pictorially, if you draw a small enough circle around the point (a, 0) on the x-axis and

look at the points of the graph above and below it, you can force all those points to be close

to L.

Notice that we’re trying to use knowing f(x) to tell us what happens near a. So we

specifically ignore the value of f(a) even if we already know it.

Example 1.24. Let’s consider the function f(x) = x3−1
x−1

. We can see the graph below.

Notice that the function isn’t defined at a = 1, so f(1) is meaningless and we can’t compute

it.

But f is defined for all x near 1, so we can compute the limit. Looking at the graph and

estimating suggests that when x gets close to 1, then f(x) gets close to 3, and so we can say

that limx→1 f(x) = 3.

Informally, we can estimate limits by eyeballing the graph. Formally, we can justify this

limit claim by writing out a full ε − δ proof, but that’s tedious and annoying. We’d like a

middle route, which allows us to compute limits algebraically without having to set up a

full proof; and we can do that using two core principles. The first is what I call the Almost

Identical Functions property.

Lemma 1.25 (Almost Identical Functions). If f(x) = g(x) on some open interval (a−d, a+

d) surrounding a, except possibly at a, then limx→a f(x) = limx→a g(x) whenever one limit

exists.

This tells us that two functions have the same limit at a if they have the same values

near a. This makes sense, because the limit only depends on the values near a.

How does this help us? Ideally, we take a complicated function and replace it with a

simpler function.
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Example 1.26. Above, we looked at the function f(x) = x3−1
x−1

. You may know that we can

factor the numerator; thus we in fact have f(x) = (x−1)(x2+x+1)
x−1

.

At this point you probably want to cancel the x−1 term on the top and the bottom. But in

fact that would change the function! For f(1) isn’t defined. But the function g(x) = x2+x+1

is perfectly well-defined at a = 1. Thus f(1) ̸= g(1), and so f and g can’t be the same

function.

However, they do give the same value if we plug in any number other than 1. If y ̸= 1

then y − 1 ̸= 0, so we have

f(y) =
(y − 1)(y2 + y + 1)

y − 1
= y2 + y + 1 = g(y).

Thus f and g aren’t the same, but they are almost the same. So lemma 1.62 tells us that

limx→1 f(x) = limx→1 g(x).

However, this doesn’t fully answer our question. We’ve replaced a complicated function

f(x) = x3−1
x−1

with a simpler function g(x) = x2 + x+1, but we still haven’t figured out what

to do with that function. (We could still write a ε− δ proof, and we still don’t want to.)

But g(x) = x2 + x + 1 is a straightforward function. We can just plug numbers into it

and get some sort of answer. And we would hope that limx→1 g(x), which is an attempt to

approximate g(1), will actually give us the same answer as g(1). But will it?

1.4 Continuity and Computing Limits

We began class with the observation that approximation works really well for some functions

(like
√
x), and much less well for other functions (like the high temperature as a function of

the day). We like working with the well-approximatable functions, so we give them a name:

we call them continuous.

Informally, we say a function f is continuous at a number a if f(x) is a good approximation

of f(a) as long as x is close to a. Formally:

Definition 1.27. We say that f is continuous at a if limx→a f(x) = f(a).

The definition of continuity says that limx→a f(x) = f(a). This secretly actually requires

three distinct things to happen:

(a) The function is defined at a; that is, a is in the domain of f .

(b) limx→a f(x) exists.
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(c) The two numbers are the same.

There are a few different ways for a function to be discontinuous at a point:

(a) A function f has a removable discontinuity at a if limx→a f(x) exists but is not equal

to f(a).

(b) A function f has a jump discontinuity at a if limx→a− f(x) and limx→a+ f(x) both exist

but are unequal.

(c) A function f has a infinite discontinuity if f takes on aribtrarily large or small values

near a. We’ll talk about this more soon.

(d) It’s also possible for the one-sided limits to not exist, but this doesn’t have a special

name. We’ll see this with sin(1/x) when we study trigonometric functions in section

1.5. In this class, I’ll just call a function like this really bad. But we’ll mostly avoid

talking about them.

Figure 1.6: Left: a: removable discontinuity; b: jump discontinuity; c: infinite discontinuity.

Right: a “bad” discontinuity in the function sin(1/x).

Some functions get even worse than that. My two favorite discontinuous functions are:

T (x) =

{
1/q x = p/q rational

0 x irrational
χ(x) =

{
1 x rational

0 x irrational

Example 1.28. The Heaviside function of example 1.13 is not continuous, since there’s a

jump at 0.

It is continuous from the right at 0, since limx→0+ H(x) = 1 = H(0). This function is

not continuous from the left, since limx→0− H(x) = 0 ̸= H(0).

In fact, in some sense “most functions” aren’t at all continuous. If you found away to

choose f(x) completely at random for each real number x, you would get a spectacularly

discontinuous function. But you would never actually be able to describe it sensibly.
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Figure 1.7: Left: T (x) is really discontinuous. Right: χ(x) is really really discontinuous

In contrast, if you can draw a function reasonably, it pretty much has to be (mostly)

continuous. A common informal definition is that a continuous function is one whose we can

draw without lifting our pencil from the paper. Once we make this precise, this is another

way to think about continuous functions. And we make it precise via the Intermediate Value

Theorem

Theorem 1.29 (Intermediate Value Theorem). Suppose f is continuous (and defined!) on

the closed interval [a, b] and y is any number between f(a) and f(b). Then there is a c in

(a, b) with f(c) = y.

Example 1.30. Suppose f(x) is a continuous function with f(0) = 3, f(2) = 7. Then by

the Intermediate Value Theorem there is a number c in (0, 2) with f(c) = 5.

Example 1.31. Let g(x) = x3 − x+ 1. Use the Intermediate Value Theorem to show that

there is a number c such that g(c) = 4.

To use the intermediate value theorem, we need to check that our function is continuous,

and then find one input whose output is less than 4, and another whose output is greater

than 4. g is a polynomial and thus continuous. Testing a few values, we see g(0) = 1, g(1) =

1, g(2) = 7. Since g(1) = 1 < 4 < 7 = g(2), by the Intermediate Value Theorem ther is a c

in (1, 2) with g(c) = 4.

Example 1.32. Show that there is a θ in (0, π/2) such that sin(θ) = 1/3.

We know that sin is a continuous function, and that sin(0) = 0 and sin(π/2) = 1.

Since 0 < 1/3 < 1, by the Intermediate Value Theorem there is a θ in (0, π/2) such that

sin(θ) = 1/3.

Remark 1.33. The converse of this theorem is not true. It is possible to have a function that

satisfies the conclusions of the Intermediate Value Theorem, but is not continuous; these

functions are called Darboux Functions.
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For example, let f(x) =

{
sin(1/x) x ̸= 0

0 x = 0
. Then f satisfies the conclusion of the

intermediate value theorem: it’s continuous except at zero, so the theorem works on any

interval that doesn’t contain zero. Any interval containing zero contains every value in

[−1, 1], so if a < 0 < b and y is between f(a) and f(b), then −1 ≤ y ≤ 1 and so there is a c

in (a, b) such that f(c) = y. Thus f is Darboux.

Historically, the main reason we didn’t take this as the definition of continuous, instead

of the limit definition that we actually use, is that we didn’t want to treat functions like this

as “continuous”.

1.4.1 Limits of Continuous Funtions

Most of the functions that we can easily describe, or draw graphs of, are continuous most of

the time.

Fact 1.34. Any reasonable function given by a reasonable single formula is continuous at

any number for which it is defined.

In particular, any function composed of algebraic operations, polynomials, exponents, and

trigonometric functions is continuous at every number in its domain.

If a function is continuous at every number in its domain, we just say that it is continuous.

Note, importantly, that a continuous function doesn’t have to be continuous at every real

number.

Example 1.35. The function

f(x) =
x3 − 5x+ 1

(x− 1)(x− 2)(x− 3)

is “reasonable”, so it is continuous. This means that it is continuous exactly on its domain,

which is {x : x ̸= 1, 2, 3}.

Example 1.36. Where is
√
1 + x3 continuous?

Answer: Root functions are continuous on their domains. 1 + x3 ≥ 0 when x ≥ −1 so

the function is continuous on its domain, [−1,+∞).

Remark 1.37. Sometimes we might also talk about functions that are “continuous from the

right” at a. This means that f(a) is a good approximation of f(x) if x is close to a and also

bigger than—and thus to the right of—a.

And if we know a function is continuous, it is very easy to compute a limit.
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Example 1.38. (a) The function f(x) = 3x is continuous at 1, so limx→1 f(x) = f(1) = 3.

(b) The function f(x) = x2 is continuous at 0, so limx→0 f(x) = f(0) = 0.

(c) The function f(x) = x2−1
x−1

is definitely not continuous at 1, because it’s not defined

there. But we can use almost identical functions:

lim
x→1

f(x) = lim
x→1

(x− 1)(x+ 1)

x− 1
= lim

x→1
x+ 1 = 2.

This might seem like the whole limit thing has no point; most functions are continuous,

and if a function is continuous then we can compute limits just by plugging in values. But

there is one very important type of question where limits are doing real work.

Example 1.39. What is limx→0

√
9+x−3
x

?

We use a trick called multiplication by the conjugate, which takes advantage of the fact

that (a + b)(a − b) = a2 − b2. This trick is used very often so you should get comfortable

with it.

lim
x→0

√
9 + x− 3

x
= lim

x→0

√
9 + x− 9

x

√
9 + x+ 3√
9 + x+ 3

= lim
x→0

(9 + x)− 3

x(
√
9 + x+ 3)

= lim
x→0

x

x(
√
9 + x+ 3)

= lim
x→0

1√
9 + x+ 3

=
1

limx→0

√
9 + x+ 3

=
1

6
.

We can also use these continuity arguments to calculate one-sided limits.

Example 1.40. What is limx→1− f(x) if f(x) =

{
x2 + 2 x > 1

x− 3 x < 1
?

Answer: −2.

Remark 1.41. At a jump discontinuity, a function will often be continuous from one side but

not the other. This is not necessarily the case, though: consider the function

f(x) =


2 x > 0

1 x = 0

0 x < 0

Limits exist from the right and the left, but the function is not continuous from either side.
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1.4.2 Function Extensions

Recall we like continuous functions because we can use their values at one point to approx-

imate the values they should have at nearby points. And we observed that this is really

unhelpful at any point where the function isn’t defined. So if we have a function that’s con-

tinuous everywhere it’s defined, we’d like to replace it with a function that is continuous—and

defined—everywhere.

Definition 1.42. We say that g is an extension of f if the domain of g contains the domain

of f , and g(x) = f(x) whenever f(x) is defined.

In general, we can only extend a function to be continuous at all real numbers if the only

discontinuities were removable. This is why we call discontinuities like that “removable”.

Example 1.43. Let f(x) = x2−1
x−1

. Can we define a function g that agrees with f on its

domain, and is continuous at all reals?

f is continuous everywhere on its domain, and is undefined at x = 1. We can see that

g(x) = x + 1 will give the same value as f everywhere on f ’s domain, and it is continuous

since it is a polynomial. Thus g is a continuous extension of f to all reals.

Alternatively, we could compute that limx→1 f(x) = 2. Then we define

h(x) =

{
x2−1
x−1

x ̸= 1

2 x = 1.

The function h(x) is defined at all reals, and since it is continuous at 1 by our computation,

it is continuous everywhere. It also must extend f since it is just defined to be f everywhere

in the domain of f . So h is a continuous extension of f to all reals.

Importantly, g and h are actually the same function, since they give the same output for

every input. There is at most one continuous extension of any given function; but there are

multiple ways to describe that extension.

Example 1.44. The function f(x) = 1/x is continuous on its domain, but we cannot extend

it to a function continuous at all reals, because the limit at 0 does not exist.

Example 1.45. Let f(x) = x2−4x+3
x−3

. Can we extend f to a function continuous at all reals?

Answer: f is continuous at all reals except x = 3. But the function g(x) = x − 1 is the

same everywhere except for 3, and is continuous at 3.

Example 1.46. Let

g(x) =

{
x2 + 1 x > 2

9− 2x x < 2
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Can we extend this to a continuous function on all reals?

Answer: limx→2− f(x) = limx→2− 9− 2x = 5, and limx→2+ f(x) = limx→2+ x2 + 1 = 5, so

the limit at 2 exists. Thus we can extend g to

gf (x) =

{
x2 + 1 x ≥ 2

9− 2x x ≤ 2

which is continuous at all reals.

Example 1.47. What is limx→1− f(x) if f(x) =

{
x2 + 2 x > 1

x− 3 x < 1
?

Answer: −2.

1.5 Trigonometry and the Squeeze Theorem

We now want to look at limits of trigonometric functions. Fortunately, they behave mostly

how we want them to.

Proposition 1.48. If a is a real number, then limx→a sin(x) = sin(a) and limx→a cos(x) =

cos(a).

In fact, since trigonometric functions are just ways of combining sine and cosine, essen-

tially all trigonometric functions behave this way where they are defined.

Example 1.49. limx→π cos(x) = −1.

limx→π tan(x) = 0.

But where the functions are not defined, sometimes very odd things can happen. We’ve

seen a graph of sin(1/x) before, in section 1.4. We said that the function wasn’t continuous

at 0. In fact, no limit exists there.

Suppose a limit does exist at zero; specifically, let’s suppose that limx→0 sin(1/x) = L.

Then if x is close to 0, it must be the case that sin(1/x) is close to L.

But however close we want x to be to 0, we can find a x1 =
1

(2n+1/2)π
, and then sin(1/x1) =

sin(2nπ + π/2) = sin(π/2) = 1. But we can also find an x2 =
1

(2n+3/2)π
so that sin(1/x2) =

sin(2nπ + 3π/2) = sin(3π/2) = −1. So L must be really close to 1 and really close to -1,

and these numbers are not close. So no limit exists.
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Left: graph of sin(1/x), Right: graph of x sin(1/x)

In contrast, from the graph it appears that limx→0 x sin(1/x) does exist. We can’t possibly

prove this by replacing x sin(1/x) with an almost identical function and plugging values in:

the function is gross and complicated, and any almost identical function will also be gross

and complicated.

But we can easily see that limx→0 x = 0. This doesn’t mean that limx→0 xf(x) = 0 for

any f(x); if f(x) gets really big then it can “cancel out” the x term getting very small. (A

good example of this is limx→0 x
1
x
, which is of course 1).

But if we can prove that the second term, which in this case is sin(1/x), does not get

really big, then the entire limit will have to go to zero. We make this intuition precise with

the following important theorem:

Theorem 1.50 (Squeeze Theorem). If f(x) ≤ g(x) ≤ h(x) near a (except possibly at a),

and limx→a f(x) = limx→a h(x) = L, then limx→a g(x) = L.

To use the Squeeze Theorem, we need to do two things:

(a) Find a lower bound and an upper bound for the function we’re interested in; and

(b) show that their limits are equal.

We usually do this by factoring the function we care about into two pieces, where one goes

to zero and the other is bounded, and thus doesn’t get infinitely big.

In this case, we know that −1 ≤ sin(a) ≤ 1 for any real number a, so in particular

−1 ≤ sin(1/x) ≤ 1. We “want” to multiply both sides of the equation by x to get −x ≤
x sin(1/x) ≤ x, but this actually doesn’t quite work! If x is negative this is in fact backwards,

as we can see on the graph below:

Figure 1.8: x sin(1/x) graphed with x and −x. Notice how they cross over in the middle.

There is one more important limit involving sin:
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Proposition 1.51 (Small Angle Approximation).

lim
θ→0

sin θ

θ
= 1

Proof. The proof of this isn’t anything I’d expect you to be able to recreate, but it’s inter-

esting and fun and points to useful facts about trigonometry.

We’ll assume θ is small and positive; this all still works if θ is small and negative, with

different signs. We’ll start by drawing the unit circle, and then including some extra lines

to construct triangles.

Let θ be the measure of angle AOC in our diagram. Observe that sin(θ) is precisely the

length of the line segment AC by definition, and the line segment OC has length one because

this is a unit circle. So triangle BOC has area sin(θ)
2

.

Now we want to find the area of the wedge BOC. This will be larger than the triangle,

since it includes the whole triangle plus an extra sliver. We know that the area of the entire

circle is π. But the wedge is θ
2π

of the circle, since the circle measures 2π radians; so the

area of the wedge is π · θ
2π

= θ
2
.

Since the triangle is contained in the wedge, we have sin(θ)
2

≤ θ
2
and thus sin(θ)

θ
≤ 1. That

gives us one inequality involving sin(θ)
θ

, and now we need another.

We want to find the area of the large triangle BOD. But we know that tan(θ) is the ratio

of the opposite side of this triangle to the adjacent, so tan(θ) = BD
OB

. Since OB has length 1,

the length of DB is tan(θ), and the area of this triangle is tan(θ)
2

.

Since the wedge BOC is contained in this triangle BOD, we know that it has a smaller

area, so θ
2
≤ tan(θ)

2
. Since tan(θ) = sin(θ)

cos(θ)
, after rearranging we see that cos(θ) ≤ sin(θ)

θ
.

Thus cos θ ≤ sin θ
θ

≤ 1. But limθ→0 cos θ = 1, and limθ→0 1 = 1, so by the squeeze theorem

we have

lim
θ→0

sin θ

θ
= 1.
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Remark 1.52. This means that the function

f(x) =

{
sin(x)/x x ̸= 0

1 x = 0

is a continuous extension of sin(x)/x to all reals.

It also tells us that when x is a small number, sin(x) ≈ x. This is a fact we’ll return to

a couple times throughout the course.

The small angle approximation is useful on its own, but we can also use it as a new limiting

rule, which allows us to compute limits of functions that mix algebra and trigonometry.

Example 1.53. Suppose we want to compute limx→0
sin(2x)

2x
. If we take θ = 2x, then this is

limθ→0
sin(θ)

θ
= 1.

Example 1.54. What is limx→3
sin(x−3)

x−3
?

This is a small angle approximation again, since we can take θ = x − 3, which is ap-

proaching zero. Thus the limit is 1.

In general, we can use the small angle approximation plus a bit of algebra to work out

all sorts of these computations.

Example 1.55. What is limx→0
sin(4x) sin(6x)

sin(2x)x
?

We can write

lim
x→0

sin(4x) sin(6x)

sin(2x)x
= lim

x→0

( sin(4x)/4x · 4x) ( sin(6x)/6x · 6x)
( sin(2x)/2x · 2x) · x

= lim
x→0

sin 4x

4x
· sin 6x

6x
· 2x

sin(2x)
· 24x

2

2x2

= 1 · 1 · 1 · 12 = 12.

Here we are simply pairing off the sin(θ)’s with θs, for θ = 4x, 6x, 2x, and then collecting

the remainder into the last term.

Example 1.56 (Bonus). What is limx→0
x sin(2x)
tan(3x)

?

When we see a tangent in a problem, it is often helpful to rewrite it in terms of sin and

cos. We can then collect terms:

lim
x→0

x sin(2x)

tan(3x)
= lim

x→0

x sin(2x)

sin(3x)/ cos(3x)

= lim
x→0

3x

sin(3x)
· sin(2x) cos(3x)

3
= 1 · 0

3
= 0.
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Example 1.57 (Recitation). What is limx→3
sin(x2−9)

x−3
?

We have a sin(0) on the top and a 0 on the bottom, but the 0s don’t come from the same

form; we need to get a x2 − 9 term on the bottom. Multiplication by the conjugate gives

lim
x→3

sin(x2 − 9)

x− 3
= lim

x→3

sin(x2 − 9)

x− 3
· x+ 3

x+ 3
= lim

x→3

sin(x2 − 9)(x+ 3)

x2 − 9

= lim
x→3

sin(x2 − 9)

x2 − 9
· lim
x→3

x+ 3 = 1 · (3 + 3) = 6.

Example 1.58. What is limx→0
1−cosx

x
?

We can see that the limits of the top and the bottom are both 0, so this is an indeterminate

form. We can’t use the small angle approximation directly because there is no sin here at

all. But we can fix that by multiplying by the conjugate.

lim
x→0

1− cosx

x
= lim

x→0

1− cosx

x
· 1 + cos(x)

1 + cos(x)
= lim

x→0

1− cos2(x)

x(1 + cos(x))
= lim

x→0

sin2(x)

x(1 + cos(x))

= lim
x→0

sin(x)

1 + cos(x)
=

0

2
= 0.

1.6 Infinite Limits

A few times in the past couple sections we’ve talked about vertical asymptotes, or functions

going to infinity. In this section we want to look at exactly what that means. Some limits

deal with infinity as an output, and others deal with it as an input (or both).

Remark 1.59. Recall that infinity is not a number. Sometimes while dealing with infinite

limits we might make statements that appear to treat infinity as a number. But it’s not safe

to treat ∞ like a true number and we will be careful of this fact.

1.6.1 Limits To Infinity

Definition 1.60. We write

lim
x→a

f(x) = +∞

to indicate that as x gets close to a, the values of f(x) get arbitrarily large (and positive).

We write

lim
x→a

f(x) = −∞

to indicate that as x gets close to a, the values of f(x) get arbitrarily negative.

We write

lim
x→a

f(x) = ±∞
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to indicate that as x gets close to a, the values of f(x) get arbitrarily positive or negative.

We usually use this when both occur.

Remark 1.61. Important note: If the limit of a function is infinity, the limit does not exist.

This is utterly terrible English but I didn’t make it up so I can’t fix it. All the theorems

that say “If a limit exists” are not including cases where the limit is infinite.

Lemma 1.62. Let f(x), g(x) be defined near a, such that limx→a f(x) = c ̸= 0 and limx→a g(x) =

0. Then

lim
x→0

f(x)

g(x)
= ±∞.

Further, assuming c > 0 then the limit is +∞ if and only if g(x) ≥ 0 near a, and the limit

is −∞ if and only if g(x) ≤ 0 near a. If c < 0 then the opposite is true.

Remark 1.63. If the limit of the numerator is zero, then this lemma is not useful. That is

one of the “indeterminate forms” which requires more analysis before we can compute the

limit completely.

Example 1.64. What is limx→3
−1√
x−3

? We see the top goes to 1 and the bottom goes to 0,

so the limit is ±∞. Since the denominator is always positive and the numerator is negative,

the limit is −∞.

We have to be careful while working these problems: the limit laws that work for finite

limits don’t always work here, since the limit laws assume that the limits exist, and these

do not. In particular, adding and subtracting infinity does not work. In recitation we’ll

experiment a bit with the ways that normal limit laws fail. Instead, we need to arrange the

function into a form where we can use lemma 1.62.

It’s helpful organize our thinking about these situations in terms of the “indeterminate

forms”, which are: 0
0
, ∞∞ , 0 ·∞,∞±∞, 1∞,∞0. Notice that none of these are actual numbers,

and they can never be the correct answer to pretty much any question.

More importantly, indeterminate forms don’t even tell us what the answer should be; if

plugging in gives you one of those forms, the true limit could potentially be pretty much

anything. We have to do more work to get our functional expression into a determinate

form. As a general rule, we use algebraic manipulations to get a form of 0
0
, then factor out

and cancel (x− a) until either the numerator or the denominator is no longer 0.

In contrast, neither 0
1
nor 1

0
is an indeterminate form. 0

1
is just a number, equal to

0. 1
0
is not a number and is never the correct answer to a question; if you ever tell me
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anything is equal to 1
0
, in basically any context, you’re not getting full credit. But it’s also

not indeterminate. The whole point of 1.62 is that this must be ±∞.

Similarly, 0
∞ and ∞

0
are also not numbers but not indeterminate. The first suggests the

limit is 0; the second suggests the limit is ±∞.

Remark 1.65. The form ∞ · ∞ mostly works fine, and gives you another ∞ whose sign

depends on the signs of the ∞s you’re multiplying. But again, ∞ · ∞ is never the actual

answer to any actual question.

Example 1.66. What is limx→3+
1

(x−3)3
? This is not an indeterminate form. the limit of

the top is 1, and the limit of the bottom is 0, so the limit is ±∞. But when x > 3 the

denominator is ≥ 0, so the limit is in fact +∞. Conversely limx→3−
1

(x−3)3
= −∞ since when

x < 3 we have (x− 3)3 ≤ 0.

limx→−1+
1

(x+1)4
= +∞. And limx→−1−

1
(x+1)4

= +∞. Thus limx→−1
1

(x+1)4
= +∞.

Example 1.67. What is limx→−2
1

x+2
+ 2

x(x+2)
? This looks like∞+∞ so it is an indeterminate

form, and we have to be careful. We have

lim
x→−2

1

x+ 2
+

2

x(x+ 2)
= lim

x→−2

x

x(x+ 2)
+

2

x(x+ 2)

= lim
x→−2

x+ 2

x(x+ 2)
= lim

x→−2

1

x
=

−1

2
.

1.6.2 Limits at infinity

A related concept is the idea of limits “at” infinity, which answers the question “what happens

to f(x) when x gets very big?”

Example 1.68.

In principle, we want to do the same thing we did for finite limits, where we find an

almost identical function that’s continuous, and then plug in a value of x. But we can’t

actually “plug in” infinity, because it’s not a number, so instead we use the following rule:

Fact 1.69. limx→±∞
1
x
= 0.

This combined with tools we already have is enough to do pretty much any calculation

we might want

Example 1.70. If we want to calculuate limx→+∞
1√
x
, we see that

lim
x→+∞

1√
x
=

√
lim

x→+∞

1

x
=

√
0 = 0.
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Example 1.71. What is limx→+∞
x

x2+1
?

This problem illustrates the primary technique we’ll use to solve infinite limits problems.

It’s difficult to deal with problems that have variables in the numerator and denominator, so

we want to get rid of at least one. Thus we will divide out by xs on the top and the bottom

until one has none left:

lim
x→+∞

x

x2 + 1
= lim

x→+∞

x/x

x2/x+ 1/x
= lim

x→+∞

1

x+ 1
x

= lim
x→+∞

1

x
= 0.

Example 1.72 (recitation/bonus). Some more examples of this technique:

lim
x→−∞

x

x+ 1
= lim

x→−∞

1

1 + 1
x

= lim
x→−∞

1

1
= 1.

lim
x→−∞

x

3x+ 1
= lim

x→−∞

1

3 + 1
x

=
1

3
.

Example 1.73. What is limx→+∞
x3/2

√
9x3 + 1

?

This one is a bit tricky. We want to get the xs out of the numerator, so we divide the

top and bottom by x3/2.

lim
x→+∞

x3/2

√
9x3 + 1

= lim
x→+∞

1√
9x3 + 1/x3/2

.

Then we can observe that x3/2 =
√
x3, and so we have

lim
x→+∞

1
√
9x3 + 1/

√
x3

= lim
x→+∞

1√
9 + 1/x3

=
1√
9 + 0

=
1

3
.

Example 1.74. Sometimes it’s a bit harder to see how this works. For instance, what is

limx→+∞
x√
x2+1

? It’s not obvious, but since we can say that x =
√
x2 we can use the same

technique:

lim
x→+∞

x√
x2 + 1

= lim
x→+∞

x/x√
x2 + 1/x

= lim
x→+∞

1√
x2/x2 + 1/x2

= lim
x→+∞

1√
1 + 1

x2

= 1.

But something subtle happened there that isn’t obvious. It becomes important in prob-

lems that tweak things slightly.
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Example 1.75. What is limx→−∞
x√
x2+1

?

We can do the same thing, but we have to be very careful. We know that
√
x2 is always

positive, so if x < 0 then
√
x2 ̸= x! Instead, x = −

√
x2. Thus we have

lim
x→−∞

x√
x2 + 1

= lim
x→−∞

1√
x2 + 1/x

= lim
x→−∞

1
√
x2 + 1/(−

√
x2)

= lim
x→−∞

1

−
√

1 + 1
x2

= −1.

When we encounter new functions, one of the ways we will often want to characterize

them is by computing their limits at ±∞. Sometimes these limits do not exist.

Example 1.76. limx→+∞ sin(x) does not exist, since the function oscillates rather than

settling down to one limit value.

limx→+∞ x sin(x) also does not exist; this function oscillates more and more wildly as x

increases.

But limx→+∞
1
x
sin(x) does in fact exist. We can prove this with the squeeze theorem: we

can see that −1
x

≤ 1
x
sin(x) ≤ 1

x
, and we know that limx→+∞

−1
x

= limx→+∞
1
x
= 0. So by the

Squeeze Theorem, limx→+∞
1
x
sin(x) = 0.

Another technique that will also often appear in these limits is combining a sum or

difference into one fraction. If we have a sum of two terms that both have infinite limits, we

need to combine or factor them into one term to see what is happening.

Example 1.77. What is limx→−∞ x− x3?

Each term goes to −∞, so this is a difference of infinities and thus indeterminate. But

we can factor: limx→−∞ x(1−x2). The first term goes to −∞ and the second term also goes

to −∞, so we expect that their product will go to +∞. Thus limx→−∞ x− x3 = +∞.

To be precise, I should compute:

lim
x→−∞

x− x3 = lim
x→−∞

x− x3

1
= lim

x→−∞

1/x2 − 1

1/x3
.

We see the limit of the top is −1 and the limit of the bottom is 0, so the limit of the whole

is ±∞. In fact the bottom will always be negative (since x → −∞), and thus the limit is

+∞.

Example 1.78. What is limx→+∞
√
x2 + 1− x?
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We might want to try to use limit laws here, but we would get +∞− +∞ which is not

defined (and is one of the classic indeterminate forms). Instead we need to combine our

expressions into one big fraction.

lim
x→+∞

√
x2 + 1− x = lim

x→+∞

(√
x2 + 1− x

) √
x2 + 1 + x√
x2 + 1 + x

= lim
x→+∞

(x2 + 1)− x2

√
x2 + 1 + x

= lim
x→+∞

1√
x2 + 1 + x

= lim
x→+∞

1/x√
1 + 1/x2 + 1

= 0.

This tells us that as x increases, x and
√
x2 + 1 get as close together as we wish.

You may have noticed the appearance of our old friend, multiplication by the conjugate.

We will often use that technique in this sort of problem.
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2 Derivatives

2.1 Linear Approximation

In the last section we talked about continuous functions as functions that we could approx-

imate. We know that
√
5 is about 2, and 3.13 is about 27. In this section we want to be a

bit more precise than that. Most of you told me not only that
√
5 is “about 2”, but it’s a

bit more than 2. We want to find a way to estimate that bit more.

We need to use a more complicated formula. But we want to keep the amount of complex-

ity under control. So we want to use a simple function to approximate f(x). The simplest

possible function is a constant function; and that’s exactly what we used last section. (3.13

is about 27, and 3.013 is about 27, and 3.23 is about 27.) If a is a fixed number then f(a) is

a constant, and thus f(x) ≈ f(a) approximates f with a constant function.

The next most complex function, as we usually think of it, is a linear function. So we want

to approximate f with a linear function. There are a few ways we can write the equation

for a line, depending on what information we already know:

y = mx+ b Slope-Intercept Formula

y − y0 = m(x− x0) Point-Slope Formula

y − y0 =
y1 − y0
x1 − x0

(x− x0) Two Points Formula

The most common and popular is the slope-intercept formula, which is great for com-

puting things; but to write down the equation, you need to know the slope m, and also the

y-intercept b. For our approximations we won’t generally know this.

The two points formula also isn’t terribly useful for us. We know one point: since we’re

approximating a function f near a, we know it goes through the point (a, f(a)). But if

we knew the value at other points, we wouldn’t need to approximate! (The approximation

f(x) − f(a) ≈ f(x)−f(a)
(x−a)

(x − a) is true, but is kind of vacuous and tautological; it doesn’t

actually help us).

But the point-slope formula can get us somewhere. We already have a point, so we just

need to find the slope. We’ll see how to do that soon, but for now we’ll just give the slope

a name: if we’re taking a linear approximation to a function f(x) near a point a, then we

will denote the slope f ′(a). This tells us, essentially, how much we care about the distance

between x and a. When this is small, then f(x) is close to f(a); when f ′(a) is large, then

f(x) moves away from f(a) pretty quickly.
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The equation for our linear approximation is

f(x) ≈ f ′(a)(x− a) + f(a) (1)

This is the most important formula in the entire course; essentially everything we do for the

next two months will refer back to this approximation in some way.

Example 2.1. We earlier said that
√
5 ≈

√
4 = 2. We can see that in fact

√
5 should be a

little bigger than 2. But how much better?

A linear approximation would tell us that
√
5 ≈ 2 + f ′(2)(5− 4). That is, we know that

√
5 is a bit bigger than two—and it’s a bit bigger by the amount of this mysterious f ′(2)

slope. We’ll see how to compute this later, but for right now I’ll tell you that f ′(2) = 1
4
.

Then we get that
√
5 ≈ 2 + 1

4
(5− 4) = 9/4 = 2.25.

From this we can make other estimates. For instance, we have that
√
4.5 ≈ 2+ 1

4
(4.5−4) =

17/8, and
√
6 ≈ 2 + 1

4
(6− 4) = 5/2.

We can go in the other direction as well. We estimate that
√
3 ≈ 2 + 1

4
(3 − 4) = 7/4.

And
√
2 ≈ 2 + 1

4
(2− 4) = 3/2.

But notice: this gives us
√
1 ≈ 2 + 1

4
(1− 4) = 5/4, which we know is wrong. And

√
9 ≈

2+ 1
4
(9−4) = 13/4, which is also wrong. For that matter, we get

√
100 ≈ 2+ 1

4
(100−4) = 26,

which is really wrong. What’s going on here?

We can even graph the formula for this approximation: we have

√
x ≈ 2 +

1

4
(x− 4)

and if we graph
√
x and 2 + 1

4
(x− 4) on the same graph, we get figure 2.1: We may notice

Figure 2.1:
√
x (blue) and its linear approximation at 4 (yellow)

that the graph of our linear approximation is tangent to the graph of our function. We’ll

revisit this idea in section 2.8
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A linear approximation is good when x is close to a = 4. As x gets further away from a,

then our estimate for f(x) gets further from f(a); but in general we would also expect our

estimate to get further from the correct answer. These techniques work best when x is very

close to a.

(We’re not yet ready to be precise about what “very close” means here).

Example 2.2. We’ve dressed this up in fancy language, but we engage in this sort of

reasoning all the time. Suppose you are driving at 30 miles per hour. After an hour, you

expect to have gone about thirty miles. After six minutes, you expect to have gone about

three miles.

This is just a linear approximation. If f(t) is our position as a function of time, our

approximation is that we’re moving 30 miles per hour, or half a mile per minute. Then we

have f(t) ≈ 0 + 1
2
(t− 0), and if we plug in t = 6 we have f(6) ≈ 0 + 1

2
(6− 0) = 3.

We’ll revisit this idea in section 2.7.

2.2 The Derivative

We understand that we want to do linear approximation now. But without a way to actually

find the slope f ′(a), it isn’t terribly helpful.

So let’s look at our formula from equation (3) again. We want to understand f ′(a), so

we’ll solve the equation for that:

f(x) ≈ f ′(a)(x− a) + f(a)

f(x)− f(a) ≈ f ′(a)(x− a)

f(x)− f(a)

x− a
≈ f ′(a).

Thus we get a new formula. This formula should also make sense to us. The slope f ′(a) tells

us how different f(x) is from f(a), based on how x is different from a. This new, rearranged

formula tells us that f ′(a) approximates the ratio of the change in f(x) to the change in x,

which we sometimes write as ∆f
∆x

. Thus it should tell us how much a change in the input

value affects the output value—which is exactly the question we need to answer to write a

linear approximation.

But we’ve also seen this formula somewhere else. In the two points formula for a line,

the slope is y1−y0
x1−x0

. if y1 = f(x1) = f(x) and y0 = f(x0) = f(a), then this is just the

approximation we have for f ′(a). Thus we’re saying that f ′(a) is approximately the slope
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of the line through the point (a, f(a)) that we know, and the point (x, f(x)) that we want.

We’ll explore this angle more in lab.

On its own, this still isn’t helpful: we have an approximate formula for f ′(a), but it

requires us to already know f(x), which is what we started out wanting to compute. But

one more step makes this actually useful.

Definition 2.3. Let f be a function defined near and at a point a. We say the derivative

of f at a is

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
.

The second formula is just a change of variables from the first, setting h = x − a. It’s not

substantively any different, but it’s sometimes easier to compute with.

We will also sometimes write df
dx
(a) for the derivative of f at a. The is called “Leibniz

notation”, as opposed to the “Newtonian notation” of f ′(a).

Thus the derivative is given by taking our approximate formula for f ′(a), and taking

the limit as x and a get closer together. Our linear approximation is better when x and a

are closer; so as x approaches a, the approximation becomes perfect, and we get an exact

equation.

Remark 2.4. Note that we need two pieces of information here. You hand me a function f

and a point a, and I tell you the derivative of f at a. We’ll adopt different perspectives from

time to time later on in the course.

Example 2.5. Let f(x) = x2 + 1. Then

f ′(2) = lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

(2 + h)2 + 1− 22 − 1

h
= lim

h→0

4h+ h2

h
= 4,

and more generally, for any number a we have

f ′(a) = lim
h→0

(a+ h)2 − a2

h
= lim

h→0

2ah+ h2

h
= 2a.

Example 2.6. Let f(x) =
√
x. Then given a number a, we have

f ′(a) = lim
h→0

√
a+ h−

√
a

h
= lim

h→0

(a+ h)− a

h(
√
a+ h+

√
a)

= lim
h→0

1√
a+ h+

√
a
=

1

2
√
a

Note that f is defined at 0, and we have f(0) = 0. But by this computation we have

f ′(0) = 1
2·0 which is undefined. This isn’t an artifact of the way we computed it; the limit in

fact does not exist. Further, this isn’t just becasue 0 is on the edge of the domain of f , as

we shall see:
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Example 2.7. Let g(x) = 3
√
x. Then we can compute g′(0) and we get

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

3
√
h

h
= lim

h→0

1
3
√
h2

= +∞.

The cube root function g has no defined derivative at 0, even though the function is

defined there. This brings us to a discussion of ways for a function to fail to be differentiable

at a point. (There’s always the catchall category of “the limit just doesn’t exist,” which we

won’t really discuss because there’s not much to say about it).

(a) Vertical Tangent Line

Our first example of g(x) = 3
√
x is not differentiable at 0, and the limit

g′(0) = lim
h→0

g(h)− g(0)

h
= +∞.

Graphically, the line tangent to g at 0 is completely vertical; the function is “increasing

infinitely fast” at 0.

(b) Corner

Any function with a sharp corner at a point doesn’t have a well-defined rate of change

at that point; the change is instantaneous. For instance, if we let a(x) = |x| be the

absolute value function, then

a′(x) = lim
h→0

a(x+ h)− a(x)

h
.

To study piecewise functions we usually break them up and study each piece separately.

If x > 0, then a(x) = x and a(x+ h) = x+ h for small h. We have

a′(x) = lim
h→0

x+ h− x

h
= lim

h→0
1 = 1.

Conversely, if x < 0 then a(x) = −x and a(x+ h) = −x− h, and

a′(x) = lim
h→0

−x− h+ x

h
= lim

h→0
−1 = −1.

But if x = 0 then the left and right limits don’t agree again: the right limit is 1 and

the left limit is −1, so the limit does not exist. Thus we have

a′(x) =


1 x > 0

−1 x < 0

undefined x = 0.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 35

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Figure 2.2: A vertical tangent line and a corner

(c) Cusp

Sometimes a function has a “cusp” at a point. This is a point where the tangent line

is vertical, but depending on the side from which you approach, you can get a tangent

line that goes up incredibly fast or one that goes down incredibly fast.

Consider the funtion f(x) =
3
√
x2. We have

f ′(0) = lim
h→0

3
√
h2 − 3

√
0

h
= lim

h→0

h2/3

h
= lim

h→0

1
3
√
h
= ±∞.

This is different from the 3
√
x example because the limit is ±∞ rather than just +∞.

(d) Discontinuity

Any function that is not continuous at a point cannot be differentiable at that point.

In particular, if f is differentiable at a, then

f ′(a) = lim
x→a

f(x)− f(a)

x− a

converges. But the bottom goes to zero, so the top must also go to zero, and we have

lim
x→a

f(x) = f(a),

which is precisely what it means to be continuous.

Conceptually, if the function isn’t continuous, it isn’t changing smoothly and so doesn’t

have a “speed” of change. Graphically, a function that has a disconnect in it doesn’t

have a clear tangent line.

An example here is the Heaviside function H(x). We have

lim
h→0+

H(h)−H(0)

h
= lim

h→0+

0

h
= 0
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but

lim
h→0−

H(h)−H(0)

h
= lim

h→0−

−1

h
= +∞.

Since the one-sided limits aren’t equal, the limit does not exist.

Figure 2.3: A cusp and a discontinuous function

The Derivative as a Function When we defined the derivative, we said it was a number :

in definition 2.3 we defined the derivative at a to be the slope of the linear approximation at

a. But this means we have a relationship where at each number a, we get a number f ′(a),

and that means we have a function! Thus f ′ is a function and we can study it the way we

did earlier functions.

Definition 2.8. The derivative of a function f is the function that takes in an input x and

outputs

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Remark 2.9. On the first day of class, we said that functions don’t have to take in and output

numbers, it’s just that the ones we’re studying involve numbers. But if we want to get very

abstract, “the derivative” is a function d
dx

which takes in a function f and gives back a new

function f ′. This is why we sometimes write d
dx
f(x) = f ′(x).

Example 2.10. (a) If f(x) = x2 + 1, we computed that f ′(x) = 2x. The domain of f is

all reals, and so is the domain of f ′(x).

(b) If g(x) =
√
x then g′(x) = 1

2
√
x
. The domain of g is all reals ≥ 0, and the domain of g′

is all reals > 0.
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(c) We saw above that if a(x) = |x|, then the function a′(x) is given by the piecewise

formula

a′(x) =


1 x > 0

−1 x < 0

undefined x = 0

=
|x|
x
.

The domain of a is all reals and the domain of a′ is all reals except 0.

Given a function, we can compute the derivative. Since f ′ is a function we can ask about

the derivative of the function f ′ at a point a.

Definition 2.11. Let f be a function which is differentiable at and near a point a. The

second derivative of f at a is the derivative of the function f ′(x) at a, which is

f ′′(a) = lim
h→0

f ′(a+ h)− f ′(x)

h
=

d2f

dx2
(a).

This is again a limit and may or may not exist.

Remark 2.12. The Leibniz notation for a second derivative is d2f
dx2 and not df2

dx2 . Conceptually,

you can think of d
dx

as a function whose input is the function f and whose output is the

derivative function f ′. The second derivative results from applying this function twice, and

thus is
(

d
dx

)2
= d2

dx2 .

Example 2.13. What is the second derivative of f(x) = x3 at a = 2?

f ′(x) = lim
h→0

(x+ h)3 − x3

h
= lim

h→0

3x2h+ 3h2 + h3

h
= lim

h→0
3x2 + 3h+ h2 = 3x2.

f ′′(2) = lim
h→0

f ′(2 + h)− f ′(2)

h
= lim

h→0

3(2 + h)2 − 3 · 22

h
= lim

h→0

3(4 + 4h+ h2)− 12

h

= lim
h→0

12h+ 3h2

h
= lim

h→0
12 + 3h = 12.

We won’t say much more about the second derivative now, but we’ll discuss it extensively

in section 3.

2.3 Computing Derivatives

By now we’re getting pretty tired of computing those examples over and over. In this section

we’ll come up with some techniques to make computation of derivatives easier.
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(a) Constants If c is a constant and f(x) = c then f ′(x) = 0.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0
0 = 0.

Conceptually, a constant function never changes, so the rate of change is 0.

Geometrically, a constant function is a horizontal line; thus we think of the slope

everywhere as being 0.

Example 2.14. (33
33

)′ = 0.

(b) If f(x) = x, then f ′(x) = 1.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

x+ h− x

h
= lim

h→0
1 = 1.

Conceptually, if we have the “identity” function, then whenever we change the input

then the output should change by exactly the same amount. Thus the rate of change

is 1.

Geometrically, this is a line with slope 1.

(c) If c is a constant and g is a function and f(x) = c · g(x), then f ′(x) = c(g′(x)).

f ′(x) = lim
h→0

cg(x+ h)− cg(x)

h
= c · lim

h→0

g(x+ h)− g(x)

h
= c · g′(x).

Conceptually, if changing x by a bit changes g(x) by a certain amount, then it will

change 2g(x) by twice that amount–multiplying by a scalar should just change the rate

of change by the same amount everywhere.

Geometrically, multiplying by a constant is just stretching vertically–and all the slopes

will be stretched by that same amount.

Example 2.15. If f(x) = 5x then f ′(x) = (5 · x)′ = 5 · x′ = 5.

(d) If f and g are functions then (f + g)′(x) = f ′(x) + g′(x).

(f + g)′(x) = lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

Conceptually, if changing the input by a bit changes f by a certain amount and g by

a different amount, then it changes f + g by the sum of those two amounts–figure out
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how much it changes each part and then add them together to find out how much it

changes the whole.

Geometrically, if we add two functions together it’s just like stacking them on top of

one another, so the slope at any point will be the sum of the slopes.

Example 2.16. Let f(x) = 3x− 7. Then f ′(x) = (3x)′ − 7′ = 3(x′)− 0 = 3.

This rule is really important but so far we can’t do much with it–we don’t have quite

enough rules yet.

(e) (Power Rule) If f(x) = xn where n is a positive integer, then f ′(x) = nxn−1. In fact,

if g(x) = xr and r is any real number, then g′(x) = rxr−1. We’ll only prove this for

integers, using the difference-of-nth-powers rule.

f ′(x) = lim
z→x

zn − xn

z − x
= lim

z→x

(z − x)(zn−1 + zn−2x+ · · ·+ zxn−2 + xn−1)

z − x

= lim
z→x

zn−1 + zn−2x+ · · ·+ zxn−2 + xn−1 = xn−1 + · · ·+ xn−1 = nxn−1.

Now that we have this, we can compute all sorts of derivatives.

Example 2.17. • (x2 + 1)′ = 2x+ 0 = 2x.

• (
√
x)′ = (x1/2)′ =

1

2
x−1/2 =

1

2
√
x
.

• ( 3
√
x)′ = (x1/3)′ =

1

3
x−2/3 =

1

3
3
√
x2

.

• (3
√
x+ x5 − 7)′ =

3

2
√
x
+ 5x4 + 0.

(f) (Product Rule) If f and g are functions then (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Conceptually, we sort of know this already; if we add a bit on to f and a bit on to g,

then we get (f + fh)(g + gh) = fg + fgh + gfh + ghfh, and in the limit we can treat

ghfh as being zero. So this is the same as multiplying the bit we add to g with f , and

multiplying the bit we add to f with g, and then adding the two.

Example 2.18. ((3x− 2)(x− 1))′ = (3x2 − 5x+ 2)′ = 6x− 5.

Alternatively, ((3x−2)(x−1)′ = (3x−2)′(x−1)+(3x−2)(x−1)′ = 3·(x−1)+1·(3x−2) =

6x− 5.
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This rule isn’t terribly important as long as we’re only working with rational functions.

Once we include anything else, like trig functions, it is critical.

Remark 2.19. We can get the power rule from the product rule instead of trying to get

it directly.

(g) (Quotient Rule): If f and g are functions then

(f/g)′(x) =
f ′(x)g(x)− f(x)g′(x)

(g(x))2
.

(f/g)′(x) = lim
h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h

= lim
h→0

f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h

= lim
h→0

f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h

= lim
h→0

1

g(x+ h)g(x)

(
lim
h→0

f(x+ h)g(x)− f(x)g(x)

h
+ lim

h→0

f(x)g(x)− f(x)g(x+ h)

h

)
=

1

g(x)2

(
g(x) lim

h→0

f(x+ h)− f(x)

h
− f(x) lim

h→0

g(x+ h)− g(x)

h

)
=

f ′(x)g(x)− f(x)g′(x)

g(x)2

Example 2.20. •
(
x− 1

x3

)′

= (x−2 − x−3)′ = −2x−3 + 3x−4.

Alternatively,(
x− 1

x3

)′

=
(x− 1)′x3 − (x− 1)3x2

x6
=

x3 − 3x3 + 3x2

x6
= −2x−3 + 3x−4.

•
(
2 + 3x

3− 5x

)′

=
(2 + 3x)′(3− 5x)− (2 + 3x)(3− 5x)′

(3− 5x)2
=

9− 15x+ 10 + 15x

(3− 5x)2
=

19

(3− 5x)2

2.4 Trigonometric derivatives

We cannot neglect the trigonometric functions—no matter how much we might wish to on

occasion. All of the rules for trigonometric derivatives rely on what are known as the angle

addition formulas :

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

Note: you probably won’t ever need to know these formulas again in this class. But I will

need them for another page or so of these notes.

Using this we can compute
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(a)

(sin(x))′ = lim
h→0

sin(x+ h)− sin(x)

h
= lim

h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)

h

=

(
lim
h→0

sin(h) cos(x)

h

)
+

(
lim
h→0

sin(x)(cos(h)− 1)

h

)
= cos(x) lim

h→0

sinh

h
+ sin(x) lim

h→0

cosh− 1

h

= cos(x) + sin(x) lim
h→0

cos2(h)− 1

h(cos(h) + 1)

= cos(x)− sin(x) lim
h→0

sin2(h)

h(cos(h) + 1)

= cos(x)− sin(x)

(
lim
h→0

sin(h)

cos(h) + 1

)(
lim
h→0

sinh

h

)
= cos(x)− sin(x) · 0 · 1 = cos(x).

(b) A similar argument shows that (cos(x))′ = − sin(x).

Further using the product and quotient rules, we observe that

•
(tan(x))′ =

(
sinx

cosx

)′
cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
= sec2(x)

•
(cot(x))′ =

(cosx
sinx

)′
=

− sin2(x)− cos2(x)

sin2(x)
=

−1

sin2(x)
= − csc2(x)

•
(sec(x))′ =

(
1

cosx

)′

=
0 + sin x

cos2(x)
=

sinx

cosx
· 1

cosx
= sec(x) tan(x)

•
(csc(x))′ =

(
1

sinx

)′

=
0− cos(x)

sin2(x)
=

− cosx

sinx
· 1

sinx
= − csc(x) cot(x).

Remember that as long as you know the derivatives of sin and cos you can always compute

these four derivatives whenever you need them.

Example 2.21. (a) If f(t) = 3 sin t+ cos t, then f ′(t) = 3 cos t− sin t.

(b) Find the tangent line to y = 6 cos x at (π/3, 3).

We see that y′ = −6 sinx, and thus when x = π/3 we have y′ = −3
√
3. Recalling

that the equation of our line is y = m(x − x0) + f(x0), we have the equation y =

−3
√
3(x− π/3) + 3.
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(c) IF g(θ) = θ sin θ + cos θ
θ
, then

g′(θ) = (sin θ + θ cos θ) +
−θ sin θ − cos θ

θ2
.

(d) If h(x) = x
2−tanx

, then

h′(x) =
(2− tanx) + x sec2 x

(2− tanx)2
.

(e) We can also compute second derivatives. sin′′ x = − sinx. cos′′ x = − cosx.

tan′′ x = (secx secx)′ = secx tanx secx+ secx tanx secx = 2 sec2 x tanx.

2.5 The Chain Rule

To start with an example, suppose g(x) = (sinx)2. Then

g′(x) = ((sin x)(sinx))′ = cosx sinx+ cosx sinx = 2 sin x cosx.

Remembering that (x2)′ = 2x, we notice that this looks suggestive. It also leads us to ask

what happens when we build up functions by composition, that is, plugging one function

into another, as we have here.

If we want to freely build complex functions from simple ones, we need to be able to

combine them in chains. Remember that we define the function f ◦g by (f ◦g)(x) = f(g(x));

we take our input x, plug it into g, and then take the output g(x) and plug it into f .

We can see how this is useful in two different ways. First, as we saw earlier, it lets us

build up functions.

(a) (x+ 1)2 = (f ◦ g)(x) where g(x) = x+ 1 and f(x) = x2.

(b) (x2 + 1)2 = (f ◦ g)(x) where g(x) = x2 + 1 and f(x) = x2.

(c) sin2(x) = (f ◦ g)(x) where g(x) = sin x and f(x) = x2.

Second, sometimes composition of functions really is the best way to describe what’s

going on, especially when you have a “causal chain” where one process causes a second

which causes a third. For instance, suppose you’re driving up a mountain at 2 km/hr,

and the temperature drops 6.5◦ C per kilometer of altitude. You can think about your

temperature as a function of your height, which is itself a function of the time; then the

numbers I gave you are the rates of change, or derivatives, of each function.

It’s not that hard to convince yourself that you’ll get colder by about 13◦ C per hour.

Does this work in general?
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Proposition 2.22 (Chain Rule). Suppose f and g are functions, such that g is differentiable

at a and f is differentiable at g(a). Then (f ◦ g)′(a) = f ′(g(a)) · g′(a).

Proof.

(f ◦ g)′(a) = lim
h→0

(f ◦ g)(a+ h)− (f ◦ g)(a)
h

= lim
h→0

f(g(a+ h))− f(g(a))

g(a+ h)− g(a)
· g(a+ h)− g(a)

h

=

(
lim
h→0

f(g(a+ h))− f(g(a))

g(a+ h)− g(a)

)(
lim
h→0

g(a+ h)− g(a)

h

)
= f ′(g(a)) · g′(a).

Remark 2.23. (a) When we write f ′(g(x)), we mean the function f ′ evaluated at the point

g(x), or in other words, the derivative of f at the point g(x).

(b) It can be helpful as a way of remembering the chain rule that

d(f ◦ g)
dx

=
d(f ◦ g)

dg
· dg
x
.

Don’t take this too seriously as actively meaning anything, since it only sort of does,

but it’s quite helpful for the memory.

Example 2.24. (a) (x + 1)2 = (f ◦ g)(x) where g(x) = x + 1 and f(x) = x2. Then

f ′(x) = 2x and g′(x) = 1, so

(f ◦ g)′(x) = f ′(g(x)) · g′(x) = 2(g(x)) · 1 = 2(x+ 1) · 1 = 2x+ 2.

Sanity check:

(f ◦ g)′(x) = (x2 + 2x+ 1)′ = 2x+ 2.

(b) (x2 + 1)2 = (f ◦ g)(x) where g(x) = x2 + 1 and f(x) = x2. Then f ′ = 2x, g′ = 2x, and

(f ◦ g)′(x) = f ′(g(x)) · g′(x) = 2(g(x)) · 2x = 2(x2 + 1) · 2x = 4x3 + 4x.

Sanity check:

(f ◦ g)′(x) = (x4 + 2x2 + 1)′ = 4x3 + 4x.

(c) sin2(x) = (f ◦ g)(x) where g(x) = sinx and f(x) = x2. Then f ′(x) = 2x, g′(x) = cos x,

and we have

(f ◦ g)′(x) = 2(g(x)) · cosx = 2(sinx) cosx.
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(d) cos(3x) = (f ◦ g)(x) where f(x) = cos(x) and g(x) = 3x. Then f ′(x) = − sin(x) and

g′(x) = 3 and

(f ◦ g)′(x) = − sin(3x) · 3.

(e) sin(x2) = (f ◦g)(x) where f(x) = sin(x) and g(x) = x2. Then f ′(x) = cos x, g′(x) = 2x,

and

(f ◦ g)′(x) = cos(g(x)) · 2x = 2x cos(x2).

(f) If f(x) is any function, then we can write (f(x))r as (g ◦ f)(x) where g(x) = xr. Then

d

dx
(f(x)r = (g ◦ f)′(x) = r(f(x))r−1 · f ′(x).

(g) The derivative of sec(5x) is sec(5x) tan(5x)5.

(h) What is the derivative of 1
3√x4−12x+1

? We can view this as (x4 − 12x + 1)−1/3, and

using the chain rule, we have

d

dx

1
3
√
x4 − 12x+ 1

=
−1

3
(x4 − 12x+ 1)−4/3 · (4x3 − 12).

(i) What is the derivative of sec2(x)? By the chain rule this is 2 · sec(x) · sec′(x) =

2 sec(x) · sec(x) tan(x) = 2 sec2(x) tan(x).

(j) What is the derivative of sec4(x)? We get 4 sec3(x) sec′(x) = 4 sec3(x) sec(x) tan(x) =

4 sec4(x) tan(x).

(k) Sometimes we have to nest the chain rule. What is the derivative of
√

x3 +
√
x2 + 1?

We can pull this apart slowly.

d

dx

√
x3 +

√
x2 + 1 =

1

2
(x3 +

√
x2 + 1)−1/2 ·

(
d

dx

(
x3 +

√
x2 + 1

))
=

1

2
√

x3 +
√
x2 + 1

(
3x2 +

1

2
(x2 + 1)−1/2 ·

(
d

dx
x2 + 1

))
=

3x2 + 2x
2
√
x2+1

2
√

x3 +
√
x2 + 1

As we have just seen the chain rule can stack, or chain together. As functions get more

complicated we will have to use multiple applications of the product rule, quotient rule, and

chain rule to pull our derivative apart.
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Example 2.25. Find
d

dx
sec(x2 +

√
x3 + 1).

d

dx
sec(x2 +

√
x3 + 1) = sec(x2 +

√
x3 + 1) · tan(x2 +

√
x3 + 1) · (x2 +

√
x3 + 1)′

= sec(x2 +
√
x3 + 1) · tan(x2 +

√
x3 + 1) · (2x+

1

2
(x3 + 1)−1/2 · 3x2)

Example 2.26 (recitation). Find

d

dx

sin(x2) + sin2(x)

x2 + 1

d

dx

sin(x2) + sin2(x)

x2 + 1
=

(sin(x2) + sin2(x))′(x2 + 1)− 2x(sin(x2) + sin2(x))

(x2 + 1)2

=
(cos(x2) · 2x+ 2 sin(x) cos(x))(x2 + 1)− 2x(sin(x2) + sin2(x))

(x2 + 1)2
.

We can keep going with increasingly complicated problems, basically until we get bored.

These are really good practice for making sure you understand how the rules fit together.

Example 2.27. Find

d

dx

√ √
x+ 1

(cosx+ 1)2

d

dx

√ √
x+ 1

(cosx+ 1)2
=

1

2

( √
x+ 1

(cosx+ 1)2

)−1/2

·
( √

x+ 1

(cosx+ 1)2

)′

=
1

2

( √
x+ 1

(cosx+ 1)2

)−1/2

·
1
2
x−1/2(cosx+ 1)2 − 2(cosx+ 1)(− sinx)(

√
x+ 1)

(cosx+ 1)4

Example 2.28 (Bonus). Calculate

d

dx

 sin2
(

x2+1√
x−1

)
+
√
x3 − 2

cos(
√
x2 + 1 + 1)− tan(x4 + 3)

5/3

2.6 Linear Approximation

In section 2.1 we defined the derivative in terms of approximation. We took an algebraic

approach where we wanted to approximate a function with a line, and found a number f ′(a)

that made the line y = f ′(a)(x− a) + f(a) approximate the function f as well as possible.
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In this section we want to return to this idea, now that we know how to compute deriva-

tives. Then in section 2.7 we’ll see how we can use this to model physical, economic, and

other practical phenomena. Finally in section 2.8 we’ll take a geometric perspective, where

we see how we can use derivatives to understand geometric pictures and graphs of functions.

We know that if we have a function f(x) and know what it looks like at a point a, we

can use the derivative to give a linear approximation

f(x) ≈ f(a) + f ′(a)(x− a).

Example 2.29. We can find an estimate of 2.15.

To a “zeroth approximation”, we might say that 2.15 ≈ 25 = 32; that’s the approach we

took in section 4. We can now use the derivative to refine that estimate. We take f(x) = x5

and a = 2. Then f ′(x) = 5x4, so we have f(2) = 32, f ′(2) = 80, and

f(2.1) ≈ 80(2.1− 2) + 32 = 40.

The exact answer is 40.841, so this estimate is pretty good!

What if we approximate (2.5)5 using a = 2. What if we pproximate 35? We have

(2.5)5 ≈ 80 · (2.5− 2) + 32 = 72

35 ≈ 80 · (3− 2) + 32 = 112.

The true answers are 97.6563 and 243. These estimates are not especially good. This is

because 3 is actually not very close to 2—especially proportionately. Of course, it’s not that

hard to compute 35 directly.

These methods are best when x − a is very small relative to everything else. We often

use them in the real world for x− a < .1 or so.

Example 2.30. Let’s approximate 3
√
28 and 4

√
82.

We take a = 27 and a = 81 respectively.

3
√
28 ≈ 1

3
(27)−2/3(28− 27) + 3 =

1

27
+ 3 ≈ 3.03704

4
√
82 ≈ 1

4
(81)−3/4(82− 81) + 3 =

1

108
+ 3 ≈ 3.00926.

The true answers are approximately 3.03659 and 3.00922 respectively.

Now we’ll approximate 283 and 824 using the same base points

We have

283 ≈ 3(27)2(28− 27) + 273 = 21870

824 ≈ 4(81)3(82− 81) + 814 = 45172485
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In contrast the true answers are 21952 and 45172485.

These approximations aren’t terrible but they aren’t very good either. Since the deriva-

tive is changing quickly here (the second derivatives are 6 · 27 and 12 · 812 respectively), the

approximation won’t be very good.

Example 2.31. If you take a = 0 and f(x) = x10, we can use a linear approximation to

approximate f(2). We have f ′(x) = 10x9, so we have f ′(0) = 0, and thus

f(2) ≈ 0(2− 0) + 0 = 0.

Since the true answer is 1024, this is not very good. What if we use a = 1 instead? If we

take a = 1, we have

f(2) ≈ 10(2− 1) + 1 = 11.

This is a little better, but still not good. In essence, the derivative is changing so quickly

that the tangent line approximation is not very good over those distances. Later, in section

4.1, we’ll talk a little bit about how we can handle this situation better.

There are a few specific linear approximation formulas that come up really frequently in

other applications, enough to get their own names. I want to take a moment to look at each

of them.

Example 2.32 (Binomial Approximation). As a warmup, let’s approximate (1.01)10. Our

function is f(x) = x10 and our a = 1. So f(a) = 1 and f ′(a) = 10a9 = 10. Then we have

f(1.01) ≈ 10(1.01− 1) + 1 = 1.1.

The true answer is about 1.10462.

Now let’s approximate (1.01)α where α ̸= 0 is some constant. (The letter α is a Greek

lower-case “a”. I’m using it here instead of the friendlier n because it’s fairly standard for

the formula we’re developing.)

We have f(x) = xα, so f ′(x) = αxα−1. We again have f(1) = 1 and f ′(1) = α(1)α−1 = α,

so

f(1.01) ≈ α(1.01− 1) + 1 = 1 + α/100.

Now let’s get the fully general useful formula: approximate (1 + x)α where x is some

small number and α ̸= 0 is a constant. (This rule is the called the “binomial approximation”

and is often useful in physics and engineering).
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We still take f(x) = xα and a = 1. But we compute

f(1 + x) ≈ 1 + α(1 + x− 1) = 1 + αx.

It is probably more helpful in the long run to think about f(x) = (1+x)α, though. Then

we have f ′(x) = α(1 + x)α−1, and we get

f(x) ≈ 1 + αx.

Example 2.33 (Small Angle Approximation). Let’s find a formula to approximate sin(x)

when x is small. You might think of this as the revenge of the Small Angle Approximation

from section 1.5.

We take a = 0. Then since sin′(x) = cos(x) and so sin′(0) = cos(0) = 1, we have

sin(x) ≈ 1(x− 0) + 0 = x.

Thus for small angles, sin(x) is approximately just x! For instance, our formula says that

sin(.05) ≈ .05, where the true answer is about .04998. So this is pretty good. In fact, we

compute that sin′′(0) = − sin(0) = 0. Since the second derivative is zero, we expect the

linear approximation to work well.

That means that in a lot of calculations, if we have a formula with a lot of sines in it, as

long as our angles are small we can replace every sin(x) with an x without losing too much.

And that’s much easier to think about.

We can do the same thing for cosine. We compute that cos′(x) = − sin(x) so cos′(0) = 0.

Then

cos(x) ≈ 0(x− 0) + 1 = 1.

This is actually a constant! The line that fits cos(x) best near 0 is just the horizontal line

y = 1.

We can calculate, e.g., that cos(.05) ≈ 1, where the true answer is about .9986. This is

also pretty good, but the approximation isn’t quite as good as the one for sine. We compute

that cos′′(0) = − cos(0) = −1; while the second derivative isn’t huge, it isn’t trivial either.

Example 2.34 (Geometric Series). Let’s find a formula to linearly approximate f(x) =
1

1− x
near x = 0.

We compute that f ′(x) = (1− x)−2 = 1
(1−x)2

. Then

f(x) ≈ 1 + x.
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This is a special case of what’s known as the geometric series formula.

You might ask why we did the slightly funky 1
1−x

instead of the more normal 1
x
. After

thinking about it for a bit, you’ll notice that wee can’t approximate 1
x
near zero at all! We

see that f is undefined at 0, and equally importantly, f ′(x) = −1/x2 is also undefined at

zero. So there’s no linear approximation.

But if we want to,, we can linearly approximate f(x) = 1/x near 1. We have f(1) = 1

and f ′(1) = −(1)−2 = −1 so

f(x) ≈ 1− (x− 1) = 2− x.

Finally, a bonus fun fact to notice.

Example 2.35. Let’s find a formula to approximate f(x) = x3 + 3x2 + 5x + 1 near a = 0.

What do you notice? Why does that happen?

We have f(0) = 1 and f ′(x) = 3x2 + 6x+ 5 so f ′(0) = 5. Thus

f(x) ≈ 1 + 5x.

This is exactly what you get if you take the original polynomial and cut off all the terms of

degree higher than 1.

This makes sense, because we’re looking for the closest we can get to f without using

terms of degree higher than 1.

2.7 Speed and Rates of Change

In this section we’ll develop a second way of thinking about the derivative. We’ll ask a

different question, and see that the derivative is also an answer to that question. We’ll talk a

little bit about why the two different questions are secretly the same, and thus explain why

you might care about linear approximation, even if you aren’t as much of a nerd for algebra

as I am.

2.7.1 The Problem of Speed

An important concept in physics is speed, which is defined to be distance covered divided by

time spent. That is, v = ∆x
∆t

. In particular, if your position at time t is given by the function

p(t), then your average speed between time t0 and time t1 is

v =
p(t1)− p(t0)

t1 − t0
.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 50

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

This formula should look familiar. It is the slope of a line through the points (t0, p(t0))

and (t1, p(t1)). It is not the derivative of p, because we didn’t take a limit. It is instead a

“difference quotient”, which is really a fancy way of saying the slope of a line.

Example 2.36. For example, on Earth dropped objects fall about p(t) = 5t2 meters after t

seconds. The average speed between time t = 1 and time t = 2 is

v =
p(2)− p(1)

2− 1
=

20− 5

1
= 15m/s

and the average speed between time t = 3 and time t = 1 is

v =
p(3)− f(1)

3− 1
=

45− 5

3− 1
= 20m/s.

It’s useful here to look at the units. We know that the result is a speed, so comes out in m/s.

But how do we know we get those units? We have to think a bit about what the function p

is actually doing.

The function p gives us position as a function of time. Thus the inputs to p are given

in seconds, and the outputs are given in meters. So it’s not really fully correct to say that

p(t) = 5t2; that would suggest that p(1s) = 5(1s)2 = 5s2. But your position isn’t described

in square seconds!

Instead, we would write something like p(tseconds) = 5t2m. The function takes in seconds

as inputs, and gives meters as outputs. Thus our last calculation properly should have been

v =
p(3s)− f(1s)

3s− 1s
=

45m− 5m

3s− 1s
= 20m/s.

We see that the numerator—which is made up of the outputs of p—has units of meters,

while the denominator, which is made up of the inputs of p, has units of seconds. So the

entire fraction has units of m/s, which is what it should be.

We can give a more general formula. What’s the average speed between time t0 = 1 and

time t1 = t? We have

v =
p(ts)− p(1s)

ts− 1s
=

5t2m− 5m

ts− 1s
= 5(t+ 1)

t− 1

t− 1
m/s.

As long as t ̸= 1, this gives us a formula for average speed between time t and time 1: the

average speed is 5(t+ 1)m/s. But what if we want to know the speed “at” the time t = 1?

On some level, this question doesn’t make any sense. Speed is defined as the change in

distance divided by the change in time; if time doesn’t change, and distance doesn’t change,

then this doesn’t really mean anything. Maybe what we really mean is, what’s a good
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estimate of our average speed, as long as our time is close to t = 1? Our average speed

depends on the exact interval we choose; the speed from t = 1 to t = 2 isn’t the same as the

speed from t = 1 to t = 1.1. But can we find one number that gives a good estimate?

This should make you think of the limit idea from section 1.3. We can find a good

estimate of the speed from time 1 to time t by taking a limit as t approaches 1. Thus we

define your instantaneous speed or speed at time t0 to be

lim
t1→t0

p(t1)− p(t0)

t1 − t0
= lim

h→t0

p(t0 + h)− p(t0)

h
.

Notice that since the function p has input in seconds and output in meters, the instantaneous

speed will be in m/s, as it should be. But also notice that this formula is just the definition

of the derivative of p.

Thus from the previous example, we can see that the instantaneous speed at time t0 = 1

is

v(1s) = p′(1s) = lim
t→1

5(t+ 1)
t− 1

t− 1
m/s = 10m/s.

Alternatively, we know that p(t) = 5t2, so by our derivative rules we know that p′(t) = 10t

and thus p′(1) = 10. Once we add units, we have p′(ts) = 10tm/s and thus p′(1s) = 10m/s.

The derivative of a function has different units from the original function. Since the

derivative is given by a formula with output in the numerator and input in the denominator,

the derivative will have the units of the output per units of input.

We can take this one step further and look at the derivative of p′. The function p′ takes

in a time and outputs a speed; its derivative will be

p′′(t0s) = lim
t→t0

p′(ts)− p′(t0s)

ts− t0s
.

The units of the denominator are still seconds; but the units of the top are m/s, so the

second derivative takes in seconds and outputs meters per second per second, or m/s2. This

makes sense: the second derivative is the change in the first derivative, so p′′ tells us how

quickly the speed is changing. So it tells us how many meters per second your speed changes

each second. This is otherwise known as “acceleration”.

Once we have the speed of a particle in terms of its derivative, we can apply it to do

the sort of things we’ve already been doing. So for instance, we can ask how far a dropped

object will have fallen after 2.2 seconds. We could calculate this exactly, but we can also

approximate:

p(2.2s) ≈ p(2s) + p′(2s)(2.2s− 2s) = 20m + 10m/s(.2s) = 22m.
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How does all this relate to linear approximation? We know that speed is change in

distance over time. Another way of saying that is that our final position is our initial

position, plus speed times time.

p(t) = p(0) + vaverage(t− 0).

If our speed varies over time, this isn’t terribly helpful: we can only compute average speed

by knowing our initial and final position. If we only know our speed “at” each moment,

this doesn’t work—and making it work precisely involves integrals, which we will develop in

sections 5 and 6.

But if the length of time is small, we can make a pretty good guess by assuming our

speed is constant. Thus we compute our instantaneous speed at time 0, and wee have the

approximate formula

p(t) ≈ p(0) + v0(t− 0).

And this is precisely the linear approximation formula we started with in 2.1.

Remark 2.37. This is basically how we reason about speed in real life. If you’re driving

fifteen miles and your friend calls you and asks how long you’ll take, you might say “Well,

traffic isn’t too bad; I’m going about 30 miles per hour. So I should be there in about half an

hour”. This doesn’t mean you’ll get there in exactly half an hour. Traffic might get better

or worse, and you might speed up or slow down. But your best guess of your average speed

is your speed right now.

Of course, that’s not always your best guess. If you’re driving into the city you might

know that you’re about to hit bad traffic. Or if you can see the end of your traffic jam, you

might know you’re about to speed up. In either case, this is like having information about

the second derivative, and you can refine your guess.

The worst-case version of this thought process is the old Windows download boxes, which

would give an estimate of how long a file transfer would take. But this estimate was a simple

linear approximation of remaining file size divided by your current download speed—and

download speeds would vary wildly from second to second. So you’d see an estimate jump

from thirty minutes to two hours to five minutes and back up to forty minutes, all within

the space of thirty seconds.

2.7.2 Other Rates of Change

We used this to think about physical speed as we move from one location to another. But

the same logic applies to basically any time we have a physical process with change over
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time. If you know how quickly the output is changing “right now”, you can use that to build

a linear model of what the output will look like over time. And that means that any rate of

change is, fundamentally, a derivative.

Another way of thinking about the derivative is the difference between “stocks” and

“flows”. If your function measures the level or something, then the derivative measures the

rate at which the level is changing. If the function measures the amount of something you

have in stock, then the derivative measures the rate at which new stock is flowing in or out

of your warehouse.

Example 2.38 (Debt and Deficit). A lot of discussions of economics and public policy

address the deficit and the debt. The “deficit” and the “debt” are easy to confuse but

importantly different, in a way that maps cleanly to the idea of a derivative.

A “deficit” is the amount of money that is currently owed; it is measured in dollars (or

euro or yen or some other currency). The current US national deficit is approximately $22
trillion.

A “deficit” is the rate at which the debt is increasing. So the national deficit is currently

about $1 trillion. This means we expect the debt next year to be about $1 trillion bigger

than the debt this year.

Mathematically we can define a function D(t) which takes in the year and outputs the

number of dollars owed. Then the annual deficit is

D((t+ 1)y)−D(ty)

1y
.

This isn’t a derivative, since there’s no limit; this is a difference quotient that measures a dis-

crete change in debt over a discrete time. It’s analogous to average speed, not instantaneous

speed.

But we could imagine asking how the deficit is changing from month to month, or from

week to week, or from hour to hour. We can take a limit as the time between t + h and t

goes to zero, and then the deficit would be the derivative of debt. The function D′(t) will

take in years, and output dollars per year.

What about the second derivative? The function D′′ will take in years, and output the

yearly change in the deficit, measured in dollars per year per year. When people talk about

whether the deficit is going up or down, they are looking at the second derivative of the

debt.

Example 2.39 (Inflation). We can make a similar point about inflation, and make fun of

Richard Nixon at the same time.
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Roughly speaking, inflation is the change in the price level, which measures how the value

of money changes over time. Thus inflation is a rate of change, and thus a derivative. If we

oversimplify and measure the price level as the number of liters of gas you can buy with a

dollar, then inflation is measured in liters per dollar per year.

In the seventies, inflation was a major political topic, because inflation was both high

and rising. What does it mean to say inflation is rising? That’s a second derivative. Inflation

is the rate at which the price level is changing, but that rate is itself increasing.

In Nixon’s reelection campaign, he couldn’t say inflation was low, because it wasn’t. And

he couldn’t even say it was falling, because it wasn’t. So instead he said that “the rate

at which the rate of inflation is increasing is decreasing”. That’s terrible sentence, even

before we unpack it into “the rate at which the rate at which the price level is increasing is

increasing is decreasing”. (I promise that sentence wasn’t me losing control of my keyboard.)

I’ve heard that this is the only known use of the third derivative in political messaging.

Both of these examples have one very important trait in common. The position function

p(t) and the debt function D(t) output different types of things with different units, but

they both take time as an input. But it’s easy for a function to take inputs other than time,

and these functions are often physically important and meaningful.

One common place they show up is in economics. Economics cares a lot about so called

“marginal” effects.

Example 2.40 (Marginal Revenue). If you’re deciding how many machines to buy, what

really matters isn’t the total cost of the machines and the total revenue they’ll make you.

Instead, you need to ask how much more you’ll have to spend to get one more machine, and

how much more revenue that one machine will get you. (This is called “marginal thinking”,

because we care about the effect of getting one more machine on the margin.)

Any of these marginal effects are implicitly asking for a derivative. So suppose we have

some revenue curve where R(m) = 100m−m2: your total revenue is $100 for every machine,

minus upkeep costs of the square of the number of machines you have. So with one machine,

you make $99; with two machines, you make $196; with ten machines you make $900. The
units of the input is “machines” and the units of the output are “dollars”.

We compute R′(m) = 100− 2m; each new machine adds roughly $100 of revenue, minus

2 times the number of machines you already have. Thus the marginal revenue of the first

machine is about $98, and the marginal revenue of the tenth machine is about $80. We

can see that the fiftieth machine has a marginal revenue of $0; this is our break-even point,

where adding another machine neither helps nor hurts. The sixtieth machine has a marginal
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revenue of about −$20, and we actually lose money by adding it! The units of this derivative

are “dollars per machine”; how many more dollars will you get by adding a machine?

But of course the actual revenue of 50 machines is R(50) = 5000− 2500 = 2500 dollars.

The actual revenue of 60 machines is R(60) = 6000− 3600 = 2400 dollars, which is less than

R(50) but still positive.

Example 2.41 (Marginal Cost). We also often talk about marginal cost. Suppose the cost

of buying m machines is C(m) = 5000+ 10m+ .05m2. There’s some start-up cost to having

any machines at all; then each machine costs a bit more than the previous one. The units

of the input are “machines” and the units of output are “dollars”.

We can see that C(1) = 5010.05, and C(10) = 5105. Even C(100) = 6500 is not that

much bigger than C(1).

The marginal cost would be C ′(m) = 10 + .1m. We have to pay a huge sum to have

any machines at all, but each new machine we add costs only 10 plus a tenth of the number

of machines we have. So the cost of adding the hundredth machine is about C ′(100) = 20,

which checks out with the numbers we computed earlier. The units of the derivative are,

again, dollars per machine.

This shows a really big separation between marginal and average cost. The total cost

of all our machines is really high; if this cost is paired with the revenue from the previous

example, we’ll continually lose money no matter what we do. But once we’ve already eaten

our sunk costs, the marginal cost of adding one more machine is pretty low, so we should go

ahead and get a lot of them.

Example 2.42 (Ohm’s Law). In physics and electrical engineering, Ohm’s Law tells us that

current is equal to voltage over resistance, or I = V/R. (Here current is generally measured

in amperes, voltage in volts, and resistance in, essentially, volts per amp).

The default assumption in most physics problems is that resistance is constant, a property

of whatever material you’re putting current through. So we have the function I(V ) = 1
R
V ,

which is a linear function and simple to work with.

But this is just an approximation! Most materials will actually have their resistance

change as the voltage applied to them changes, so the equation above is just a linear approx-

imation to the actual relationship between current and voltage. This means that the slope
1
R
is really a derivative.

An incandescent lightbulb works by running a current through a metal wire until it heats

up. But as the heat of the wire increases, the resistance goes up. Thus the graph of current

as a function of voltage is curving down; the higher the voltage, the less extra current you
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get from adding another volt. This means that the derivative dI
dV

is large when V is small,

but small when V is large.

A diode is a material that does the opposite. Resistance is high when the voltage is low,

but past some transition point the resistance drops and becomes very low. This means that

the derivative is large when V is small, and then small when V is large. The graph of I as

a function of V will curve up.

Figure 2.4: Current as a function of resistance for an incandescent bulb filament (left) and

a diode (right)

Figures from Nonlinear Resistors — Characteristics Curves of Nonlinear Devices at https:

//electricalacademia.com

In practice. engineers mostly don’t want to worry about the whole curve. If they know

about what voltage their devices will experience, they don’t need to worry what happens in

other places. So they take the local linear approximation, call that “the resistance”, and use

the equation I = I0 +
1
R
(V − V0). And this is just the linear approximation equation we’ve

been using all class.

Example 2.43 (Price Elasticity of Demand). Another common economics question is to

see how the demand for a product relates to its price. We can define a function Q(p) that

takes in a price in dollars, and outputs the quantity of items that will be bought. So if

Q(p) = 10000 − 10p, this means that if the price is $100 then people will buy Q(100) =

10000− 1000 = 9000 widgets.

What’s the derivative here? The function Q′(p) takes in a price in dollars and outputs a

number of widgets per dollar. It tells you how the quantity demanded changes in response

to changes in the price. Thus we see that since Q′(p) = −10, we expect to sell ten fewer

widgets for each dollar we raise the price.
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(Economists call this the Price Elasticity of Demand: “elasticity” is how quickly one

thing responds to changes in another thing. So any time the term “elasticity” shows up in

economics, there’s a derivative inolved somewhere).

What if instead we had the function Q(p) = 10000− 5p2? Now we see that changing the

price doesn’t have a huge effect if the price is already small, but it has a dramatic effect if

the price is big. We compute that Q′(p) = −10p. This means that increasing the price by

one dollar will decrease the quantity demanded by ten widgets for every dollar of the price.

Thus if the current price is $10, we expect raising the price to $11 to reduce sales by

about a hundred widgets. If the current price is $30 then raising the price will lose us nine

hundred widgets in sales.

2.8 Tangent Lines

In this section we’ll introduce a third perspective on the derivative. We saw first an algebraic

perspective, thinking about linear approximation, then a physical perspective thinking about

rates of change. Now we’ll take a geometric perspective.

Classically mathematicians were really interested in geometry, which was tied up deeply

in questions of philosophy and theology. One obvious-to-them geometric question was to try

to find a line tangent to the graph of some function.

Definition 2.44. A line that touches a curve at one point without crossing it is tangent

to the curve at that point, and we call such a line a tangent line (from Latin tangere “to

touch”.)

A line crossing a curve in two points is called a secant line. (from Latin secare “to cut”).

Just as the tangent of an angle is the length of a (specific) tangent line segment, the

secant of an angle is the length of a (specific) secant line segment.

Suppose we want to find the tangent line to a graph at a point (a, f(a)). We need either

two points, or a point and a slope. Clearly we have one point. The derivative gives a slope,

but why is it the right slope?

If we know another point (b, f(b)), then we can use the two-points formula to write the

equation of a line through those two points:

f(x)− f(b) =
f(b)− f(a)

b− a
(x− a).

And this is almost the linear approximation formula, since f ′(a) ≈ f(b)−f(a)
b−a

. As b gets closer

to a, this will get closer and closer to being the linear approximation formula.
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This line through (a, f(a)) and (b, f(b)) is a secant line. As b gets closer to a, then the

two points the secant line goes through get closer together. When we take the limit, our line

“goes through the same point twice”. Thus it only touches the curve at one point—so it is

a tangent line. Thus we see that the linear approximation to a function at a point a is the

line tangent at that point a.

Example 2.45. Let f(x) = x3

2
− x. We can draw secant lines through the points (0, f(0))

and (b, f(b)), and see what happens as b gets closer to a. Below, we see the lines for

b = 1, 1/2, 1/10, and then finally the tangent line given by the linear approximation formula.

We can see that each of the first three lines passes through two points, but as the points

get closer and closer together, the secant lines better approximate the tangent line we see in

the fourth picture.

We can see that this is, in fact, the same sort of question we asked earlier. The tangent

line touches the function graph at one point, and is going in the “same direction” as the

graph at that point. Thus it’s the line that looks most like the point. So it should be the line

that best approximates that function. And this is why the geometric tangent line quation is

essentially the same as the algebraic linear approximation question.

Example 2.46 (Slope). How can I think of the tangent line as a physical rate of change?

If I’m thinking about the graph of a function, then the input to the function is a horizontal
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position, measured in inches (or some other unit of distance). And the output is a vertical

position, also measured in inches. So f(x) takes in inches and outputs inches.

The derivative f ′(x) will still take in inches. But if we compute the derivative f ′(x) =

limh→0
f(x+h)−f(x)

h
, then the denominator is in inches and the numerator is also in inches.

This makes the derivative technically unitelss—but in reality, it is measured in inches per

inch.

And this has a clear physical interpretation! The slope of a line measures how many units

the line goes up for each unit it goes over. Thus, it measures inches of horizontal position

per inch of vertical position.

The second derivative f ′′(x) will take in inches and output 1/inch, which is really inches

per inch per inch. It tells us how much the slope, measured in inches per inch, changes if we

move one inch horizontally.

Example 2.47.

2.9 Implicit Differentiation

We can push all these ideas about differentiation one step further. This time it makes the

most sense to start with the geometric approach, and return to the other two later.

Let’s start with a warmup example.

Example 2.48. Consider the curve defined by the equation x2+ y = 25. Can we find a line

tangent to this curve at the point (3, 16)?

This equation is not written as a function. Recall a function is a rule that takes an input

and gives an output. And I haven’t described a rule for you. But you can work out a rule

that’s hidden, or implicit, in this equation. A little rearranging gives us

y = 25− x2

dy

dx
= −2x

and thus the derivative at x = 3 is −6. Then the equation for the tangent line is

y = 16− 6(x− 3).

Now let’s try a hairier example.

Example 2.49. Consider the equation x2 + y2 = 25, whose graph is a circle of radius 5.

Can we find a tangent line to the curve when x = 3?
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This is trickier, because we can’t just reinterpret this equation as a function. We could

try, and do something like

y2 = 25− x2

y = ±
√
25− x2.

But that ± symbol makes this not a real function. And derivatives are facts about functions.

So what can we do?

We can’t describe the whole circle as a function. But we can describe the top half of it

as a function. The formula

y =
√
25− x2

gives us a perfectly fine function. We can differentiate this to get

y′ =
1

2
(25− x2)−1/2 · (−2x) =

−x√
25− x2

,

and thus when x = 3 we get y′ = −3
4
. So the equation of our tangent line is

y = 4− 3

4
(x− 3).

Figure 2.5: The circle x2 + y2 = 25.

But I have two problems with this. The first is simple: why did I take the positive square

root and not the negative? It would have been just as valid to look at y = −
√
25− x2, and

get a derivative of 3/4 and a tangent line of y = −4 + 3
4
(x − 3). I’d like a method that

doesn’t force me to make that choice.

The second, bigger problem is that this is too much work, and I’m lazy. The origi-

nal equation is simple; I don’t want to do a ton of work to turn it into something more

complicated.

The key idea of our argument was that we can find a hidden function that sort of describes

our equation. y =
√
25− x2 isn’t the same as our equation, but as long as we’re looking at
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positive y values, and don’t worry too much about what’s happening elsewhere, it gives us

a good picture. The way I can be lazy now is just to assume that y is some function of x.

But I won’t worry about which function it is, and instead I’ll just leave it as a named-but-

unspecified function. (This is basically the whole trick of algebra: I don’t know what this

number is, so let’s call it x and move on with our lives.)

If y is a function of x, now we get the equation

x2 + (y(x))2 = 25.

Each side of this equation is a function, and the two functions are the same. And that means

that their derivatives are the same. I know the derivative of 25, and the derivative of x2. I

don’t really know the derivative of (y(x))2, since I don’t even know what y(x) is. But I’ll

just leave that unspecified again: by the chain rule, we know that

d

dx
(y(x))2 = 2y(x) · y′(x).

Thus differentiating both sides of our original equation gives

2x+ 2y(x)y′(x) = 0.

This doesn’t give us the derivative of y exactly, but it does give us a formula! Rearranging

this equation gives

2y(x)y′(x) = −2x

y′(x) =
−2x

2y(x)
=

−x

y(x)
.

And we get a formula for y′(x) in terms of x and y(x). This might seem like a problem, that

I need two numbers to plug in and not just one. But this is actually revealing something

deep about the problem. Remember that if x = 3, it’s possible that y = 4 or y = −4. If I

want to find the slope of the tangent line, I really do need to know which one I’m talking

about.

And finally, we can say that if x = 3 and y = 4, then the derivative is y′(x) = −3
4
. Which

is, of course, what we got earlier.

Remark 2.50. There’s one thing to beware of here. What if we look at the point x = 5, y = 0?

Then our formula would have us dividing by 0, which isn’t possible. We can see on the picture

that the tangent line would be vertical. But it isn’t a function, so the derivative there isn’t

well-defined.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 62

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Basically this is a failure of our idea, that if we zoom in on any point enough, its sur-

roundings will look like a function. No matter how tight our focus, the curve near (5, 0) will

never look like the graph of a function, because it will always fail the vertical line test.

Example 2.51 (Folium of Descartes). Let’s consider a more complex equation, x3 + y3 =

6xy. This is known as the Folium of Descartes. We can compute the derivative of both sides:

d

dx

(
x3 + y3

)
=

d

dx
(6xy)

3x2 + 3y2
dy

dx
= 6

(
y + x

dy

dx

)
(3y2 − 6x)

dy

dx
= 6y − 3x2

dy

dx
=

6y − 3x2

3y2 − 6x

=
2y − x2

y2 − 2x
.

(Notice that I did in fact simplify at the end here. Because I’m about to use this formula

to do a bunch of more computations, it’s worth it to stop and simplify here to make my life

easier.)

Now we can use this formula to find some tangent lines.

At the point (3, 3) we compute that

dy

dx
=

6− 9

9− 6
= −1

and thus the equation of the tangent line is y − 3 = −(x− 3).

At the point (0, 0), however, this doesn’t actually give us a useful answer; the top and

the bottom would both be zero. if you look at the picture in Figure 2.6, you see that there’s

not a clear tangentline there since the curve crosses itself. You can think of these “self-

intersection” points as another way a function can fail to be differentiable, on our earlier list

with corners, vertical tangents, and cusps.

We can also find second derivatives by extending this method. In this problem, we already

know that
dy

dx
=

2y − x2

y2 − 2x
.

We can differentiate both sides of this. The derivative of the left side is just the derivative

of the derivative, which is the second derivative. On the right we can use the quotient rule,

so we get

d2y

dx2
=

(
2 dy
dx

− 2x
)
(y2 − 2x)−

(
2y dy

dx
− 2
)
(2y − x2)

(y2 − 2x)2
.
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Figure 2.6: The folium of Descartes x3 + y3 = 6xy

This is okay, but it’s a little unsatisfying; I’d like a formula purely in terms of x and y, and

this formula also has the dy
dx

terms. But I can substitute in my earlier formula for dy
dx

and get

d2y

dx2
=

(
22y−x2

y2−2x
− 2x

)
(y2 − 2x)−

(
2y 2y−x2

y2−2x
− 2
)
(2y − x2)

(y2 − 2x)2
.

This is a little gross, but it does work. And we can compute now that the second

derivative at (3, 3) is

d2y

dx2
=

(−2− 6)(9− 6)− (−6− 2)(6− 9)

(9− 6)2
=

−24− 24

9
=

−16

3
.

The exact number here is hard to interpret, but the fact that the second derivative is negative

means that the slope of the tangent line decreases as we move to the right, which we can see

on the graph.

Example 2.52. If 9x2 + y2 = 9 then we have

18x+ 2y
dy

dx
= 0

dy

dx
= −9x

y

d2y

dx2
=

d

dx

(
−9x

y

)
= −

9y − 9x dy
dx

y2

= −
9y − 9x(−9x

y
)

y2

= −
9y + 81x2

y

y2

We see that at the point (0, 3) we have y′ = 0 and y′′ = −3. At the point (
√
5/3, 2), then

y′ = −3
√
5

2
and y′′ = −18+ 45

2

4
.
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Example 2.53. Find y′′ if x6 + 3
√
y = 1. Then find the first and second derivatives at the

point (0, 1).

6x5 +
1

3
y−2/3y′ = 0

−18x5y2/3 = y′

−18(5x4y2/3 +
2

3
x5y−1/3y′) = y′′

−18(5x4y2/3 +
2

3
x5y−1/3(−18x5y2/3)) = y′′

Thus at (0, 1), we have y′ = 0 and y′′ = 0. So the tangent line to the curve is horizontal at

the point (0, 1).

So far we’ve been looking at implicit differentiation as a geometric tool, to find tangent

lines. But we can also use it algebraically, on relationships that apply to functions.

Example 2.54. Suppose we have some function f such that 8f(x) + x2(f(x))3 = 24, and

we want to find a linear approximation of f near f(4) = 1. (Say we’ve measured this

experimentally and now want to understand or compute with the function). Then we have

d

dx

(
8f(x) + x2(f(x))3

)
=

d

dx
24

8f ′(x) + 2x(f(x))3 + 3x2(f(x))2f ′(x) = 0

8f ′(4) + 2 · 4 · 13 + 3 · 42 · 12f ′(4) = 0

8f ′(4) + 8 + 48f ′(4) = 0

and thus f ′(4) = −1/7.

This leaves us with a question, though. We know f(1); can we figure out the value of f

at other points?

We have a derivative, so we can again compute a linear approximation. We get

f(x) ≈ f ′(4)(x− 4) + f(4) =
−1

7
(x− 4) + 1.

Thus we compute

f(5) ≈ −1

7
(5− 4) + 1 = 1 +

−1

7
=

6

7
≈ .857.

Checking Mathematica, we see that the actual solution is .879. So we were pretty close.
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2.10 Related Rates

Finally, let’s apply a version of implicit differentiation to physical problems, or word prob-

lems.

It’s good to take a moment here to talk about why we do work problems, and how to

approach them. On a philosophical level, math does not tell us anything about the physical

world. It only tells us that if certain properties hold, other things also have to be true. It’s

our job to take the aspect of the world we care about and translate it into math. Then we

can see what the math implies, and hopefully that will still be true when translated back

into the world.

Word problems are training for this process. We take verbal (or pictorial etc.) infor-

mation, and try to turn it into a mathematical description. Then we see the mathematical

consequences, and translate those back into a verbal description of physics.

So how do we approach this? Checklist of steps for solving word problems:

(a) Draw a picture.

(b) Think about what you expect the answer to look like. What is physically plausible?

(c) Create notation, choose variable names, and label your picture.

(a) Write down all the information you were given in the problem.

(b) Write down the question in your notation.

(d) Write down equations that relate the variables you have.

(e) Abstractly: “solve the problem.” Concretely differentiate your equation.

(f) Plug in values and read off the answer.

(g) Do a sanity check. Does you answer make sense? Are you running at hundreds of miles

an hour, or driving a car twenty gallons per mile to the east?

Example 2.55. A spherical balloon is inflating at 12cm3/s. How quickly is the radius

increasing when the radius is 3cm?

In a perfect world, we want to relate the rate at which the volume is changing to the rate

at which the radius is changing. But we don’t have any formulas lying around that relate

those rates. What we do have are formulas that relate the levels: we can relate the “current”

volume of the sphere to the “current” radius.
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Specifically, we know that a sphere has volume V = 4
3
πr3. Then we can differentiate

both sides of that equation: using the chain rule, we compute that

dV

dt
=

d

dt

(
4

3
πr3
)

= 4πr2
dr

dt
.

We know that dV
dr

= 12cm3/s, and r = 3cm. Substituting those facts in gives us

12cm3/s = 4π(3cm)2r′

r′ =
1

3π
cm/s

So the radius is increasing by 1/3π cm per second.

Example 2.56. Suppose one car leaves Baltimore at noon, heading due north at 40 mph,

and at 1 PM another car leaves Baltimore heading due west at 60 mph. At 2PM, how quicly

is the distance between them increasing?

Write a for the distance the first car has traveled, and b for the distance the second car

has traveled. We have that a = 80mi, b = 60mi, a′ = 40mi/h, b′ = 60mi/h. We want a

formula that will relate the distances the cars have traveled to the distance between them;

after drawing a picture we see this is the pythagorean theorem a2 + b2 = c2, where c is the

distance between the two cars.

c2 = a2 + b2

2c
dc

dt
= 2a

da

dt
+ 2b

db

dt
.

We can use the pythagorean theorem to tell that c = 100, and thus we get

2 · (100mi) · dc
dt

= 2 · (80mi) · (40mi/h) + 2 · (60mi) · (60mi/h)

200mi
dc

dt
= 6400mi2/h + 7200mi2/h

dc

dt
= 68mi/h

so the distance between the cars is increasing at 68 mph.

The last thing we want to do is ask ourselves if this answer seems basically reasonable.

The units are correct; we are expecting the distance to be increasing, so that checks out;

and the size of the answer seems basically reasonable, because the cars are traveling at 40

mph and 60 mph and 68 is on the same scale as 40 and 60.
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Example 2.57 (Recitation). A twenty foot ladder rests against a wall. The bit on the wall

is sliding down at 1 foot per second. How quickly is the bottom end sliding out when the

top is 12 feet from the ground?

Let h be the height of the ladder on the wall, and b be the distance of the foot of the

ladder from the wall. Then h = 12, h′ = −1, and b =
√
400− 144 = 16. We have

h2 + b2 = 400

2hh′ + 2bb′ = 0

2 · 12 · (−1) + 2 · 16 · b′ = 0

b′ =
24

32
= 3/4

so the foot of the ladder is sliding away from the wall at 3/4 ft/s. Again, the direction of

the sliding is correct (away from the wall), and the number seems plausible.

Example 2.58 (Recitation). A rectangle is getting longer by one inch per second and wider

by two inches per second. When the rectangle is 5 inches long and 7 inches wide, how quickly

is the area increasing?

We have ℓ = 5in, w = 7in, dℓ
dt

= 1in/s, dw
dt

= 2in/s. We can relate all our quantities with

the formula for the area of a rectangle: A = ℓw relates the area, which we want to know

about, to the length and width, which we do know about.

Taking a derivative gives us

dA

dt
= ℓ

dw

dt
+ w

dℓ

dt

= 5in · 2in/s + 7in · 1in/s

= 17in2/s.

The units are right (the rate at which area is changing per second), and the direction is right

(the area should be increasing, and this derivative is positive). It’s really hard to see if the

size is right using our intuition; people in general have bad intuition for the rate at which

area changes in response to lengths.

But we can ask what would happen after a full second. One second later, we’d have

ℓ = 6in and w = 9in for a total area of 54in2. This is an increase of 19in2 over our starting

area of 35in2, and 17 is a pretty good approximation of 19.

As one final note, this is a problem we’ve basically seen before, in a different guise. The

derivative of the area formula is just the product rule; we saw basically this same picture

during the proof of the product rule in section 2.3.
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Example 2.59. A street light is mounted at the top of a 15-foot-tall pole. A six-foot-tall

man walks straight away from the pole at 5 feet per second. How fast is the distance between

the pole and the tip of his shadow changing when he is forty feet from the pole?

There are actually two ways to set this up. The more obvious is to find an equation that

will relate the length of the man’s shadow to his distance from the pole, because we know

how quickly the man is moving and we want to know how the shadow is changing. We see

that we have a similar triangles situation, so if we say that m is the distance between the

man and the pole, and s is the length of his shadow, we get the equation

6ft

15ft
=

s

s+m
.

We could differentiate this using the quotient rule, but it’s way easier if we collect terms

first:

6(s+m) = 15s

6m = 9s

6
dm

dt
= 9

ds

dt
2

3
· 5ft/s = ds

dt
.

So the shadow is growing at a rate of 10
3
ft/s.

However, that is not the answer to the question I asked! I don’t want to know how fast

the shadow is growing; I want to know how fast the tip of the shadow is moving away from

the pole. So I need to add ds
dt

the rate at which the shadow is growing, to the rate at which

the base of the shadow is moving away from the pole, which is dm
dt
. So my final answer is

that the tip of the shadow is moving away from the pole at (5 + 10/3)ft/s = 25
3
ft/s.

But once I realize that ds
dt

isn’t actually the thing I need to know, maybe I can set the

question up differently. Let m be the distance between the man and the pole, and let L be

the distance from the pole to the tip of the shadow—which is the thing that we actually care
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about. We can make the same similar triangles equation, but this time we get

6ft

15ft
=

L−m

L

6L = 15(L−m)

15m = 9L

15
dm

dt
= 9

dL

dt

15 · 5sift/s = 9
dL

dt
dL

dt
=

25

3
ft/s

and thus the distance between the pole and the tip of the shadow is increasing at 25
3
feet per

second.

Example 2.60. An inverted conical water tank with radius 2m and height 4m is being filled

with water at a rate of 2m3/min. How fast is the water rising when the water level is 3m

high in the tank?

We know that we want to relate the height of the water h to the volume of water V . The

obvious equation to use here is the formula for the volume of a cone:

V =
1

3
πr2h.

But this has a problem; in addition to V and h, this equation includes an r, which we don’t

know anything about. (The problem gives us a radius, but it’s the radius of the tank, not

the water filling the tank.)

The more naive approach is to plunge boldly ahead. We can take a derivative, and we

get

dV

dt
=

π

3

(
2r

dr

dt
h+ r2

dh

dt

)
2m3/min =

π

3

(
2r

dr

dt
· 3m + r2

dh

dt

)
,

but we still don’t have values for r or dr
dh
.

We need a new equation, that will relate r to something we already know about. But we

know that the water is in the conical tank, and should have the same shape. In particular,

the sides of our cones are similar triangles! The ratio of the radius of the tank to the height

of the tank must be the same as the ratio of the radius of the water to the height of the
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water. So we get

2m

4m
=

r

h

r =
h

2

(
3/2m

)
dr

dt
=

1

2

dh

dt
.

We can substitute this back into our original equation, and we get

2m3/min =
π

3

(
2 · 3

2
m · 1

2

dh

dt
· 3m +

(
3

2
m

)2
dh

dt

)

=
π

3

(
9

2

dh

dt
m2 +

9

4

dh

dt
m2

)
=

9π

4
m2dh

dt
dh

dt
=

8

9π
m/min.

So we conclude that the water level is rising at 8
9π

meters per minute.

However, while that worked, it was a huge mess algebraically. If we’re smart we can do

this much more easily. We start with the volume equation

V =
1

3
πr2h.

At this point, we can notice that the r will be a problem, so we get rid of it now. We make

the similar triangles and see that

2m

4m
=

r

h

r =
h

2

and substituting that back into the original equation gives

V =
1

3
π

(
h

2

)2

h =
π

12
h3

dV

dt
=

π

12
3h2dh

dt

2m3/min =
π

4
· (3m)2

dh

dt
8

9π
m/min =

dh

dt
.

So we conclude that the water level is rising at 8
9π

meters per minute.
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Example 2.61. A lighthouse is located three kilometers away from the nearest point P on

shore, and its light makes four revolutions per minute. How fast is the beam of light moving

along the shoreline 1 kilometer from P?

Let’s say the angle of the light away from P is θ, and the distance from P is d. Then

we have d = 1 and θ′ = 8π (in radians per minute). We also have the relationship that

tan θ = d
3
.

Taking the derivative gives us sec2(θ)·θ′ = d′/3. We need to work out sec2(θ), but looking

at our triangle we see that the adjacent side is length 3 and the hypotenuse is length
√
10

(by the Pythagorean theorem), so we have sec2(θ) = (
√
10/3)2 = 10/9.

Thus we have d′ = 3 sec2(θ) · 8π = 80π
3

kilometers per second.

Example 2.62 (Recitation). A kite is flying 100 feet over the ground, moving horizontally

at 8 ft/s. At what rate is the angle between the string and the ground decreasing when 200ft

of string is let out?

Call the distance between the kite-holder and the kite d and the angle between the string

and the ground θ. When the length of string is 200 then d =
√
2002 − 1002 = 100

√
3. We

have that d′ = 8 (since the angle is decreasing, the kite must be getting farther away). And

finally we have the relationship tan θ = 100
d

by the definition of tan in terms of triangles.

Then we have

tan θ = 100d−1

sec2(θ)θ′ = −100d−2d′

θ′ =
−100 · 8 cos2(θ)

d2
.

We see that cos(θ) = 100
√
3

200
=

√
32, so we have

θ′ =
−100 · 8 · 3/4
(100

√
3)2

= − 8

100 · 4
=

−1

50
.

So the angle between the string and the ground is decreasing at a rate of 1/50 per second.

(Note: radians are unitless!)
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3 Optimization

Let’s step back and look at the big picture. In section 2 we defined the derivative, and we

also talked about one major application of the derivative: linear approximation, which we

saw from many perspectives. We took the algebraic approach of approximating a function,

the geometric approach of finding equations for tangent lines, and the physical approach of

studying rates of change. We then used implicit differentiation to extend these concepts,

and related rates was one more use of the rates-of-change understanding of the derivative.

In this section we’re going to look at the other major application of the derivative:

optimization. And while we’ll spend the bulk of this section (until 3.6) working abstractly

in the realm of functions and graphs, I want to convince you that we are dealing with a real

concrete physical question.

If you’re running a factory, you may want to ask how you can make as much money

as possible. Or you may want to keep your costs as low as possible. Or, if you’re feeling

pro-social, you may want to minimize the level of pollution you create.

If you’re a biologist studying an ecosystem, you may want to know what the maximum

population of wolves you can expect to see is. If you’re doing medical research, you may

want to know what drug dose will be most effective. If you’re a physicist studying the motion

of an object, you may want to see where the highest point of its trajectory is, or where it

reaches its fastest speed, or what the shortest path it can take is.

All of these questions are problems of optimization: we have some function or relationship,

and we want to find the maximum (or minimum) value it can take on. And so for the next

few sections we’ll talk about maximizing or minimizing a function, but we always want to

remember that this is potentially a very concrete, practical question.

3.1 Extreme Values and Critical Points

So what is it we’re looking for? We have a function f , and we want to find the greatest (or

least) number it can ever output. If L is the greatest value that f can output, two things

need to be true. First, L is actually an output of f ; there is some number c such that

f(c) = L. And second, f never outputs a number that’s bigger than that. We can combine

those two ideas with the following series of definition.

Definition 3.1. If f(c) ≥ f(x) for every x in the domain of f , then f(c) is an absolute

maximum or global maximum for f . We say that f has an absolute maximum at c.
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Similarly, if f(c) ≤ f(x) for every x in the domain of f , then f(c) is an absolute minimum

or global minimum for f , and f has a global minimum at c.

Absolute maxima and absolute minima are somtimes collectively called extreme values

or absolute extrema. (“Extremum” comes from “extreme value,” meaning a value that is

very big or small or otherwise unusual).

The graph of x
x2+1

. This function has a

maximum value of 1/2 which occurs at

x = 1, and a minimum value of −1/2

which occurs at x = −1.

The graph of sin(x). This function has

a maximum value of 1, which occurs at

−3π/2, π/2, 5π/2, . . . . Similarly, it has a

minimum value of −1, which occurs at

−π/2, 3π/2, 7π/2, . . . .

Very important note: the function has

one maximum value, which occurs in

many different places.
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The graph of 3 − x2. This function has

an absolute maximum of 3, which occurs

at zero. It has no absolute minimum: the

function goes to −∞

The graph of x2−1
x2+1

. This function has an

absolute minimum of −1, which occurs at

0. It has no absolute maximum. We see

that the function almost reaches a value

of 1, but it never actually outputs 1. So

1 can’t be the maximum, since it’s not

an output; but if you pick any number

smaller than 1, that can’t be the maxi-

mum either, because we can always get

closer to 1.

The graph of x4 − 8x2 + 16. There is a

peak in the middle but it’s not an absolute

maximum, since we get higher values else-

where. There are relative minima at both

−2 and 2, with a value of zero. Again,

there is only one absolute minimum: zero.

It just happens at two places.

This is a horizontal line, so you might

think it doesn’t have any maxima or min-

ima. But in fact, the largest value we can

get is 3, so the maximum value is three.

And the last value we can get is...3. So

the minimum value is three. This func-

tion has a maximum and a minimum at

every single point.

We’ve noticed that maxima and minima don’t necessarily exist. Some of these functions

had both a max and a min; some had one but not the other; and some had neither. But if

you want to avoid having extrema, there are only a few ways that can happen.
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This function f(x) = x has no max or

min, because it just keeps going to infin-

ity as x gets bigger or smaller. It’s very

easy to avoid having extrema if x isn’t

bounded.

This is still f(x) = x, but it has no max

or min for a different reason. We have x

bounded by −5 < x < 5. And that means

our function can get very close to 5, but

never quite gets there. The number 5 kind

of “wants to be” the maximum value here,

but there’s no way to actually get it as an

output.

(If we want to be fancy, we say that 5

is the “supremum” of this function on

(−5, 5), and −5 is the “infimum”. But

you don’t need to know those words for

this course.)

f(x) = 1
x−1

has endpoints on either side,

but there’s a discontinuity in the middle

where it goes to infinity. This function

has no max or min because near 1 the

outputs can get arbitrarily large or small.

We get the same problem with just a

jump discontinuity. This function has

endpoints, and is defined everywhere in

[−5, 5]. And it stays less than 3 and big-

ger than −3, but it never actually reaches

3 or −3—it jumps away just before it gets

there. So this graph has no maximum or

minimum either.
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We’ve seen that we can avoid extrema if our x values are unbounded, or if our function’s

domain is missing endpoints, or if there’s a discontinuity somewhere. But it turns out these

are the only ways to avoid having extrema, as stated in the following theorem:

Theorem 3.2 (Extreme Value Theorem). If f is continuous on a closed interval [a, b], then

f has an absolute maximum f(c) at some point c in the interval [a, b], and an absolute

minimum f(d) at some point d in the interval [a, b].

Note that both the continuity and the closed-ness are important here. I’m not going to

try to prove this; it’s in a lot of ways the most challenging result to prove in the entire course

and depends on advanced ideas like “topological compactness”. But looking at the pictures

above should convince you there’s something here.

Also, this is another “existence theorem”, like the Intermediate Value Theorem of section

1.4. It tells us that a global maximum and a global minimum exist, but not anything about

where. We can answer this question and find them, but it will require a bit more setup.

If functions are complicated, it’s hard to think about the entire function, and find the

absolute maximum. So we want to replace this with an easier question. We can look for

places where the graph of our function has a peak or a valley, even if it’s not the biggest

or smallest possible point. This will be much easier to work with, because it allows us to

use the tools we’ve developed already; both limits and derivatives involve focusing on a very

small region of the graph, and ignoring everything else.

Definition 3.3. If f(c) ≥ f(x) for all x near c, we say that f(c) is a relative maximum or

a local maximum for, and that f has a relative maximum at c.

If f(c) ≤ f(x) for all x near c, we say that f(c) is a relative minimum or a local minimum

for f , and that f has a relative minimum at c.

Theorem 3.4 (Fermat’s Theorem/Critical Point Theorem). If f has a local extremum at c,

and c is not an endpoint of the domain of f , and f ′(c) exists, then f ′(c) = 0.

Proof. Intuitive idea: If f ′(c) > 0 then f is increasing, so f(c + h) > f(c) for some small

positive h. If f ′(c) < 0 then f is decreasing, so f(c+ h) > f(c) for some small negative h.

To keep things simple, let’s suppose f has a local maximum at c, and f ′(c) exists.

Since f(c) is a local maximum, we know that f(c) ≥ f(c + h) for small h, and thus that

f(c+ h)− f(c) ≤ 0.
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If we take h to be positive, then we can divide both sides by h and we get

f(c+ h)− f(c)

h
≤ 0

lim
h→0+

f(c+ h)− f(c)

h
≤ 0.

But since f ′(c) exists, this limit must be f ′(c), so f ′(c) ≤ 0.

If we take h to be negative, then dividing both sides of our inequality by h flips the

inequality, and we get

f(c+ h)− f(c)

h
≥ 0

lim
h→0−

f(c+ h)− f(c)

h
≥ 0.

But since f ′(c) exists, this limit must be f ′(c), so f ′(c) ≥ 0.

But then f ′(c) ≥ 0 and f ′(c) ≤ 0, so f ′(c) = 0.

Remark 3.5. • The converse of this theorem isn’t true: you can have points where f ′(c) =

0 or f ′(c) does not exist that are not local extrema.

• Your textbook uses its words slightly differently, and believes that you cannot have a

relative extremum at the endpoint of an interval. I think this is poor word choice, but

you should be aware of it when reading the textbook.

Definition 3.6. We say that c is a critical point of a function f if either f ′(c) = 0 or f ′(c)

does not exist.

Then Fermat’s theorem says specifically that if f has a local extremum at c, then c

is a critical point. (Again, remember that c can be a critical point without being a local

extremum).

Example 3.7. • Let f(x) = x3 − x. Then f ′(x) = 3x2 − 1; this is defined everywhere,

and f ′(x) = 0 when x = ±
√
3
3
. So the critical points are ±

√
3
3
.

• If f(x) = x2, then g′(x) = 2x and is 0 when x = 0. So the only critical point is 0.

• If h(x) = sin(x) then h′(x) = cos(x), which is 0 when x = (n + 1/2)π for any integer

n. Thus the critical points are π/2, 3π/2, 5π/2, . . . .
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• If f(x) = x3 then f ′(x) = 3x2 which is 0 when x is 0. Thus the only critical point is

at 0.

• If g(x) = |x| then

g′(x) =


1 x > 0

−1 x < 0

DNE x = 0

and thus has a critical point at x = 0 since the derivative does not exist there.

• If f(x) = |x2 − 4| then we know that |x| isn’t differentiable at 0, so f(x) won’t be

differentiable at x2 − 4 = 0 and thus at x = ±2. We see the derivative of the inside is

2x, so f ′(x) = ±2x = 0 when x = 0, and thus the critical points are 0,±2.

The obvious next question is “how can we determine whether these critical points are a

maximum or a minimum or neither?” This is a bit tricky, so we’ll hold off for a bit. First

we will identify the absolute extrema of a continuous function on a closed interval.

Remember that if f is continuous on [a, b], it must have an absolute maximum and an

absolute minimum. By Fermat’s theorem, if the absolute extrema are in the interior they

must be at critical points. So we can find the absolute extrema by the following method:

(a) List all the critical points.

(b) Evaluate f at each critical point, and at a and b.

(c) The largest value is the maximum and the smallest is the minimum.

Example 3.8. • If f(x) = x3 − x, we saw the critical points are ±
√
3/3. If we want

the absolute maximum on [0, 2], we compute that f(0) = 0, f(2) = 6, and f(
√
3/3) =

−2
√
39. Thus the absolute maximum is 6 at 2 and the absolute minimum is −2

√
3/9

at
√
3/3.

• Let h(x) = 2 cos t + sin(2t) on [0, π/2]. Then h′(x) = −2 sin(t) + 2 cos(2t) = 0 when

sin(t) = cos(2t). On [0, π/2] this happens precisely when x = π/6, so this is the only

critical point. We compute h(0) = 2, h(π/2) = 0, h(π/6) = 3
√
3/2, so the absolute

maximum is 3
√
3/2 at π/6 and the absolute minimum is 0 at π/2.

• Let f(x) = x2+3
x−1

on [−2, 0]. Then we see that

f ′(x) =
2x(x− 1)− 1(x2 + 3)

(x− 1)2
=

x2 − 2x− 3

(x− 1)2
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does not exist at 1. To test when f ′(x) = 0 we need only consider the numerator, so

we have 0 = x2 − 2x − 3 = (x − 3)(x + 1) and thus x = 3 or x = −1. So the critical

points are −1, 1, 3.

f is continuous on [−2, 0] and so must have global extrema. To find them we only

need to look at the critical points in [−2, 0], and thus only at −1. So we compute

f(0) = −3, f(−1) = −2, f(−2) = −7/3. Thus the maximum is −2 (at −1) and the

minimum is −3 (at 0).

• What about the global extrema of that same function on [0, 2]? We already know the

critical points, so we need to check 0, 1, 2. We have f(0) = −3 and f(2) = 7, but

f(1) is not defined. In fact the function is not defined everywhere on [0, 2] and so not

continuous; it has an asymptote at x = 1 and thus no minimum or maximum.

We’d still like to determine what each critical point is like, but for that we will need more

tools.

3.2 The Mean Value Theorem

Now we’re going to take a brief detour from computation to do something that, in theory,

we should have done a while ago: convince ourselves that the derivative actually does what

it’s supposed to do.

In section 2 we raised a few different questions: how do we approximate a function with

a linear function? ( 2.1) How do we estimate how the output of a function will change when

the input changes? ( 2.7) How can we find an equation for the tangent line to the graph of

a function? ( 2.8) And we argued that all three of these questions should be answered with

the same computational tool, the derivative.

But it’s important to stop at some point in this process and figure out whether the

derivative really does answer those questions. So we’re going to take a detour into theory to

make sure that the derivative does what we want it to do. Specifically, we’re going to pick a

few things that should be true if the derivative does what it should, and check that they’re

actually true of the actual derivative.

And that means that this section will feel a little bit backwards. The things we’re going

to prove are obviously true. And that’s fine! The goal of this section is not to prove those

things are true; it’s to check that the derivative, the one we defined, makes those things true.

So we’re going to prove that if your top speed is below sixty miles per hour, you can’t go
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more than sixty miles in one hour. That should be obvious; the point is that this works if

we interpret your “top speed” as referring to the maximum of the derivative.

https://xkcd.com/2042/

Before we can get there, though, we need to start

with a somewhat technical result called Rolle’s Theo-

rem. Named after the French mathematician Michel

Rolle who partially proved it in 1691 without using

calculus (which he apparently didn’t believe in!), it

was fully proven by Cauchy in 1823, and given his

name in 1834. This theorem shows that under cer-

tain conditions, a function has to have a point where

the derivative is zero, and thus the tangent line is hor-

izontal. This isn’t especially interesting on its own,

although it does have one neat application where we

can use it to prove an equation doesn’t have too many

solutions. But it’s easy to prove, and we can leverage

it to prove a more powerful and important result.

Theorem 3.9 (Rolle). If f is continuous on [a, b] and

differentiable on (a, b), and f(a) = f(b), then there is a point c in (a, b) where f ′(c) = 0.

Proof. If f is constant everywhere, then the derivative is 0 everywhere.

By the Extreme Value theorem, f has a global maximum on [a, b]. If there is some x

in (a, b) with f(x) > f(a), then the maximum is in the interior at some point c, and by

Fermat’s theorem, since f ′(c) must exist, we have f ′(c) = 0.

If f is not constant, and there is no x with f(x) > f(a), then there is some f with

f(x) < f(a). Then f has an absolute minimum in the interior at some point c. By Fermat’s

theorem f ′(c) = 0.

Remark 3.10. We need f to be continuous at the endpoints, but it doesn’t have to be

differentiable there. Rolle’s theorem does guarantee a derivative of zero somewhere in the

interior–not just at the endpoints.

Example 3.11. If f(x) represents the height of an object, f ′(x) represents its speed. If I

throw an object up and wait for it to fall back down to the ground, at some point during

the process (at the top of its arc) it’s instantaneous velocity will be 0.

Example 3.12. We can prove that f(x) = x3 + x− 1 has exactly one real root.
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First we use the Intermediate Value Theorem to show that a root exists at all. f is

continuous because it’s a polynomial. We see that f(0) = −1 < 0 and f(1) = 1 > 0, so by

the Intermediate Value Theorem there’s some a in (0, 1) with f(a) = 0. Thus f has at least

one real root.

Now suppose f(b) = 0 and b ̸= a. Then f is continuous and differentiable everywhere,

and f(a) = f(b), so by Rolle’s theorem there’s some c in between a and b with f ′(c) = 0.

But f ′(c) = 3c2 + 1, and since c2 ≥ 0, we know that f ′(c) ≥ 1 for every c. Thus there’s

no c with f ′(c) = 0, so there’s no b ̸= a with f(b) = 0. Thus f has exactly one real root.

Rolle’s theorem can be useful, but it’s very limited by the need for f(a) = f(b). The

Mean Value Theorem lets us lift that restriction.

Theorem 3.13 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on

(a, b), then there’s a c in (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We prove this using Rolle’s theorem, by writing an altered version of f that satisfies

the hypotheses of Rolle’s theorem. Define

h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

This is basically just taking f(x) and then subtracting off the line from (a, f(a)) to (b, f(b)).

It’s clear that

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0− f(b)− f(a)

b− a
0 = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = (f(b)− f(a))− (f(b)− f(a)) = 0

so h(a) = h(b). h is continuous on [a, b] because f is continuous on [a, b], polynomials are

continuous, and the sum of two continuous functions is continuous. h is differentiable on

(a, b) because f is differentiable on (a, b), polynomials are differentiable, and the sum of two

differentiable functions is differentiable.

Thus h satisfies the hypotheses of Rolle’s theorem. Then there’s some c in (a, b) with

h′(c) = 0. But

h′(x) = f ′(x)− f(b)− f(a)

b− a
(1− 0)

0 = f ′(c)− f(b)− f(a)

b− a

f ′(c) =
f(b)− f(a)

b− a

as we desired.
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Example 3.14. Earlier in the class, we talked about driving to San Diego. That’s about

120 miles, so if it takes me two hours to get there, my average speed is 60 mph. That doesn’t

mean my speed at each point is 60 mph, though; I might go 90 part of the way and then

20 part of the way while I’m stuck in traffic. But the Mean Value Theorem tells me that at

some point during that drive the needle on my speedometer pointed at the 60–which makes

sense, since it will do that while I’m accelerating up to 90.

Example 3.15. We can also use the mean value theorem to constrain the possible values

for a function. For instance, suppose I have a function f , and all I know is that f(1) = 10

and f ′(x) ≥ 2 for every x. Then if I want to know about f(4), I can conclude that there is

some c in (1, 4), such that:

f ′(c) =
f(4)− f(1)

4− 1

3f ′(c) = f(4)− 10

f(4) = 10 + 3f ′(c) ≥ 10 + 3 · 2 = 16.

Thus f(4) ≥ 16.

Example 3.16. Suppose |f ′(x)| ≤ 2 for all x, and f(0) = 7. What do we know about f(5)?

We know that for any x, −2 ≤ f(x) ≤ 2. By the mean value theorem, we have

f ′(c) =
f(5)− f(0)

5− 0

−2 ≤ f(5)− f(0)

5− 0
≤ 2

−10 ≤ f(5)− 7 ≤ 10

−3 ≤ f(5) ≤ 17.

This corresponds to the intuition that if you’re travelling less than 2 miles per hour, you

won’t get more than ten miles in five hours; and if you start at 7, you’ll wind up between

−3 and 17.

Example 3.17. Show f(x) = x5 + x3 + x has exactly one root.

It’s pretty clear that f has a root; we could use the intermediate value theorem, but we

can also observe that f(0) = 0.

Suppose f(a) = f(b) = 0. Then by Rolle’s Theorem there is some c with f ′(c) = 0. But

f ′(x) = 5x4 + 3x2 + 1 ≥ 1 and thus f ′(c) is never zero; so f has at most one root, and thus

exactly one root.
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More intuitively, f(x) has at most one root because it’s always increasing, and so one it

gets above zero it can’t come back down and hit zero again. Which leads us to discuss the

idea of increasing or decreasing functions.

3.3 Increasing or Decreasing Functions and Finding Relative Ex-

trema

We now want to use the Mean Value Theorem to answer our original question, about which

critical points are maxima or minima. We start with a defnition:

Definition 3.18. We say that f is (strictly) increasing on an interval (a, b) if, whenever x1

and x2 are points in (a, b) and x2 > x1, then f(x2) > f(x1).

We say that f is (strictly) decreasing on an interval (a, b) if, whenever x1 and x2 are

points in (a, b) and x2 > x1, then f(x2) < f(x1).

Notice that these definitions make sense if you assume we’re moving to the right; an

increasing function is one where f(x) increases as x increases.

Proposition 3.19. • If f ′(x) = 0 for all x in (a, b), then f is constant on (a, b).

• If f ′(x) > 0 for all x in (a, b), then f is increasing on (a, b).

• If f ′(x) < 0 for all x in (a, b), then f is decreasing on (a, b).

Proof. Let x1, x2 be two points in (a, b) with x2 > x1. Then since f is differentiable (and thus

continuous) everywhere in (a, b), it is continuous and differentiable everywhere on [x1, x2],

and by the mean value theorem there is some c with

f ′(c) =
f(x2)− f(x1)

x2 − x1

(x2 − x1)f
′(c) = f(x2)− f(x1).

• Now, if f ′(x) = 0 for all x, then f ′(c) = 0 and thus f(x2)− f(x1) = 0. This is true for

any points x1 and x2, and thus f is constant.

• If f ′(x) > 0 for all x, then f ′(c) > 0. Since x2−x1 > 0, this implies that f(x2)−f(x1) >

0. This is true for any points x1 < x2 and thus f is increasing.

• If f ′(x) < 0 for all x, then f ′(c) < 0. Since x2−x1 < 0, this implies that f(x2)−f(x1) <

0. This is true for any points x1 < x2 and thus f is decreasing.
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Remark 3.20. This theorem doesn’t say anything about intervals where f isn’t always differ-

entiable. It also doesn’t say anything about intervals where f ′ switches sign in the middle.

In practice, we split the domain of our function up into intervals on which exactly one of

these things is happening and study each interval separately.

Example 3.21. Let f(x) = 3x4 − 4x3 − 12x2 + 5. Where is f increasing or decreasing?

f ′(x) = 12x3−12x2−24x = 12x(x−2)(x+1) is 0 when x = 0,−1, 2. These three points

are the critical points. f ′(x) has three factors, and it will be positive when one or all three

factors are positive. We make a chart:

12x x− 2 x+ 1 f ′(x)

x < −1 − − − −
−1 < x < 0 − − + +

0 < x < 2 + − + −
2 < x + + + +

Thus f ′(x) is positive when −1 < x < 0 or 2 < x, so f is increasing on (−1, 0) and on

(2,+∞). f ′(x) is negative when x < −1 or 0 < x < 2, so f is increasing on (−∞,−1) and

(0, 2).

Figure 3.1: a graph of 3x4 − 4x3 −
12x2 + 5 with critical points marked

Can we use this information about increasing and

decreasing functions to say something about relative

maxima and minima? In fact, assuming f is continu-

ous at c, if f is increasing to the left of a point c and

decreasing to the right of c, then it must have a max-

imum at c. Similarly, if f is decreasing to the left and

increasing to the right, it must have a minimum. If

it increases on both sides or decreases on both sides,

then c is neither a maximum nor a minimum. There-

fore:

Proposition 3.22 (First derivative test for extrema).

If c is a critical point of f and f is continuous at c, then

• If f ′ changes from positive to negative at c then f has a relative maximum at c.

• If f ′ changes from negative to positive at c then f has a relative minimum at c.
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• If f ′ “changes” from positive to positive or negative to negative at c then f has neither

a relative maximum nor a relative minimum at c.

Remark 3.23. If f ′ is continuous, the sign of f ′ actually only can change at a critical point

by the intermediate value theorem. So we just have to check the sign of f ′ at one point in

between each critical point.

So what does this say about our previous example? We had three critical points, at

−1, 0, 2. At −1 we saw that f ′ changed from negative to positive, so f has a relative

minimum f(−1) = 0 at −1. Similarly, at 0 f ′ changed from positive to negative and at 2

f ′ changed from negative to positive, so f has a relative maximum of f(0) = 5 at 0 and a

relative minimum of f(2) = −27 at 2.

Example 3.24. Let g(x) = x + sin(x). Then g′(x) = 1 + cos(x) is zero precisely when

x = (2n + 1)π for some integer n. Since we only need to check the sign of g′ at one point

between each critical point, we check that g′(2nπ) = 1 + cos(2nπ) = 2. Thus g′ is positive

everywhere except at the critical points, so g is increasing everywhere except at the critical

points. Thus g has no relative maxima or minima.

Now let h(x) = x+ 2 sin(x). We have h′(x) = 1 + 2 cos(x) = 0 when x = 2nπ + 4π/3 or

x = 2nπ+2π/3. We compute that h′(0) == 3, h′(π) = −1, and h′(2π) = 3. Thus h′ changes

from positive to negative at 2π/3, so this is a relative maximum. h′ changes from negative

to positive at 4π/3, so this is a relative minimum.

Graph of g(x) = x + sin(x) on [−2π, 4π]

with critical points marked. Notice none

of them are relative extrema.

Graph of h(x) = x+2 sin(x) on [−2π, 4π]

with critical points marked. Every critical

point is a relative extremum.

But we’d like to find relative maxima and minima with even less work, which brings us

to the subject of concavity.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 86

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

3.4 Concavity and the Second Derivative Test

Definition 3.25. We say a function f is concave upward on an interval (a, b) if every tangent

line to a point in (a, b) lies below the graph of f .

We say a function f is concave downard on (a, b) if every tangent line to a point in (a, b)

lies above the graph of f .

We say a point c is an inflection point for a function f if the graph of f changes from

concave up to concave down, or concave down to concave up, at c.

Remark 3.26. Functions that are concave upward are curving up, like a bowl. Functions

that are concave downward are curving down, like an umbrella.

Example 3.27. Looking at graphs, we can see:

• x2 is concave upward everywhere. −x2 is concave downward everywhere.

• x3 is concave downward when x < 0 and is concave upward when x > 0.

• 3
√
x is concave upward when x < 0 and concave downward when x > 0.

• sin(x) is concave downward when 0 < x < π and concave upward when π < x < 2π.

We see that when a function is concave upward, the slopes of its tangent lines are

increasing–which means the derivative is increasing. Similarly, a function is concave down-

ward when its derivative is decreasing. But we just showed that we can determine whether

a function is increasing or decreasing by looking at its derivative. So we need to study the

derivative of the derivative–the second derivative.

Proposition 3.28 (Concavity Test). • If f ′′(x) > 0 for all x in (a, b), then the graph of

f is concave upward on (a, b).

• If f ′′(x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b).

Remark 3.29. It’s not necessarily true that f has an inflection point whenever f ′′(x) = 0.

But it often is.

Example 3.30. • d
dx
x2 = 2x, so d2

dx2x
2 = 2 > 0, so x2 is concave upward everywhere.

Similarly, d2

dx2 − x2 = −2, 0, so −x2 is concave downward everywhere. Neither function

has an inflection point.

• d2

dx2x
3 = 6x is positive if x > 0 and negative if x < 0, so the function is concave upward

when x > 0 and concave downward when x < 0. It has an inflection point when x = 0.
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• d2

dx2
3
√
x = −2

9
3√
x5

is negative when x > 0 and positive when x < 0, so the function is

concave upward when x < 0 and concave downward when x > 0. It has an inflection

point when x = 0.

• d2

dx2 sin(x) = − sin(x), so sin(x) is concave upwards precisely when it is positive, and

concave downwards when it is negative. It has an inflection point at 0, π, 2π, and in

general at nπ for any integer n.

• Consider f(x) = x4. f ′′(x) = 12x2 is positive everywhere except at 0, so the function is

concave upwards everywhere except at 0. f ′′(0) = 0, so the second derivative concavity

test doesn’t tell us anything. But this isn’t an inflection point, because the concavity

doesn’t change on either side–in fact the function is concave at x = 0 as well, as you

can see from a graph.

Why do we care? Notice that if f is concave upward then the first derivative is increasing;

so if f ′(c) = 0 and f is concave upwards at c, the derivative is changing from negative to

positive, and f has a local minimum at c. A similar argument works for local maxima, and

thus:

Proposition 3.31 (The Second Derivative Test). If f ′′ is continuous near c, then

• If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

• If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

Remark 3.32. • If f ′′(c) = 0 this theorem tells us nothing; almost anything could happen.

We can use the increasing/decreasing function test, or we can use the third and fourth

derivatives to give us information.

• This rule only works if f ′(c) = 0; if f ′(c) doesn’t exist, then f ′′(c) certainly doesn’t

exist and this proposition is not helpful.

Example 3.33. We looked at the function f(x) = 3x4 − 4x3 − 12x2 + 5 in example 3.21.

We computed that f ′(x) = 12x3− 12x2− 24x = 12x(x− 2)(x+1) , so the critical points are

x = −1, 0, 2.

Then f ′′(x) = 36x2 − 24x− 24 = 12(3x2 − 2x− 2). We can compute

f ′′(−1) = 12(3 + 2− 2) = 36 > 0

f(0) = −24 < 0

f(2) = 12(12− 4− 2) = 72 > 0
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so by the second derivative test, f has a local maximum at 0 and local minima at −1 and 2.

This was a little faster and easier than the way we original classified the maxima and

minima of this function. But sometimes the second derivative test just isn’t very helpful.

Example 3.34. Let f(x) = x2/3(6−x)1/3. Where does f have relative maxima and minima?

Where is it increasing or decreasing?

f ′(x) =
4− x

x1/3(6− x)2/3

f ′′(x) =
−8

x4/3(6− x)5/3
.

Then f ′(x) = 0 when x = 4, and f ′(x) does not exist when x = 0 or x = 6, so these are the

three critical points.

We can use the second derivative test—or try to. We see that f ′′(4) = −8
213/3

= −2−4/3 < 0

so f has a maximum at 4. But at 0 and at 6, the second derivative isn’t defined, so the

second derivative test isn’t useful there.

But we can still use the first derivative test. We get a table:

4− x x−1/3 (6− x)−2/3 f ′(x)

x < 0 + − + −
0 < x < 4 + + + +

4 < x < 6 − + + −
6 < x − + + −

This tells us that f has a minimum of f(0) = 0 at 0 and a maximum of f(4) = 25/3 at 4. It

doesn’t have a local maximum or minimum at 6.

But now we can do one more thing. Our table tells us that f is increasing for 0 < x < 4,

and it’s decreasing for x > 0 or x > 4. And further, we can do the same thing for the second

derivative. The second derivative is zero, or undefined, at 0 and at 6. So we get

−8 x−4/3 (6− x)−5/3 f ′(x)

x < 0 − + + −
0 < x < 6 − + + −
6 < x − + − +

So the function is concave down for x < 6 and concave up for x > 6. We say that x = 6

is a point of inflection for this function, where the concavity changes. And we can use this

information to sketch an effective graph of the function.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 89

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Figure 3.2: The graph of f(x) = x2/3(6− x)1/3 with critical points

3.5 Curve sketching

And now we’re ready to approach the task of sketching the graph of a function in an organized

way. What follows is a good checklist, though not every point is relevant to every function.

(a) Find the domain of the function. If it has holes, what happens near them? Does it go

to infinity, or jump, or just skip a point?

(b) Find the roots–where does the function hit the x-axis?

(c) Find the limits as x goes to ±∞–what happens to the function “far away” from 0?

(d) Compute f ′ and find the critical points. It can be helpful to evaluate f at the critical

points.

(e) Find intervals of increase or decrease. Identify local maxima and minima.

(f) Compute f ′′ if you haven’t already. Determine where the function is concave, and find

inflection points.

(g) Use all this information to sketch a graph of the function.

Example 3.35. Let f(x) = x(x− 4)3 = x4 − 12x3 + 48x2 − 64x. Then:

(a) The function is a polynomial, so its domain is all real numbers.

(b) The function has roots at 0 and 4.

(c) limx→+∞ f(x) = limx→−∞ f(x) = +∞.

(d) f ′(x) = (x− 4)3+3x(x− 4)2 = (x− 4)2(4x− 4) = 4(x− 1)(x− 4)2. So f ′(x) = 0 when

x = 1 or x = 4. These are the critical points. f(1) = −27 and f(0) = 0.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 90

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

(e) Looking at our factorization, it’s clear that f ′(x) < 0 when x < 1 and f ′(x) > 0 when

x > 1, except f ′(x) = 0 when x = 4. So f is decreasing when x < 1 and is increasing

when x > 1 except at 4. Thus f has a minimum of −27 at 1.

(f) f ′′(x) = (x− 4)2 + 2(x− 1)(x− 4) = (x− 4)(3x− 6) = 3(x− 2)(x− 4). We see that

f ′′(x) > 0 is x < 2 or x > 4, and f ′′(x) < 0 if 2 < x < 4. Thus f is concave up on

(−∞, 2) and (4,+∞), is concave down on (2, 4), and has inflection points at 2 and 4.

Figure 3.3: The graph of f(x) = x(x− 4)3

Example 3.36. Let g(x) = x tan(x). Then

(a) The domain of g is real numbers except nπ + π/2. For simplicity we’ll just look at x

between −π/2 and π/2. limx→−π/2+ g(x) = +∞ and limx→π/2− g(x) = +∞.

(b) The function is 0 when x = 0 (and when x = nπ if we look farther out).

(c) This isn’t applicable since we’re not looking out to ±∞.

(d) g′(x) = tan(x)+x sec2(x) = sin(x) cos(x)+x
cos2(x)

. It’s not hard to see that when −π/2 < x < 0

then g′(x) < 0, and when 0 < x < π/2 then g′(x) > 0, and g′(0) = 0. So the only

critical point is at 0.

(e) And we saw that g is decreasing on (−π/2, 0) and increasing on (0, π/2). Thus g has

a local minimum at 0. g(0) = 0.

(f) g′′(x) = sec2(x)+sec2(x)+2x sec(x) sec(x) tan(x) = 2 sec2(x)(1+x tan(x)). x tanx ≥ 0

on (−π/2, π/2), so the function is concave up everywhere.

Example 3.37. Let h(x) = x+2
x−1

.

(a) The domain of h is all real numbers except 1. We see that limx→1− h(x) = −∞ and

limx→1+ h(x) = +∞.
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Figure 3.4: The graph of g(x) = x tan(x)

(b) The function has a root at x = −2.

(c) We have limx→+∞ h(x) = limx→−∞ h(x) = 1. (We can use L’Hôpital’s rule or divide

the top and bottom by x).

(d) We have h′(x) = (x−1)−(x+2)
(x−1)2

= −3(x− 1)−2. This has no roots and fails to exist when

x = 1. Thus there are no “real” critical points.

(e) We make a chart for increase and decrease:

−3 (x− 1)−2 h′(x)

x < 1 − + −
1 < x − + −

Thus h is decreasing everywhere. It has no local maxima or minima.

(f) h′′(x) = 6(x − 1)−3 is positive when x > 1 and negative when x < 1, so it is concave

down on the left, and concave up on the right.

Figure 3.5: The graph of h(x) = x+2
x−1

3.6 Physical Optimization Problems

Through most of this section we’ve been finding the minimum and maximum values of

functions purely to understand the functions. But the techniques used to maximize a function

are extremely useful in finding optimum inputs to real world processes.
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In other words, we’re going to do more word problems.

Example 3.38. Suppose we have 2400 feet of fencing and we’d like to build a rectangular

fence that encloses the most possible area. How can we do this?

If we have a rectangular fence, then one side will have a length L and another will have

a width W . We know that the area A = W · L and that 2W + 2L = 2400. So we can write

W = 1200− L and see that A = L(1200− L). We’d like to maximize area.

We observe that our L has to be between 0 and 1200, so we’re maximizing the function A

on the closed interval [0, 1200]. By the extreme value theorem there must be some absolute

maximum.

A′ = 1200− 2L. We see that the only critical point is L = 600. A(0) = A(1200) = 0 and

A(600) = 6002 = 360, 000. A(600) is the largest of these values, and so is the absolute max.

But what if we build the fence against a river, so we only need to build three sides? Then

A = W ·L but W +2L = 2400, and thus W = 2400− 2L. Then we have A = L(2400− 2L).

A is still a function of L defined on [0, 1200], and we compute A′ = 2400− 4L and the only

critical point is L = 600, again. A(0) = A(1200) = 0, and A(600) = 600 · 1200 = 720, 000.

This last is the largest of the values, and the absolute max.

Example 3.39. Suppose we want to construct a cylindrical can that holds one liter of liquid,

and we want to use the least possible metal to construct the can—and thus build the can

with the least possible surface area. We have A = 2πr2 + 2πrh.

To eliminate the h, we note that the can holds one liter or 1000 cm3, and thus πr2h = 1000

and h = 1000
πr2

. (We also could have written it as one cubic decimeter, but nobody ever works

in decimeters). Thus we have A = 2πr2 + 2000
r
.

A′ = 4πr − 2000
r2

= 4πr3−2000
r2

= 0 when πr3 = 500, or when r = 3
√

500/π. So this is the

only critical point. Our function A has domain (0,+∞) so we can’t use the extreme value

theorem here. But we can see that A′ is negative when r < 3
√
500/π and positive when

r > 3
√

500/π, so that must be a global minimum.

(Alternatively: A′′ = 4π + 4000
r3

is always positive, so A is concave upwards everywhere,

and has a unique minimum at its critical point).

But now what if the curved material for the sides costs more than the flat material for

the ends, and we want to minimize cost? Say the material for the sides costs twice as much

as material for the base. Then we have C = 2πr2 + 4000
r
, and C ′ = 4πr − 4000

r2
= 0 when

πr3 = 1000, when r = 10/ 3
√
π. This is the only critical point, and a similar argument to

before shows it must be a global minimum.

We can break down our approach to these problems just as we did for related rates.
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(a) Draw a picture of the setup.

(b) Create notation. Give names to all the quantities involved in the problem. Write down

any equations that relate them.

(c) Express the quantity you want to maximize or minimize as a function of the other

quantities in the problem. Rewrite it so it’s a function of a single variable.

(d) Take the derivative and find the critical points.

(e) Determine the absolute maximum or minimum.

(f) Do a sanity check! Does your answer make sense?

Example 3.40. If we have 1200 cm2 of cardboard to make a box with a square base and

an open top, what is the largest possible volume of the box?

Well, we know that the total surface area of the box is A = 1200, and we also know that

if the height of the box is h and the length of one of the base sides is b, then the area is

A = b2 + 4bh. So we can write h = 1200−b2

4b
. We also know that the volume of the box is

V = b2h, so we have

V = b2h = b2
1200− b2

4b

= 300b− b3/4

V ′ = 300− 3b2/4

300 = 3b2/4

400 = b2

20 = b

so the only critical point occurs at 20. We see that V (20) = 400 · 10 = 4000, so this is the

largest possible volume of the box. (We can see that this is the absolute maximum via the

Extreme Value Theorem, and observing that V (0) = V (
√
1200) = 0.

Example 3.41. Suppose a man wishes to cross a 20 m river and reach a house on the other

side that is 48m downstream. The man can walk at 5 m/s or swim at 3 m/s. What is the

optimal path for him to take to reach the house?

The man will swim for some point on the bank of the river, and then walk the other

way. Let b be a number in [0, 48] representing how far he travels towards the house. Then
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he travels
√
400 + b2 meters in the river, at a speed of 3 m/s, and thus spends 1

3

√
400 + b2

seconds in the river. He then spends (48− b)/5 seconds walking.

So total time spent is

T =

√
400 + b2

3
+

48− b

5

T ′ =
b

3
√
400 + b2

− 1

5

1

5
=

b

3
√
400 + b2

3
√
400 + b2 = 5b

3600 + 9b2 = 25b2

225 = b2

15 = b

so we have a critical point at b = 15. On this path we have T = 25/3+33/5 = (125+99)/15 =

224/15 ≈ 14.9 seconds.

What about the two other paths? If we head straight to the house, we travel
√
482 + 202 =

52 meters at a speed of 3 m/s, for a total time of 17.3 seconds. If instead we head straight

across the river to begin walking as soon as possible, we travel 20 m at 3 m/2 and then 48

m at 5 m/s, for a total time of 20/3 + 48/5 = (100 + 144)/15 = 244/15 ≈ 16.3 seconds. So

the shortest path has us swim 25 m and deposits us 33 m from the house.

Example 3.42. A piece of wire 10 m long is going to be cut into two pieces. We will fold

one piece into a square and the other into an equilateral triangle. What is the largest joint

area we can enclose? What is the smallest?

Let L be the length of the wire bent into a triangle (so that 10 − L is the length of

the wire bent into a square). Then the area of the square is A1 = (10 − L)2/16. The

area of the triangle is bh/2; the length of the base is L/3 and the height of the triangle

is sin(π/3) · L/3 = (1/2) · (
√
3/2) · L/3 =

√
3L/12. So the area of the triangle is A2 =

(1/2)(L/3)(
√
3L/6) = L2

√
3/36. Then we have

A = A1 + A2 = (100− 20L+ L2)/16 + L2
√
3/36

A′ = −5/4 + L/8 + L
√
3/18

5/4 = L/8 + L
√
3/18

90 = 9L+ 4
√
3L

L = 90/(9 + 4
√
3)
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This is the only critical point. At that point,

A ≈ 1.2 + 1.5 = 2.7.

But checking the endpoints, if we use all the wire for the square, we have area A = 100/16 =

6.25 and if we use all the wire for the triangle we have A = 100
√
3/36 ≈ 4.8. So we get the

biggest area when we use all the wire for the square, and the smallest if we use 90/(9+4
√
3)

m of wire for the triangle.
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4 Interlude: Approximation

This section is a bit of an interlude; it’ll be a short bridge between section 3 on optimization,

and section 5 on integration.

In this section we want to talk a bit more about the idea of approximation. We introduced

this in section 4, when we talked about continuous approximation: if x ≈ a, we can estimate

f(x) ≈ f(a). We refined this a bit in section 2.1 and 2.6. The derivative allows us to estiamte

that f(x) ≈ f(a) + f ′(a)(x− a). But can we do even better?

4.1 Quadratic Approximation

In this class we’ve spent a lot of time on linear approximation: we can approximate a function

with its tangent line, which is the linear function most similar to our starting function. This

simplifies a lot of things, but is only an approximation.

f(x) ≈ f(a) + f ′(a)(x− a). (2)

How good this approximation is depends on two things. The first is the distance |x− a|;
the approximation is better when your goal point x is close to your starting point a. There

are other techniques (like Fourier series) that don’t have this limitation, but we won’t discuss

them in this course.

The other is the speed at which the derivative changes. If the derivative is constant,

your function is just a line and the “approximation” is perfect. But the faster the derivative

changes, the faster the function deviates from the line.

Thus we might try to get a better approximation using the second derivative, which tells

us how quickly the derivative is changing. So how can we do this?

We’re looking for some function g(x) so that

f(x) ≈ f(a) + f ′(a)(x− a) + g(a)(x− a)2.

(We want the linear approximation to be the same as (4), and we want the third derivative to

be zero, so the only thing that can change at all is the degree two term). Taking derivatives

of both sides gives us

f ′(x) ≈ f ′(a) + 2g(a)(x− a)

f ′′(x) ≈ 2g(a).
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Thus we set g(a) = f ′′(x)/2, and we get the equation

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2. (3)

This is the parabola that best approximates our function near a.

Example 4.1. Let’s again ask our old question: what is
√
5?

We use the function f(x) =
√
x and we compute f ′(x) = 1

2
√
x
and f ′′(x) = −1

4
√
x3
. Then

we have

f ′(4) =
1

4

f ′′(4) =
−1

32

f(x) ≈ f(4) + f ′(4)(x− 4) +
f ′′(4)

2
(x− 4)2

= 2 +
1

4
(x− 4)− 1

64
(x− 4)2

f(5) ≈ 2 +
1

4
− 1

64
= 2 +

15

64
≈ 2.23483.

We see we’ve slightly overcorrected: rather than being .014 too big, we’re now .0012 too

small.

Example 4.2. Compute the quadratic approximations of sin(x) and cos(x) centered at zero.

Estimate sin(.01) and cos(.01)? How does this relate to the Small Angle Approximation?

sin′(x) = cos(x)

sin′(0) = 1

sin′′(x) = − sin(x)

sin′′(0) = 0

sin(x) ≈ 0 + 1(x− 0) +
0

2
(x− 0)2 = x

sin(.01) ≈ .01.

Recall the small angle approximation told us that sin(x) ≈ x. Here we see that this is

not just a linear approximation, but in fact also the quadratic approximation; the reason the

small angle approximation worked so well is that it was correct ot second order.
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cos′(x) = − sin(x)

cos′(0) = 0

cos′′(x) = − cos(x)

cos′′(0) = −1

cos(x) ≈ 1 + 0(x− 0)− 1(x− 0)2 = 1− x2

2

cos(.01) ≈ .99995.

Example 4.3. Let g(x) = x4 − 3x3 +4x2 +4x− 2. Compute the quadratic approximations

at a = 0 and at a = −2. Compare them to g(x). Estimate g(−1.97).

g(0) = −2

g′(x) = 4x3 − 9x2 + 8x+ 4

g′(0) = 4

g′′(x) = 12x2 − 18x+ 8

g′′(0) = 8

g(x) ≈ −2 + 4(x− 0) +
8

x
x2 = 4x2 + 4x− 2.

Notice that this is just the lower-degree terms of our original polynomial!

g(−2) = 16 + 24 + 16− 8− 2 = 46

g′(x) = 4x3 − 9x2 + 8x+ 4

g′(−2) = −32− 24− 16 + 4 = −80

g′′(x) = 12x2 − 18x+ 8

g′′(−2) = 48 + 36 + 8 = 92

g(x) ≈ 46− 80(x+ 2) + 46(x+ 2)2

f(−1.97) ≈ 46− 80(.03) + 46(.009) = 43.6414.
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However, if we take h(x) = 4x2 + 4x− 2 and approximate near −2, we get

h(−2) = 6

h′(x) = 8x+ 4

h′(−2) = −12

h′′(x) = 8

h′′(−2) = 8

h(x) ≈ 6− 12(x+ 2) + 4(x+ 2)2 = 6− 12x− 24 + 4x2 + 16x+ 16

= 4x2 + 4x− 2 = h(x).

No matter where we center our approximation, the best quadratic approximation to our

parabola is our original parabola.

Example 4.4. Now let’s estimate 1.0125 using a quadratic approximation. We use the

function f(x) = (1 + x)25, and center our approximation at x = 0. (Equivalently we could

consider g(x) = x25 and center our approximation at x = 1; the way I set it up is a bit more

common).

We take f ′(x) = 25(1 + x)24 so f ′(0) = 25, and f ′′(x) = 25 · 24(1 + x)23 so f ′′(0) =

25 · 24 = 600. Then we have

f(x) ≈ 1 + 25(x− 0) +
600

2
(x− 0)2 = 1 + 25x+ 300x2

1.0125 = f(.01) ≈ 1 + 25 · .01 + 300 · .0001 = 1 + .25 + .03 = 1.28.

Since 1.0125 ≈ 1.28243 this is pretty good.

What if we move a bit farther? If we want to estimate 1.0425 we get

1.0425 = f(.04) ≈ 1 + 25 · .04 + 300 · .0016 = 1 + 1 + .48 = 2.48

while 1.0425 ≈ 2.66584. We’ve lost fidelity because our move away is bigger.

But while .4 is still much smaller than 1, this estimate is much worse than our estimate

of
√
5 from earlier. Why is this much worse? Linear are bad for two reasons: either because

x and a are far apart, or because the second derivative is large. Here we’ve taken care of the

second derivative, but we haven’t taken care of everything. Our quadratic approximations

will be bad when the third derivative is large.

Finally, let’s use this to estimate 225. We get

225 = f(1) ≈ 1 + 25 · 1 + 300 · 12 = 326.

But 225 = 33, 554, 432, so this is very far off. We see here even more problems with the

largeness of the higher derivatives.
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4.1.1 Cubics and Beyond: Taylor Series

We can carry this logic further. We can work out that if we want to match the first three

derivatives and get a cubic approximation, we get the formula

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3 · 2
(x− a)3.

More generally, we can get a degree-n polynomial approximation, called the Taylor poly-

nomial of degree n, with the formula

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3 · 2
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

If a function is infinitely differentiable, we can take an infinite sum here and get the Taylor

series :

Tf (x, a) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + . . . .

Most functions we’re interested in are equal to their own Taylor series. (Not all functions

are, though!) In particular, we can work out the following formulas:

sin(x) = x− x3

6
+

x5

120
− x7

7!
+ . . .

cos(x) = 1− x2

2
+

x4

24
− x6

720
+ . . .

ex = 1 + x+
x2

2
+

x3

6
+

x4

24
+ . . . .

Taylor series are extremely important in any sort of computational or advanced math,

and you will talk about them a lot more if you take Calculus II.

However, in practice, just like we rarely use third or fourth derivatives, we rarely use

approximations of degree higher than two. If the quadratic approximation doesn’t pick up

whatever you need to think about, we will do something else entirely.

4.2 Iterative Approximation: Newton’s Method

In section 2.6 we saw that there were two things that make a linear approximation work

better or worse. The first was the size of the second derivative; in section 4.1 we leveraged

the second derivative to improve our approximations.

To keep things simple, we’ll assume that we want to solve f(x) = 0. (If not, we can

just subtract our number y from both sides of the equation). If we know the value of f

and of f ′ at a point x0, then recall that by linear approximation we estimate that f(x1) =

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 101

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

f(x0) + f ′(x0)(x1 − x0). Since we want f(x1) = 0, we set f(x1) = 0 and solve this equation

for x1, and get

x1 = x0 − (f(x0)/f
′(x0)).

In many conditions, we will get the result that x1 is closer to being a root of f than x0 is.

We can repeat this process to find x2, x3, etc., and ideally each will be a better estimate

than the previous estimate was. A good rule of thumb for when to stop: if you want five

decimal places of accuracy, you can stop when the nth step and the n + 1st step agree to

five decimal places.

This method does have limitations. First, we have to start with a guess x1 for our root

x. Second, if f ′(x1) is very close to zero, Newton’s method will work poorly if it works at all,

and we might have to pick a better guess. But it can be very useful for finding approximate

solutions to equations.

Example 4.5. Let’s approximate the square root of 5, one more time. First, we need to

turn this into finding a solution to an equation. We want to solve the equation x2 = 5, which

we can rewrite as f(x) = x2 − 5 = 0. We compute f ′(x) = 2x.

We need to pick a starting estimate, which should probably be x0 = 2. Then we have

f(x0) = −1, and f ′(x0) = 4. So we get

x1 = x0 −
f(x0)

f ′(x0)
= 2− −1

4
= 9/4 = 2.25.

You might notice that this is exactly what we got by doing a simple linear approximation.

So what did we get from this new method? Now we can iterate.

x2 = x1 −
f(x1)

f ′(x1)
= 9/4− 81/16− 5

9/2
= 161/72 ≈ 2.23611

x3 = x2 −
f(x2)

f ′(x2)
= 161/72− 1/5184

161/36
=

51851

23184
≈ 2.23607

Checking with a computer tells us that
√
5 ≈ 2.23607, so we’re now correct to five decimal

places.

Example 4.6. Let’s find a solution to x3 − x = 1. We need to write this as f(x) = 0, so

let’s take f(x) = x3 − x − 1. Then we have f ′(x) = 3x2 − 1, and we can guess x0 = 1 as a
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decent starting point, since f(1) = −1 is close to 0. Then we have

x1 = 1− f(1)

f ′(1)
= 1− −1

2
= 3/2

x2 =
3

2
− f(3/2)

f ′(3/2)
=

3

2
− 27/8− 3/2− 1

27/4− 1
= 31/23 ≈ 1.34783

x3 =
31

23
− f(31/23)

f ′(31/23)
=

31

23
− 1225/12167

2354
529

71749

54142
≈ 1.3252.

We can notice a couple of things here. the first is that the numerators f(xi) are getting

closer and closer to zero. This is what we should expect: we’re trying to get closer and closer

to a root of f .

Second, each successive step is smaller. From x0 to x1 we change by .5; from x1 to x2

we change by about 1.5; from x2 to x3 we change by about .02, which means we’re probably

within .02 of the true answer at x3.

Example 4.7. Suppose we want to find a solution to x5 + x2 + x − 1 = 0. If we take

f(x) = x5 + x2 + x− 1, then f(0) = −1 and f(1) = 2 so there must be at least one solution

to this equation. But a result from the field of Galois theory tells us that we cannot express

the solution exactly.

However, we can use Newton’s method. f(0) = −1 so it seems reasonable to start with

0 as a guessed root. We compute f ′(x) = 5x4 + 2x+ 1, and so if x0 = 0 we have

x1 = 0− f(0)

f ′(0)
= 0− −1

1
= 1

x2 = 1− f(1)

f ′(1)
= 1− 2

8
=

3

4

x3 =
3

4
− f(3/4)

f ′(3/4)
≈ .75− 563/1024

1045/256
=

643

1045
≈ .615311.

If we keep going, we see the true root is about x = .586544.
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5 Integration

5.1 The Area Problem

For the next month, we will primarily be occupied by the question of area.

What is area? This actually gets a little fuzzy. We know how to compute the area of

a rectangle: base times height. From that fact, and drawing a quick picture, we know the

area of triangle: 1
2
bh, since it’s half a rectangle.

We also know the area of a circle. But how? What about an ellipse? Or something

funny-looking and squiggly? What does “area” mean, exactly, in these cases?

To measure the area of a shape, we can try filling it up with small squares or rectangles—

we know how to measure those. (Similar principle: if you need to measure the length of

something curved, run a string along it, straighten it out, measure the string. This idea will

reappear in Calculus 2.)

We’re going to make our lives easier, and assume our shape has one straight side. (This

isn’t as strict a condition as it seems; we can always cut our shape in half. We’ll talk more

about that in section 6.1). In fact, let’s look at shapes that are given by graphs of functions.

We want to find the area of the shape “under” the graph. For right now we’ll assume the

function is always positive, so we get an actual area of an actual shape. (We’ll relax that

assumption very soon).

When we were trying to get areas earlier, we used a lot of rectangles. We can fill this

area with rectangles in a bunch of different ways. But one particular way turns out to work

very well, which is to have a bunch of tall skinny rectangles.

So what’s the area of these rectangles? If a rectangle goes from a to b, then its width is

b− a. How tall is it? That depends on where we put the top. There are a few things we can

do, but the easiest is to make one of the top corners lie exactly on the graph. If we pick the

right corner, then the width is (b− a)f(b).

Example 5.1. Let’s find the area under the curve y = x2, between 0 and 1. If we use just

one rectangle, with width 1, then we get either 0 or 1. This is true, but not super helpful.

Let’s try two rectangles. They each are 1
2
wide. If we line up the right-hand corners,

then the area of thefirst one is 1
2
· 1
2

2
= 1

8
, and the area of the second one is 1

2
· 12 = 1

2
. We

get a total area of 5
8
.

What if we used the left-hand corners instead? Then the first rectangle is 1
2
· 02 = 0 and

the second is 1
2
· 1
2

2
= 1

8
. So the “true” area is somewhere between 1

8
and 5

8
.
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Let’s get skinnier. If we use four rectangles, then with the right-hand point, we get

AR ≈ 1

4
· 1
4

2

+
1

4
· 1
2

2

+
1

4
· 3
4

2

+
1

4
· 12 = 1

64
+

1

16
+

9

64
+

1

4
=

30

64
=

15

32
,

and if we line up the left-hand point instead, we get

AL ≈ 1

4
· 02 + 1

4
· 1
4

2

+
1

4
· 1
2

2

+
1

4
· 3
4

2

= 0 +
1

64
+

1

16
+

9

64
=

14

64
=

7

32
.

So the “true” area is between 7
32

and 15
32
.

Notice that as we draw more rectangles, these numbers are getting closer. If we use 8

rectangles, we see the area is between 35
128

and 51
128

, and if we use 64 we find that the area is

between .326 and .341.

You can probably guess what happens as the number of rectangles gets very big, but

let’s work it out. If we have n rectangles, then each one has width 1/n, and if we use the

right-hand approximation then each rectangle has height
(
i
n

)2
. So we have

Rn =
1

n
· 1
n

2

+
1

n
· 2
n

2

+ · · ·+ 1

n
· n
n

2

=
1

n3

(
12 + 22 + · · ·+ n2

)
=

1

n3
· n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6n2
.

(We had to use a “sum of squares” formula to get to the third line; feel free to check it on

your own, but don’t worry about it too much.)

What happens to Rn as n gets large? From what we learned about limits in section 1.4,

we can compute that this limit is 1
3
.

We can generalize this process to define exactly what we mean by the area under a curve.

Definition 5.2. We define the area under a curve to be the limit of the sums of the areas

of these rectangles. We write

A = lim
n→+∞

Rn = lim
n→+∞

(f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x) .

Here n is the number of rectangles, and ∆x is the width of each rectangle. Thus ∆x = L
n

where L is the length of our shape.

Example 5.3. Estimate the area under the curve of f(x) = 2x between x = 1 and x = 4,

using three rectangles and using six rectangles. Try using both right endpoints and left

endpoints. Is it what you expected?
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R3 =
3

3
(4 + 6 + 8) = 18.

L3 =
3

3
(2 + 4 + 6) = 12.

R6 =
3

6
(3 + 4 + 5 + 6 + 7 + 8) = 16.5.

L6 =
3

6
(2 + 3 + 4 + 5 + 6 + 7) = 13.5.

What if the number of rectangles goes to infinity? We have

Rn =
3

n
f(1 + 3/n) +

3

n
f(1 + 2 · 3/n) + · · ·+ 3

n
f(1 + n · 3/n)

=
3

n

(
2 + 2

3

n
+ 2 + 4

3

n
+ · · ·+ 2 + 2n

3

n

)
=

3

n
(2 + · · ·+ 2) +

3

n

(
2
3

n
+ 4

3

n
+ · · ·+ 2n

3

n

)
= 6 +

18

n2
(1 + 2 + · · ·+ n)

= 6 +
18

n2

n(n+ 1)

2
= 6 + 9

n+ 1

n
.

We check that this formula still works for 3 and 6. Then we take the limit:

lim
n→+∞

Rn = lim
n→+∞

6 + 9
n+ 1

n
= 6 + 9 lim

n→+∞

1 + 1
n

1
= 15.

This makes sense, since using the area formula for triangles we get an area of 15. (It’s a

4× 8 triangle minus a 1× 2 triangle).

5.2 Riemann Sums and The Definite Integral

5.2.1 A brief note on summation notation

For the next couple weeks we’ll be writing a lot of sums, and we’d like to have notation to

talk about this.

We write
∑n

i=1 ai for a1+ a2+ · · ·+ an to be the sum of a bunch of things. We can index

the sums other ways—and in particular, sometimes it’s helpful to start from 0 instead of

from 1.

You’ll learn a lot more about sums in Calculus 2, but for right now, here are a few useful

facts:
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•
∑n

i=1 c = nc.

•
∑n

1=1 cai = c
∑n

i=1 ai.

•
∑n

i=1 (ai ± bi) = (
∑n

i=1 ai)± (
∑n

i=1 bi).

•
∑n

i=1 i =
n(n+1)

2
.

•
∑n

i=1 i
2 = n(n+1)(2n+1)

6
.

•
∑n

i=1 i
3 =

(
n(n+1)

2

)2
.

5.2.2 Signed Area

Last class we talked about finding the area under a curve. But a lot of functions are some-

times negative. We want a formalism that lets us keep track of this.

Definition 5.4. The signed area under a graph is the area below the graph but above the

x-axis, minus the area below the x-axis and above the graph.

You can think of this as the “net area”. If a rectangle with a positive height has a positive

area, then a rectangle with a negative height has a negative area.

5.2.3 Back to Riemann Sums

Suppose f is a function defined on a closed interval [a, b]. We divide [a, b] into n smaller

subintervals by picking points a = x0 < x1 < · · · < xn = b. We get a collection of subintervals

[x0, x1], [x1, x2], . . . , [xn−1, xn], which we call a partition P of [a, b]. We will also sometimes

use ∆xi to refer to the length xi − xi−1 of the ith subinterval in our partition.

For each subinterval, we can pick a sample point x∗
i in the interval. We could use the left

endpoints or the right endpoints, as we did last class, or we could pick others; for most of

our purposes in this class it doesn’t really matter. (In lab next week we’ll talk about what

to do when it does matter).

Definition 5.5. The Riemann sum associated to a partion P and a function f on an interval

[a, b] is given by

R(P, f) =
n∑

i=1

f(x∗
i )∆xi = f(x∗

1)∆x1 + f(x∗
2)∆x2 + · · ·+ f(x∗

n)∆xn.

This gives an approximation to the signed area under the graph of f .
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We can think about taking the limit as our partition gets very small—as we use more

and more rectangles and the width of each gets close to 0. We define

Definition 5.6. If f is a function defined on [a, b], the definite integral of f from a to b is∫ b

a

f(x) dx = lim
P→0

R(P, f) = lim
max∆xi→0

n∑
i=1

f(x∗
i )∆xi,

if the limit exists. If the limit exists, we say f is integrable on [a, b]. (otherwise, f is not

integrable).

We say a is the lower limit of the integral, b is the upper limit, and f(x) is the integrand.

Remark 5.7. It’s important to note that while there are xs inside or “under” the integral

sign, after the integral is computed there are no xs left. The x is a “dummy variable” or a

“parameter.” We’d get the exact same answer if we calculated
∫ b

a
f(t) dt or

∫ b

a
f(ý) dý or∫ b

a
f(thisisavariable) dthisisavariable.

In our definition, we took the limit over “all” partitions. This is hard to work with in

practice, since there are a lot of partitions. (There are infinitely many partitions of [0, 1], for

instance, where x1 = .99999. These are in fact partitions but they aren’t incredibly helpful).

But if a function is integrable, we can always do our calculations using any collection of

partitions that gets small. In particular there’s one nice partition we will often use:

Theorem 5.8. If f is integrable on [a, b], then∫ b

a

f(x) dx = lim
n→+∞

n∑
i=1

f(xi)∆x

where ∆x = b−a
n

and xi = a+ i∆x. That is,∫ b

a

f(x) dx = lim
n→+∞

n∑
i=1

f

(
a+ (b− a)

i

n

)
b− a

n
.

In some sense, the dx corresponds to the ∆x and the f(x) corresponds to the f(x∗
i ). This

can be made rigorous, but probably won’t be in this course.
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Example 5.9.∫ 5

3

x2 dx = lim
n→+∞

n∑
i=1

(
3 +

2i

n

)2
2

n

= lim
n→+∞

n∑
i=1

(
9 +

12i

n
+

4i2

n2

)
2

n

= lim
n→+∞

n∑
i=1

18

n
+

24i

n2
+

8i2

n3

= lim
n→+∞

(
n∑

i=1

18

n
+

n∑
i=1

24i

n2
+

n∑
i=1

8i2

n3

)

= lim
n→+∞

(
18

n

n∑
i=1

1 +
24

n2

n∑
i=1

i+
8

n3

n∑
i=1

i2

)

= lim
n→+∞

(
18

n
· n+

24

n2
· n(n+ 1)

2
+

8

n3
· (n)(n+ 1)(2n+ 1)

6

)
= lim

n→+∞

(
18 + 12

n(n+ 1)

n2
+

4

3
· n(n+ 1)(2n+ 1)

n3

)
= 18 + 12 +

8

3
=

98

3
≈ 32.7.

5.3 Computing Integrals and The Fundamental Theorem of Cal-

culus Part 1

We want to find a way to compute integrals without doing Riemann sums. We can start by

taking the same approach with took with derivatives: work out some basic rules that let us

manipulate integrals.

Proposition 5.10 (Properties of the Integral). The following equations are true whenever

they make sense, for real numbers a, b, c and functions f, g.

•
∫ b

a
c dx = c(b− a).

•
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

•
∫ b

a
(f(x)± g(x)) dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx.

•
∫ b

a
cf(x) dx = c

∫ b

z
f(x) dx.

•
∫ c

a
f(x) dx+

∫ b

c
f(x) dx =

∫ b

a
f(x) dx.

Remark 5.11. These properties are derivable from the corresponding properties of sums.
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Remark 5.12. Note that while addition and scalar multiplication behave nicely, we didn’t

make any statements about multiplication or division, because integrals don’t actually behave

nicely with respect to multiplication. (We call operations like this “linear,” and we study

them in Math 2184 or 2185).

In Calculus 2, you will return to the idea of “the integral of the product of two functions”

when you study integration by parts. But we won’t quite get to that in this course.

Example 5.13. Compute
∫ 0

1
2 + 3x2 + 4x3 dx.

By these integral properties, we know that∫ 0

1

2 + 3x2 + 4x3 dx = −
∫ 1

0

2 + 3x2 + 4x3 dx

= −
∫ 1

0

2−
∫ 1

0

3x2 −
∫ 1

0

4x3 dx

= −
∫ 1

0

2− 3

∫ 1

0

x2 − 4

∫ 1

0

x3 dx

= −2− 3(1/3)− 4(1/4) = 4.

Example 5.14. If
∫ 5

1
f(x) dx = 3 and

∫ 5

3
f(x) dx = 2, then∫ 3

1

f(x) dx = 1 =

∫ 5

1

f(x) dx+

∫ 3

5

f(x) dx =

∫ 5

1

f(x) dx−
∫ 5

3

f(x) dx = 3− 2 = 1.

Unfortunately, this doesn’t take us very far: we could only do these problems since we’d

already done some specific Riemann sums already. (Or, alternately, because I just told you

what some of the integrals were.) We need a different approach.

We can start by making some general statements about how integrals relate to each other:

Proposition 5.15 (Comparison Propreties of the Integral). These properties only work when

a < b. If we have a case where a > b then we can always rewrite the integral before using

them.

• If f(x) ≥ 0 for a ≤ x ≤ b then
∫ b

a
f(x) dx ≥ 0.

• If m ≤ f(x) ≤ M for a ≤ x ≤ b then m(b− a) ≤
∫ b

a
f(x) dx ≤ M(b− a).

• If f(x) ≥ g(x) for a ≤ x ≤ b then
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx.

Example 5.16. We’ve used these implicitly before, when e.g. we said that 0 ≤
∫ 1

0
x2 ≤ 1.

Referencing our earlier example, we know that 9 ≤ x2 ≤ 25 on [3, 5], so we have 18 ≤∫ 5

3
x2 dx ≤ 50. Indeed, we calculated that

∫ 5

3
x2 dx ≈ 33.
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Suppose we want to know about
∫ π

0
sin(x) dx. We know that 0 ≤ sin(x) ≤ 1 on [0, π], so

we see that 0 ≤
∫ π

0
sin(x) dx ≤ π. (In fact, the integral is equal to 2, but we don’t yet have

the tools to calculate that).

But the real idea is to do something very mathematician-y; we’re going to make things

more abstract, and harder, in order to make things easier.

From the perspective of section 5.2, the definite integral
∫ b

a
f(t) dt is always a number,

as long as f is integrable.(Technically the integral is a function from the set of integrable

functions to the set of real numbers, but we don’t need to worry about that in this class).

In fact the integral is just “the area of a shape I just described,” so it should always be a

number. If I asked you for the area of a shape you shouldn’t ever tell me y = x2, for instance.

But we can use the integral to define a function (in the same way that we can have the

function “input a number x and return the area of a square with side length x”—that is,

f(x) = x2). In particular, we want to consider functions of the form

F (x) =

∫ x

a

f(t) dt (4)

where a is some fixed constant, and x is a variable. So our function is “put in a number x,

and output the number
∫ x

a
f(t) dt, which is the area of some shape, determined by x.”

Now that we have a function, there are a bunch of questions we can ask about it. What

is its domain? Is it continuous? Is it differentiable?

The domain of F (x) =
∫ x

a
f(t) dt is all x so that f is integrable on [a, x]; this answer isn’t

terribly satisfying, since it boils down to “The domain of F is the domain of F .” It’s not

possible to do better without knowing something about f . But if we impose a fairly mild

condition, we can say a bit more:

Theorem 5.17. If f is continuous on [a, b], or if it is continuous except for finitely many

jump discontinuities, then f is integrable on [a, b].

Sketch of proof. If f has finitely many jump discontinuities, we can pick our partition to

chop it up into a finite collection of continuous functions. So we just have to worry about

continuous functions.

For any partition, you can always pick a “biggest” sample point in each interval, and

a “smallest.” The first will give you an upper bound to the integral, and the second will

give you a lower bound. If the function is continuous, we can show that those two sums

will always get closer together, and every other possible sum will be between the two; so all

possible sums converge to the same integral.
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Example 5.18. f(x) = xn is integrable, as is |x| and n
√
x on any interval on which it is

defined. The Heaviside (step) function is integrable. 1/x is not integrable on [0, 1]. The

characteristic function of the rationals is not integrable (At least, not until grad school,

when they change the definitions on you).

We can see a bit more. It’s not too hard to show that F is continuous on its domain.

Geometrically, changing x a little bit will change F (x) by about the height of the function

times the change in input; if the change in input is small, the change in output will also be

small. Algebraically:

lim
x→b

F (x)− F (b) = lim
x→b

∫ x

a

f(t) dt−
∫ b

a

f(t) dt

= lim
x→b

∫ x

a

f(t) dt+

∫ a

b

f(t) dt

= lim
x→b

∫ x

b

f(t) dt.

If x and b are close enough we can always find m,M such that m ≤ f(t) ≤ m on [x, b], so

we get

lim
x→b

m(x− b) ≤ lim
x→b

∫ x

b

f(t) dt ≤ lim
x→b

M(x− b)

0 ≤ lim
x→b

∫ x

b

f(t) dt ≤ 0

0 = lim
x→b

∫ x

b

f(t) dt.

The question of differentiability is a little trickier, but significantly more important.

Intuitively and geometrically, we can simply look at pictures and ask how much the area

under a curve changes if we widen our x-values a bit. After drawing some pictures we

conclude that the area should change by “about” the height of the curve on one end.

We can in fact prove this fact. It’s important enough for us to give it a silly name:

Theorem 5.19 (The Fundamental Theorem of Calculus, Part 1). Suppose f is continuous

on [a, b], and set

F (x) =

∫ x

a

f(t) dt.

Then d
dx
F (x) = f(x) for a < x < b.

Remark 5.20. As we’ll discuss shortly, this theorem is the key to calculuating integrals. Note

that it only applies to continuous functions. But if we have a function that’s continuous in

pieces, we can just split it up into separate integrals, and we see it has the correct derivative

on each piece.
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Proof. We want to capture our geometric intuitions. Recall that by definition, we have

F ′(x) = lim
h→0

∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

h

=
1

h

∫ x+h

x

f(t) dt.

(This calculuation should look similar to the one above for continuity.) Let’s assume for now

that h > 0. By the extreme value theorem, f has an absolute minimum m and an absolute

maximum M on [x, x + h], and further we can write f(u) = m and f(v) = M for u, v in

[x, x+ h]. Then

f(u)h ≤
∫ x+h

x

f(t) dt ≤ f(v)h

f(u) ≤ 1

h

∫ x+h

x

f(t) dt ≤ f(v).

As h → 0, the numbers u and v must get closer together, and in fact closer to x, and so by

continuity limh→0 f(u) = limh→0 f(v) = f(x). So we have F ′(x) = limh→0
1
h

∫ x+h

x
f(t) dt =

f(x) as desired.

Example 5.21. • If F (x) =
∫ x

a

√
x3 + 1 dt then F ′(x) =

√
x3 + 1.

• If G(x) =
∫ x

a
sin(πt) cos(πt) dt then G′(x) = sin(πx) cos(πx).

• If H(x) =
∫ x3

a

√
1 + t dt then we have to be careful. We can write H(x) = H1(x

3)

where H1(x) =
∫ x

a

√
1 + t dt. So by the chain rule, we have H ′(x) =

√
1 + x3 · 3x2.

5.4 Computing Integrals and the FTC 2

We still haven’t quite figured out how to compute integrals without going back to the Rie-

mann sum formulation. But we’re almost there!

The Fundamental Theorem of Calculus tells us that d
dx

∫ x

a
f(t) dt = f(x). But it isn’t the

only function with this property. We can give this a name:

Definition 5.22. If F ′(x) = f(x), we call F an antiderivative of f .

Example 5.23. 1
3
x3 is an antiderivative of x2.

sin(x) is an antiderivative of cos(x).

7 is an antiderivative of 0.
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So
∫ x

a
f(t) dt is an antiderivative of f . Further, we know a lot about what antiderivatives

look like:

Proposition 5.24. If F ′(x) = G′(x) for all x, then F (x) = G(x) +C for some constant C.

Proof. Differentiation is additive, so (F − G)′(x) = F ′(x) − G′(x) = 0. But since the

derivative is the rate of change, any function with zero derivative is constant. (We proved

this in proposition 3.19 in section 3.3, using the Mean Value Theorem.) Thus (F−G)(x) = C

for some constant C, and so F (x) = G(x) + C.

This proposition incredibly useful, because it means any function whose derivative is

f(x) is “almost” the same as
∫ x

a
f(t) dt. We have some sort of constant hanging around,

which we need to get rid of; it turns out that this constant is essentially related to the a, the

lower limit of integration.

Theorem 5.25 (Fundamental Theorem of Calculus, Part 2). Suppose f is continuous on

[a, b], and F is any antiderivative of f . Then∫ b

a

f(t) dt = F (b)− F (a).

Proof. Since F (x) and
∫ x

a
f(t) dt are both antiderivatives of f(x), we know that F (x) =∫ x

a
f(t) dt+ C for some constant C. Then

F (b)− F (a) =

∫ b

a

f(t) dt+ C −
(∫ a

a

f(t) dt+ C

)
=

∫ b

a

f(t) dt+ C − 0− C =

∫ b

a

f(t) dt.

Example 5.26. What is
∫ 3

1
3x2 dx?

We can see that F (x) = x3 is an antiderivative of 3x2. (It’s not the only one, but that’s

okay.) So
∫ 3

1
3x2 dx = F (3)− F (1) = 27− 1 = 26.

What if we’d picked, say, G(x) = x3 + 5? Then we’d have
∫ 3

1
3x2 dx = G(3) − G(1) =

32− 6 = 26 again.

Example 5.27. What is
∫ 3π/4

π/4
cos(x) dx?

We see that sin(x) is an antiderivative for cos(x). So we have
∫ 3π/4

π/4
cos(x) dx = sin(3π/4)−

sin(π/4) =
√
2/2−

√
2/2 = 0.
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5.4.1 Indefinite Integrals

Because antiderivatives are so important, we want a notation for them that is less awkward

than having to write the word “antiderivative” over and over. Because they are so closely

tied to integrals, we use notation specifically designed to confuse you about what the integral

sign means.

Definition 5.28. The indefinite integral of a function f , written
∫
f(t) dt, is any antideriva-

tive of f . That is,
∫
f(t) dt refers to any function F (x) such that F ′(x) = f(x).

The general form of the indefinite integral is
∫
f(x) dx = F (x) + C. The constant

represents the fact that there are many possible antiderivatives of f .

Very Important Note: Remember the difference between the definite and indefinite

integrals. The definite integral
∫ b

a
f(x) dx is a number. It is the area of some region un-

der a graph. The indefinite integral
∫
f(x) dx is a collection of functions, which are all

antiderivatives of f and are all the same up to a constant. They are related by∫ b

a

f(x) dx =

∫
f(x) dx

∣∣∣∣b
a

= F (b)− F (a).

In general the notation |ba means “the value at b minus the value at a. We will use it a lot

while doing integrals.

Example 5.29. We can write
∫
x5 dx = 1

6
x6 + C, and

∫
sec2(x) dx = tan(x) + C.

5.4.2 Antiderivatives, Net Change, and Linear Approximation

We can look at all of what we’ve done from another perspective, and connect it back to the

work we did earlier on linear approximation.

Suppose we have a function F that we want to know about, but we only know about

the derivative F ′(x). For instance, we may want to know the position of an object but only

have measured the speed, or want to know the speed after measuring the acceleration. Or

we want to figure out how much money we owe from a record of our annual deficits; we’ve

seen a lot of examples of derivatives.

The example of deficit and debt makes this maybe easy to think of. Suppose you have

a deficit of $3000 one year, $5000 the second year, and $2000 the third year. At the end of

three years, the debt has increased by $10,000, which we get by adding the three deficits up.

This works exactly because we have a discrete set of payments, but if we don’t have that

we can still approximate it. Suppose that F (t) gives the position of a particle at time t, and
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we know the velocity F ′(t). If we also know the starting position F (0), we could estimate

F (4) ≈ F (0) + F ′(0)(4− 0), but that might not be very good.

One way we could make this better is to do something like a quadratic approximation,

or a Taylor series, but that gets messy. Another option is to do multiple approximations.

Since the approximation gets worse the further x gets from a, we can try to bring it closer,

and approximate in multiple steps.

Thus maybe we have

F (2) ≈ F (0) + F ′(0)(2− 0)

F (4) ≈ F (2) + F ′(2)(4− 2) ≈ F (0) + F ′(0)(2− 0) + F ′(2)(4− 2).

So if we take, say, F ′(t) = 10t and F (0) = 0, this would give us

F (2) ≈ 0 + 0(2− 0)

F (4) ≈ 0 + 20(2) = 40

which is close-ish but not super close to the true answer of 80 (as we’ll see soon).

What if we take more steps? We get

F (1) ≈ F (0) + F ′(0)(1− 0) ≈ 0 + 0(1− 0)

F (2) ≈ F (1) + F ′(1)(2− 1) ≈ 0 + 10(2− 1) = 10

F (3) ≈ F (2) + F ′(2)(3− 2) ≈ 10 + 20(3− 2) = 30

F (4) ≈ F (3) + F ′(3)(4− 3) ≈ 30 + 30(4− 3) = 60.

But what is this last formula, really? It’s

F (4) ≈ F (0) + F ′(0)(1− 0) + F ′(1)(2− 1) + F ′(2)(3− 2) + F ′(3)(4− 3).

If we rearrange this a bit, we just get

F (4)− F (0) ≈ F ′(0)(1− 0) + F ′(1)(2− 1) + F ′(2)(3− 2) + F ′(3)(4− 3)

and the right-hand side is a sum of terms that look like F ′(xi)∆xi. So we have

F (4)− F (0) ≈
n∑

i=1

F ′(xi)
4

n
.

This is just a Riemann sum! And as we take the limit, we get an integral

F (4)− F (0) = lim
n→∞

n∑
i=1

F ′(xi)
4

n
=

∫ 4

0

F ′(x) dx.
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Early on in the class, we saw that if you know the value of F and the derivative of F at

0, then you can use a linear approximation to estimate the value at any point. What we see

now is that if you know the derivative of F everywhere, and the value at one point, you can

find the value exactly, by taking an infinite collection of very small linear approximations.

Specifically, if you know the derivative, you can figure out the net change of F between

any two values; so if you have one value, you can find any value.

Corollary 5.30 (Net Change Theorem). The integral of a rate of change is the total (net)

change. ∫ b

a

F ′(x) dx = F (b)− F (a).

Remark 5.31. Note that to find the value of F (b) this way, we need to start by knowing

F (a) for some a. If we think of F as just being an antiderivative of F ′, the starting value is

nailing down exactly the constant C.

Remark 5.32. This process of taking a large number of linear approximations is used in the

real world a lot. If you have an integral that you can’t find an exact formula for, this is very

useful. It generalizes even more to solving differential equations, which are equations that

specify F using a formula for F ′(x). They are more complicated than simple integrals, and

you will see a little of them in calculus 2. But they are also the fundamental underpinning

of most mathematical models, in the physical sciences and the social scienes.

5.4.3 Computing Integrals for the Practical Person

We’ve learned that computing integrals is reducible to finding antiderivatives. Now we’re

finally ready to practice actually computing integrals. In order to do this, we start by

recalling a number of antiderivatives.

I’ll list a few in these notes. There is an extensive card listing many of htese rules on

page 6 of the reference in the back of Stewart, and a shorter table on page 331 in section 4.4.

•
∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx.

•
∫
cf(x) dx = c

∫
f(x) dx.

•
∫
xn dx = xn

n+1
+ C if n ̸= −1.

•
∫
sin(x) dx = − cos(x) + C.

•
∫
cos(x) dx = sin(x) + C.
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•
∫
sec2(x) dx = tan(x) + C.

•
∫
csc2(x) dx = − cot(x) + C.

•
∫
sec(x) tan(x) dx = sec(x) + C.

•
∫
csc(x) cot(x) dx = − csc(x) + C.

Example 5.33. • What is
∫ 4

1
x2 dx? We know that

∫
x2 dx = 1

3
x3 + C, so

∫ 4

1
x2 dx =

1
3
x3|41 = 1

3
(64− 1) = 21. Note the Cs cancel each other out so it doesn’t matter what

they are.

• What is
∫ 3

2
x+ x3 dx? We can work out that

∫
x+ x3 = x2

2
+ x4

4
, so∫ 3

2

x+ x3 dx =
x2

2
+

x4

4

∣∣3
2
=

9

2
+

81

4
− 4

2
− 16

4
=

99

4
− 6 =

75

4
.

• Calculuate
∫ 2

−1
|x| dx. We don’t really have an antiderivative of |x|, so the easiest way

to approach this is probably to break it up into two distinct integrals.

If x ≥ 0 then |x| = x, so we have
∫ 2

0
|x| dx =

∫ 2

0
x dx = x2

2
|20 = 2− 0 = 2.

If x ≤ 0 then |x| = −x and we have
∫ 0

−1
|x| dx =

∫ 0

−1
−x dx = −x2

2
|0−1 = 0− −1

2
= 1

2
.

Thus
∫ 2

−1
|x| dx =

∫ 0

−1
|x| dx+

∫ 2

0
|x| dx = 1

2
+ 2 = 5

2
.

• Calculate
∫ π/4

0
sec(x) tan(x) dx. At first blush this looks hard, until you remember that

sec′(x) = sec(x) tan(x). So we have∫ π/4

0

sec(x) tan(x) dx = sec(x)|π/40 = sec(π/4)− sec(0) =
√
2− 1.

• What if we want
∫ π

0
sec(x) tan(x)? This is a much bigger problem, because sec(x) tan(x)

is not continuous on [0, π]. We actually won’t be able to do that one without new ideas

that we won’t develop in this course.

Leading question: can you do
∫
3x2

√
9 + x3 dx?

5.5 Integration by Substitution

The Fundamental Theorem of Calculus is a powerful tool for computing integrals. And with

functions that are obviously the derivatives of some other function, like x2 or cos(x), it’s

very easy to apply. With more complicated functions it takes a bit more work.
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Example 5.34. What is
∫
3x2

√
9 + x3 dx?

There are two ways to approach this problem. The first is to notice that you almost have

an antiderivative to
√
9 + x3, because (9+ x3)3/2 has 3

2
(9+ x3)1/2 · 3x2 as its derivative. The

extra 3x2 from the chain rule precisely matches up with the extra 3x2 from the problem, so

we just have to correct for the constant, and we have that
∫
3x2

√
9 + x3 = 2

3
(9+ x3)3/2 +C.

If that made sense, great. Whenever you can “just see” the antiderivative, you can go

for it; the fact that you can check your work by taking a derivative means that you are safe.

But for the cases where you can’t just see the answer, we’d like to be a little more systematic

in our approach.

We know how to take the antiderivative of
√
x. So let’s try using a new variable, which

we traditionally call u. We write u = 9 + x3 so the thing under the radical is a u. We also

notice that du
dx

= 3x2; by “abuse of notation” (by which I mean we won’t justify it, but just

assume it works) we write du = 3x2dx. Since our original integral was
∫ √

9 + x3 · 3x2dx, we

can rewrite this as
∫ √

u du, or just
∫
u1/2 du.

From our integral table, we know that
∫
u1/2 du = 2

3
u3/2 + C. Now we can replace the u

with 9 + x3 to get
∫
3x2

√
9 + x3 dx = 2

3
(9 + x3)3/2 + C.

We can formalize this into a rule:

Proposition 5.35 (The Substitution Rule for Indefinite Integrals). If u = g(x) is differen-

tiable, and f(x) is continuous on the range of g, then∫
f(g(x))g′(x) dx =

∫
f(u)du.

Proof. This follows from the chain rule. Let F be an antiderivative of f ; then (F (g(x)))′ =

F ′(g(x)) · g′(x) = f(g(x)g′(x). Thus F (g(x)) is an antiderivative of f(g(x))g′(x).

I’d like to give you geometric intuition here, but it’s a bit hard to communicate. In

essence we’re changing to a new coordinate system where the integral is easy, but it’s hard

to make that observation useful until you get to multivariable calculus. For right now, yo

ushould probably think of this as a way of keeping track of algebraic manipulations.

How do we use this? Basically, when we see a complicated integral, there are a couple

things we can look for. The first is to check whether one part is a derivative of another part,

in a way that could reflect a chain rule. The other is to find the most complicated chunk of

the expression and replace it with a u, and see how much of our problem that solves.

Choosing the right variable to substitute is a bit of an art; I can’t possibly give you a

complete set of rules, but I can give you a lot of examples to model off of.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 119

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

Example 5.36. • Consider
∫
x2 sin(x3 + 3) dx. We can take u = x3 + 3, and then

du = 3x2 dx so dx = du
3x2 . So this becomes

∫
sin(u)/3 du = − cos(u)/3+C = − cos(x3+

3)/3 + C.

• Consider
∫ √

5x+ 2 dx. It makes sense to take u = 5x + 2, so du = 5dx. Then∫ √
u/5 du = 2

15
u3/2 + C = 2

15
(5x+ 2)3/2 + C.

Alternatively, we could take u =
√
5x+ 2. Then du = 5

2
√
5x+2

dx and we get dx =
2
5

√
5x+ 2 = 2

5
u. So we have

∫
2
5
u2 du = 2

15
u3 + C = 2

15
(5x+ 2)3/2 + C.

• For a more complex example, we can look at
∫ √

1 + x2x5 dx. This doesn’t look like

it will happen automatically, and indeed it doesn’t. But we can still get rid of the

complicated bit by taking u = 1 + x2, so du = 2x dx or dx = du/2x.

This gives us
∫ √

ux4 1
2
du, but what do we do with the other x4 term? Well, if u = 1+x2

that means that x2 = u− 1, so our integral is∫
1

2

√
u(u− 1)2 du =

∫
1

2

(
u5/2 − 2u3/2 + u1/2

)
du

=
1

7
u7/2 − 2

5
u5/2 +

1

3
u3/2 + C

=
1

7
(1 + x2)7/2 − 2

5
(1 + x2)5/2 +

1

3
(1 + x2)3/2 + C.

5.5.1 Substitution and Definite Integrals

The above talked about indefinite integrals. When we have a definite integral, we can be

more specific. We can use substitution in two ways: one is to do what we did above, where we

substitute in a u, then integrate, then switch the us back to xs. But we can avoid switching

back at all by changing the limits of integration.

Proposition 5.37 (The Substitution Rule for Definite Integrals). If g′ is continuous on

[a, b], and f is continuous on the range of g(x), then∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Proof. If F is an antiderivative of f , then the left side is clearly F (g(b))− F (g(a)). But the

antiderivative of f(g(x))g′(x) is F (g(x), so the left side is also F (g(b))− F (g(a)).

Example 5.38. • Find
∫ 2

0
x√

1+2x2 dx. We take u = g(x) = 1 + 2x2 so that du = 4dx, so

dx = du/4, and g(0) = 1, g(2) = 9. We have

1

4

∫ 9

1

u−1/2 du =
1

4
2u1/2|91 =

1

2
(3− 1) = 1.
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• Find
∫ 3

1
dx

(1−2x)2
. Set u = g(x) = 1 − 2x, then du = −2dx and g(1) = −1, g(3) = −5.

So ∫ 3

1

dx

(1− 2x)2
=

∫ −5

−1

−du

2u2
=

1

2u

∣∣∣∣−5

−1

=
1

−10
− 1

−2
=

2

5
.

A nice bonus application of this is to look at symmetric functions. Since even and odd

functions have nice geometric symmetries, integrals, which are about the area under the

curve, should also have nice properties.

Corollary 5.39 (Integrals of Symmetric Functions). Suppose f is a continuous function on

[−a, a]. Then

• If f is even, then
∫ a

−a
f(t) dt = 2

∫ a

0
f(t) dt.

• If f is odd, then
∫ a

−a
f(t) dt = 0.

Proof. Intuitively this should be plausible; even functions look the same on either side of

the y-axis, and so you should get the same area on both sides, while odd functions are the

same but upside down, so you should get the opposite area. (Try sketching a picture of sin

and cos to see this).

For either integral, notice that
∫ a

−a
f(t) dt =

∫ 0

−a
f(t) dt +

∫ a

0
f(t) dt. Consider the first

integral, and use the substitution u = g(t) = −t, and thus −du = −dt. Then
∫ 0

−a
f(t) dt =∫ 0

a
f(−t)(−dt) =

∫ a

0
f(−t) dt.

If f is even then f(−t) = f(t), so
∫ 0

−a
f(t) dt =

∫ a

0
f(t) dt. If f is odd then f(−t) = −f(t)

and thus
∫ 0

−a
f(t) dt = −

∫ a

0
f(t) dt.

Example 5.40. •
∫ 3

−3
x5 − x3 dx = 0.

•
∫ 2

−2
x6 + 1 dx = 2

∫ 2

0
x6 + 1 dx = 2(x7/7 + x)|20 = 2(128/7 + 2) = 284

7
.

5.6 A Brief Note on How to Cheat

We’ve now learned how to compute basic integrals. There are a lot of integrals we haven’t

yet learned to compute; a prominent example is
∫

1
x
dx, but there are many. In calculus 2 you

will develop many other techniques of integration which allow us to integrate more difficult

functions. However, as good mathematicians we’re also fundamentally lazy and would prefer

to avoid work when we can manage it. There are two common solutions here.

First, the back of your textbook has an extensive integral table, and even more extensive

tables can be found online. It often requires minor massaging to get your integral into the
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form of the table, but for complex integrals the table will be much easier than figuring things

out from scratch. (For instance, the table incorporates the results of trig subsitution without

making you work through it explicitly).

Second, computers are very good at doing integrals. Wolfram Alpha can often integrate

a function for you, as can Mathematica and other computer tools. It’s dangerous to become

overly reliant on these tools—it’s easy to make a mistake if you don’t understand what’s

going on, and sometimes the computer will return the answer in a less useful form. They

are very good for automated computations and checking your work, however.

A final cautionary note: there are some functions that don’t have a nice closed-form

antiderivative. Famously, there’s no way to write
∫
ex

2
dx in terms of “elementary functions.”

That doesn’t mean there is no antiderivative; the obvious one is
∫ x

0
et

2
dt. But while correct,

that answer isn’t terribly enlightening.

We can’t easily compute these definite integrals exactly, but we can approximate them

using various approximation techniques (among other things, just computing a finite Rie-

mann sum). We can also use the concept of “infinite series” to handle this sort of situation;

those techniques occur towards the end of Calculus 2.
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6 Applications of Integrals

Now that we know how to compute integrals, we want to finish the course by talking about

why integrals are so useful. We’ll start with the idea of computing area, which was the

original motivation for integration; but we’ll see they also answer many other questions.

6.1 Finding Areas

Recall that we originally constructe the integral to find the area of some shape, in particular

of shapes that lie under the graph of some function. We can use the same tools to find the

area of a region that is not, properly speaking, the graph of one function.

The simplest (well, second-simplest) case is the case where we want the area of a region

that lies in between the graph of two functions. We can approximate area by drawing, as

before, a great many skinny rectangles which are approximately the right height to cover

our region. If our region lies in between two functions f and g, the combined area of our

rectangles is
n∑

i=1

(xi − xi−1)(f(x
∗
i )− g(x∗

i ))

and as the number of rectangles increases this approximation gets increasingly good. We say

the area of the region is

A = lim
n→+∞

n∑
i=1

(xi − xi−1)(f(x
∗
i )− g(x∗

i )).

You may recognize this formula as the integral of the function f − g; indeed, if we have a

region with x coordinates varying from a to b and y coordinates varying from g(x) to f(x),

then its area is
∫ b

a
(f(x)− g(x))x.

Remark 6.1. Remember that actual areas are always positive! The integral by itself computes

the “signed area”; if you want an actual area you must be careful to make sure you’re

integrating the correct function.

Example 6.2. Let’s start with a trivial example: what’s the area of a rectangle with base

3 and height 4? We know that the area of a rectangle is length times width, so the answer

should be 12. But we can also compute the area as
∫ 4

0
3 dx = 3x|40 = 12, which matches what

we expect.

Example 6.3. What is the area of the region between y = x3 and y = 1/x2 between x = 2

and x = 4?
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We have∫ 4

2

x3 − (1/x2) dx =

(
x4

4
+

1

x

)∣∣∣∣4
2

= (64 + 1/4)− (4 + 1/2) = 60− 1/4 = 239/4.

Sometimes (usually!) we need to have a visual idea of what our region looks like before

we can set up an appropriate integral.

Example 6.4. What is the area of the region bounded by y = x an y = x2?

After we draw a picture, we see that these two graphs enclose a region between x = 0

and x = 1, and that in that region, x ≥ x2. So we compute the integral∫ 1

0

x− x2 dx =

(
x2

2
− x3

3

)∣∣∣∣1
0

=
1

2
− 1

3
=

1

6
.

Example 6.5 (recitation). Compute the total area of the “valley” between two peaks of the

sine function.

We see that this area is the area of the region between y = 1 and y = sinx between π/2

and 5π/2. (There are other ways to set this up, but this way works). So we compute∫ 5π/2

π/2

1− sinx dx = x+ cos(x)|5π/2π/2 = (5π/2 + 0)− (π/2 + 0) = 2π.

Sometimes you have to break your region up into separate pieces/integrals

Example 6.6. What is the area of the region bounded by y = x2, y = 2− x, and y = 0?
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We sketch the region and see that we get a sort of collapsed triangle. We compute

A =

∫ 1

0

x2 dx+

∫ 2

1

(2− x) dx =
x3

3
|10 +

(
2x− x2

2

)∣∣∣∣2
1

=
1

3
− 0 + (4− 2)− (2− 1/2) =

5

6
.

We can also do the same problem another way. Notice that we might as well write

x =
√
y, x = 2 − y. So we can just as well integrate with respect to y—that is, draw our

rectangles stretching horizontally instead of vertically. We have

A =

∫ 1

0

(2− y)−√
y dy =

(
2y − y2

2
− 2

3
y3/2

)∣∣∣∣1
0

=

(
2− 1

2
− 2

3

)
− 0 =

5

6
.

As expected, we get the same answer.

We see here that we can set up these area integrals in two different ways: we can integrate

“with respect to x” or “with respect to y”. When we integrate with respect to x, we chop

our region up into tall, skinny rectangles, as we have been since the beginning of section 5.

This works well when we have a shape with straight-line boundaries to the left and right,

and can write the top and bottom curves as functions of x.

When we integrate with respect to y, we chop our region up into short wide rectangles.

This is the same basic process, but we’re looking at the picture from a different angle. It

works well when our shape has straight-line boundaries on the top and bottom, and we can

describe the left and right boundaries as functions of y.

Example 6.7. What is the area of the region between y2 = x+ 3 and y = x− 3?
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These curves intercept when y2 = y+6, which happens when y = 3 or y = −2, and thus

at (6, 3) and (1,−2). It’s more natural to integrate with respect to y, so we write

A =

∫ 3

−2

(y + 3)− (y2 − 3) dy =

∫ 3

−2

6 + y − y2 dy

=

(
6y +

y2

2
− y3

3

)∣∣∣∣3
−2

=

(
18 +

9

2
− 9

)
−
(
−12 + 2 +

8

3

)
=

27

2
+ 10− 8

3
=

125

6

Example 6.8. What is the area of the region bounded by y = x2 + 1, y = 17 − x2, and

x = 1?

We first draw the region, and see a sort of sideways triangle with a base at x = 1 and a

point at (
√
8, 9), with y varying from 1 to 17.

We have two options: integrate with respect to x, or with respect to y by writing x =
√
y − 1 and x =

√
17− y. The second involves breaking our region into two integrals, and
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gives us

A =

∫ 9

2

√
17− y − 1 dy +

∫ 16

9

√
17− y − 1 dy,

which is doable but pretty ugly.

Instead, if we integrate with respect to x, we get

A =

∫ √
8

1

(17− x2)− (x2 − 1) dx =

∫ √
8

1

18− 2x2 dx

= 18x− 2

3
x3
∣∣√8

1
= 36

√
2− 32

√
2/3− 18 + 2/3 =

76
√
2− 52

3
.

6.2 Physical and Economic Applications

At this point we’ve fully developed the theory of the integral, and answered the original

question about area we posed in section 5.1. But much like with the derivative, this tool is
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really flexible, and can answer many other questions than the original one we asked ourselves.

We can essentially divide integral applications into two categories. The most obvious

thing the integral does is that it adds stuff up. Remember we have∫ b

a

f(x) dx = lim
n→+∞

n∑
k=1

f (xk)∆x.

So if we have something we want to compute that looks like adding up a bunch of small

numbers, we can usually turn that into an integral.

Less obvious is that the integral represents a sort of multiplication. Here, we’re going to

emphasize that the things we’re summing up look like f(xk)∆x, and thus represent some sort

of product. In particular, we do an integral when we want to multiply two things together

but one of them is changing.

We saw this with area: in general area is “width times height” but for the irregular

shapes we’ve been studying, the height isn’t the same everywhere. So we chop it up into

a bunch of small pieces, and then on each one we pretend the height is constant so we can

multiply width by height, and then we add all the small pieces up at the end.

We’ll see examples of both of these ideas.

6.2.1 Economic Application: Consumer and Producer Surplus

Let’s start with an application that’s often closely tied to area. Economists like to talk about

the idea of consumer and producer surpluses, the amount of benefit the buyers and sellers

get from transacting. If I would be willing to buy a toy for $18 and you’d be willing to sell it

for $5, then that trade creates $13 of value. But who gets the value depends on the price—if

you sell for ten dollars, then you get $5 of value and I get $8, whereas if you sell for $15
then you get $10 and I get $2. Either way we’re both better off. My increase in value is

“consumer surplus”, yours is “producer surplus”, and the two together are total surplus.

But we really want to think about the total surplus in the market. If 100 people buy

toys, then there is some consumer surplus for each one, and some producer surplus for each

one. If we want to know the total consumer surplus, we have to add up all the individual

surpluses.

If everyone has the same surplus, this is easy. A hundred people value a toy at $18, and
buy it for $10. Each person gets $8 of surplus, so the total consumer surplus is $800. But

in reality, different people value the toy different amounts: maybe one person values it at

$25 and another person only values it at $12. Then we have a hundred different surpluses

to add up—which means we should use an integral.
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To think about theses sorts of markets, economists will often draw supply and demand

curves to describe a market. Conceptually, if you want to sell more goods you have to accept

a lower price—if you charge $15, the guy who values the toy at $25 will still buy it, but the

guy who values it at $12 won’t. We can write a demand function d(q), which tells you the

price at which people demand (are willing to buy) q toys.

Similarly, if you want to buy more goods you have to pay a higher price for them, so

more people are willing to sell; this gives a supply function s(q) that tells the price at which

people will supply q toys. The market clears at a price where these two quantities of goods

are equal, that is, when s(q) = d(q). (It might make more sense to write q as a function of

p, but in practice we usually write p as a function of q.)

We can draw a graph of this situation, which is the famous “supply curve” and “demand

curve”. But once we draw supply and demand curves, the total surplus is the area between

those curves. So we can use our approach of finding the area between two curves to compute

total surplus.

Example 6.9. Suppose the demand for a product is given by p = d(q) = 20− .05q and the

supply for the same product is given by p = s(q) = 2 + .0002q2. For both functions, q is the

quantity and p is the price, in dollars.

Then demand when d(q) = s(q), so 20− .05q = 2 + .0002q2 and thus we have .0002q2 +

.05q − 18 = 0. Using the quadratic formula, we get the solutions −450 and 200, so the

equilibrium happens when 200 units are produced, and plugging this back into either d or q

tells us the equilibrium price was $10.

Figure 6.1: Left: the supply and demand curves. Right: the equilibrium price is $10.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 129

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

What then is the surplus? The total surplus is∫ 200

0

d(q)− s(q) dq =

∫ 200

0

18− .05q − .0002q2 dq

= 18q − .025q2 − .0002

3
q3
∣∣∣0200

= 3600− 1000− 533.33 = 2066.67.

Thus the total surplus value created is a bit more than $2000.
But how is this surplus distributed? We can compute that the equilibrium price is $10,

so we have a consumer surplus of∫ 200

0

d(q)− p dq =

∫ 200

0

10− .05q dq

= 10q − .025q2
∣∣∣200
0

= 2000− 1000 = 1000.

Conversely we can compute the producer surplus of∫ 200

0

p− s(q) dq =

∫ 200

0

8− .0002q2 dq

= 8q − .0002

3
q3
∣∣∣200
0

= 1600− 533.33 = 1066.67

Figure 6.2: Left: the consumer surplus. Right: the producer surplus.

6.2.2 The Average Value of a Function

Another type of problem that involves adding up a bunch of numbers is computing averages.

If we have some finite collection of numbers, the average is what we get when we add them
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up, and divide by the number of numbers:

1

n

n∑
k=1

ak.

This gives a straightforward high school problem.

Example 6.10. What is the average value of the set {1, 2, 4, 5, 5, 7}?

x =
1 + 2 + 4 + 5 + 5 + 7

6
=

24

6
= 4.

However, sometimes we want to find the average value of a function. This seems like

something we should be able to compute; and the question makes some intuitive sense. For

instance, between 0 and 1, it seems clear that x2 is “on average” smaller than x, but between

0 and 3 it’s bigger.

A function gives us infinitely many numbers; but integration is in some sense a sensible

way to add infinitely many numbers up, and so hopefully to average them.

In particular, if we sample the function at n evenly spaced points, our average is

1

n

n∑
i=1

f(x∗
i ) =

1

b− a

n∑
i=1

b− a

n
f(x∗

i )

which you should recognize as a Riemann sum (times 1
b−a

). If we take the limit—which rep-

resents taking the average value after “infinitely many” sample points—we get the following

definition:

Definition 6.11. The average value of a function f over an interval [a, b] is

fave =
1

b− a

∫ b

a

f(t)dt.

Example 6.12. What is the average value of f(x) = x2 on [0, 1]? We have

fave =
1

1

∫ 1

0

x2 dx =
1

3
.

The biggest value is 1, the smallest is 0, and the one in the middle is 1
4
, but the “average”

value is 1
3
.
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If I have a finite set of numbers and take the average, my average might not be anywhere

in the set; for instance, if I roll a six-sided die, the average output will be 3.5, which isn’t on

the die at all. When I average continuous quantities, however, this can’t happen.

Theorem 6.13 (Mean Value Theorem for Integrals). If f is continuous on [a, b], then there

is a number c in [a, b] such that

f(c) = fave =
1

b− a

∫ b

a

f(t) dt.

In other words, ∫ b

a

f(t) dt = f(c)(b− a).

Proof. This statement, as well as its name, might look familiar. In fact this is just the

mean value theorem from differential calculus repackaged. Let F (x) =
∫ x

a
f(t) dt. Then F

is continuous on [a, b] and differentiable on (a, b), and so by the Mean Value Theorem there

is some c such that F (b)− F (a) = F ′(c)(b− a).

But by the Fundamental Theorem of Calculus, F ′(c) = f(c). And it’s easy to see that

F (b) =
∫ b

a
f(t) dt, and F (a) =

∫ a

a
f(t) dt = 0. So we have∫ b

a

f(t) dt− 0 = f(c)(b− a).

Remark 6.14. Geometrically, this essentially tells us that there is some rectangle with the

same area as the region under the graph of f . In particular, we can take a rectangle with

width b− a, whose top edge intersects the graph of our function somewhere, and whose area

is the same as the area of the region under the curve.

Now we should discuss some physical and other practical processes that are well-described

by integration—which is just a fancy way of saying that integrals let us solve these problems.

6.2.3 Multiplication, Units, and Distance

The second way we can use integrals for applications involves multiplication. Recall that the

integral computes∫ b

a

f(t) dt = lim
n→+∞

n∑
k=1

f

(
a+ k

b− a

n

)
b− a

n
= lim

n→∞

n∑
k=1

f(xk)∆x.

This is the sum of a bunch of products f(xk)∆x.
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There are a lot of physical quanties that we can compute as the product of two other

things, like distance as the product of speed and time. As long as speed is constant, we

can get distance by multiplying speed and time. If you travel 5 meters per second for ten

seconds, you will go 5 ·10 = 50 meters. But if your speed is changing over time, that doesn’t

quite work.

So imagine we know that our speed is v(t) = t2 − 6t meters per second. If we travel for

ten seconds, we can’t really say our total distance is 10(t2 − 6t) meters; that doesn’t even

have the right units!

Instead, we can split our big time interval up into a bunch of little time intervals, and

pretend that our speed is constant on each interval. So for a small time interval, we approx-

imate dk ≈ v(tk)∆tk for the distance traveled in that interval. The units here make sense,

because v(tk) is in meters per second, and tk and thus ∆(tk) is in seconds; when we multiply

them together we get meters. Thus we have total distance

D ≈
n∑

k=1

dk ≈
n∑

k=1

v(tk)∆tk.

So for instance we could approximate our total distance traveled as

D ≈ 2 · v(2) + 2 · v(4) + 2 · v(6) + 2 · v(8) + 2 · v(10)

− 16− 16 + 0 + 32 + 80 = 80

so we travel roughly 80 meters in ten seconds. (And specifically we travel 16 meters backwards

in the first two seconds, then another 16 backwards in the next two seconds, then stay roughly

still for the third two seconds, then travel forwards 32 meters in the fourth two seconds, and

travel 80 meters forward in the last two seconds.)

But this is just a Riemann sum! So we can get the exact distance traveled by computing

D =

∫ b

a

v(t) dt.

Thus we see that total distance traveled is the integral of velocity. (This shouldn’t be a

surprise, since velocity is the derivative of distance.)
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In our example, we would get

D =

∫ 10

0

t2 − 6t dt

=
t3

3
− 3t2

∣∣∣10
0

=
1000

3
− 300 =

100

3
= 33.33.

This is quite a bit smaller than our estimate; if you look at the graph, you can see that

our right-endpoint approximation is wildly overestimating the importance of our high speed

at the very end of the process. (If we’d taken a left-endpoint approximation, we’d have

estimated that we finish exactly where we started; the truth is roughly in the middle.)

But notice this explains the “net signed area” thing we discussed in section 5.2. Let’s

look at the graph again, this time with shading:

The integral computes the (green) area above the x axis, minus the (yellow) area below

the x axis. In this problem, the green area represents distance moved to the right, and the

yellow area represents distance moved to the left; the total distance moved is the green area

minus the yellow area.

And one final thing to take away from this is our discussion of units. Any time we

compute an integral
∫ b

a
f(x) dx, then dx has the units of the variable x, and f(x) of course

has whatever units f outputs. So just like the derivative gave units of output-over-input (see

section 2.7.2), the integral gives units of output-times-input. If v gives velocity as a function

of time, then the integral gives velocity-times-time—which is speed.

6.2.4 Work

Another calculation that works similarly is the physical quantity of work.

In physics, force is the product of mass and acceleration; intuitively, force is what causes

a mass to accelerate, and the more acceleration/the more massive the object, the more force

is required. This is often written F = m · a, but in our context it is better to say that the
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position of an object is given by the function s(t), and then F = m · d2s
dt2

, since acceleration

is the second derivative of position.

Remark 6.15. In the SI system, mass is measured in kilograms, and force is measured in

newtons, where N = kg ·m/s2. In the Imperial system most Americans use, the pound is a

unit of force; the unit of mass is the slug, and one pound is one slug-foot per second squared.

I bring this up primarily because the name “slug” is funny.

Intuitively, moving things aroudn takes work, and moving them faster takes more work.

Formally, we say that work is force times distance: the amount of force applied to an object,

times the distance the object is moved. The SI unit for work is the Newton-meter or joule,

which is J = kg ·m2/s2. The imperial unit for work is the foot-pound, which is about 1.36

joules.

If you lift a 2 kg object a meter, then you have to exert 2 · 9.8 newtons of force (since

acceleration due to gravity is 9.8m/s2, and thus do 19.6 joules of work. If a 20 pound weight

is lifted five feet, than 100 foot-pounds of work are done.

When force is constant, work is easy to calculuate–just multiply the force by the distance.

Things become more interesting when the force varies. As usual, we can approximate by

chopping the movement up into lots of little pieces, assuming the force is constant on each

small piece, and adding them up. That is, if the force at position x is F (x), then when an

object moves from a to b the work done is approximately

W ≈
n∑

i=1

F (xi)
b− a

n
.

This is a Riemann sum, so taking the limit gives an integral: the total work done is∫ b

a

F (x) dx.

Remark 6.16. Unlike most of the geometric integrals we’ve been doing for the past few weeks,

work can be a negative number; this just indicates that the force is in the opposite direction

of the motion.

Example 6.17. A particle is controlled by a force field such that the force on it is x3 + x

pounds when it is x feet away from the origin. How much work does it take to move the

particle from x = 2 to x = 4?

W =

∫ 4

2

x3 + x dx =
x4

4
+

x2

2
|42 = 64 + 8− 4− 2 = 66.
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Example 6.18. A physical law called Hooke’s Law says that the force exerted by a string

stretched x units beyond its natural length is kx, where k is the “spring constant” and

depends on the particular spring.

Suppose a spring is naturally 20 cm and it takes 50 N to stretch it to 30 cm. How much

work is needed to stretch the spring from 30cm to 35cm?

We have 50 = k · .1 and so k = 500. Thus the force when the spring is stretched x meters

beyond its normal length is kx, and the work done is

W =

∫ .15

.1

500x dx = 250x2|.15.1 = 3.125J.

Example 6.19. A 50 meter cable has a mass of 50kg and hangs from the top of a cliff. How

much work does it take to raise the cable up the cliff?

The thing that makes this difficult is that the mass of the remaining rope depends on

how much mass we’ve lifted already. Conceptually, you can think about having to lift the

first meter of rope one meter, and the second meter of rope two meters, etc. Each meter of

rope masses 1 kg, so this would give us a Riemann sum

W ≈
50∑
i=1

1 · 9.8 · i

Or more generally

W ≈
n∑

i=1

∆x · 9.8 · xi.

Taking the limit gives the integral

W =

∫ 50

0

9.8x dx = 4.9x2|500 = 2500 · 4.9 = 12250J.

Example 6.20. A tank of water is shaped like an upside-down pyramid. (No, I don’t know

why people keep building tanks shaped like upside-down pyramids). The pyramid has a base

side length of 4m and a height of 12m, and it is filled with water to a depth of 8m. How

much work will it take to pump the water out of the top of the tank? (water has a density

of 1000kg / m3).

Again, to figure out our integral we may want to set up the Riemann sum, or at least

fake set it up. Let 0 be the point of the pyramid and 12 be the base (at the top). The

volume of a small cross-sectional volume is A(h)∆h, thus the mass is 1000A(h)δh and the

force is 1000A(h)∆h · 9.8. The distance we have to pump the water is 12 − h, so the total

work on each cross-section is (12− h)9800A∆h Newtons.
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Now we just have to work out area in terms of height. Using a similar triangles argument,

we see that s(h)
h

= 4
12

and thus s(h) = h/3, and A(h) = h2/9. We integrate from 0 to 8

becasue we’re integrating over the height that contains water. Then we have∫ 8

0

(12− h)9800 · h2/9 · dy =
9800

9

(
4h3 − h4

4

)
|80 =

9800

9
(2048− 1024− 0) =

10, 035, 200

9
J.

6.2.5 Hydrostatic Pressure

Another problem we can handle easily with these tools is the idea of water (or fluid) pressure.

If you imagine a flat surface submerged in some fluid with density ρ to a depth of d meters,

then the weight of the fluid over it is Aρdg where A is the area of the surface (and thus Adρ

is the mass of the fluid) and g = 9.8 is acceleration due to gravity. We define the pressure

to the be the force divided by the area, and thus P = F
A
= ρdg.

(In SI units we measure this in Newtons per square meter, otherwise known as Pascals.

In Imperial units there are a number of different units used, including “inches of mercury.”)

Fact 6.21. If an object is submerged in a fluid to a given depth, the pressure exerted by the

fluid is the same in all directions.

This means that fluid pressure is effectively a function of height/depth and nothing else.

If the pressure is varying and we want to find the total force acting on a surface, we can

effectively add up the pressure on each little patch of a surface to find the total force acting

on it.

Example 6.22. A 3 by 3 meter square is submerged in water until it is just covered, edge-

first. What is the total force the water exerts on the square?

We want to chop the square into strips that are all at roughly the same depth. If we slice

the square into three horizontal strips, then the ith strip is roughly at depth i meters and

has width 3, and thus has roughly the force 3 · 1 · i · ρ · g. Adding up the force on all thirty

strips gives

F ≈
3∑

i=1

3 · 1 · i · ρ · g =
3∑

i=1

3 · 1000 · 9.8 · h∆h

In the limit, we get the following integral:∫ 3

0

3 · ρ · g · h dh =

∫ 3

0

3000 · 9.8 · h dh = 29400(h2/2)|30 = 29400 · 9
2
= 132, 300.

Example 6.23. A cylindrical drum is lying on its side underwater. The drum has radius of

5 feet and is submerged in 20 feet of water. What is the force exerted on one circular face

of the drum?
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Let’s set 0 to be the center of the circle, so that the equation for the circle is x2+y2 = 25.

Then the width of the object at height y is 2
√

25− y2. The depth at height y is 15 − y

(which ranges from 10 to 20), and the pressure due to water is 62.5 * depth. So we get the

integral

F =

∫ 5

−5

62.5(15− y)2
√

25− y2 dy = 125

∫ 5

−5

15
√
25− y2 dy − 125

∫ 5

−5

y
√

25− y2 dy.

The second integral is 0 because y
√

25− y2 is an odd function. The first integral can be

done by setting y = 5 sin θ, but we can also observe that it is the integral of a semicircle of

radius 5 and thus is equal to 12.5π. So we have

F = 125 · 15 · 12.5π = 23437.5lb.

6.3 Finding Volumes by Cross-Sections

Area is fundamentally length times width, and we computed areas by integrating the length

against the width–by which I mean, we wrote the length at a point as a function of the width

at that point, and took the integral across the whole width.

Volume is area times height. (Or area times length, depending on your perspective). We

will compute volume by finding the area of a cross-section and integrating along the entire

length of our shape. Geometrically, the Riemann sum corresponds to slicing our shape into

many thin cylinders and adding their areas up.

Remark 6.24. In our terminology, a “cylinder” is any solid that has a flat base and an

identical flat top, connected by straight sides at right angles. A traditional circular cylinder

qualifies, but so does a rectangular box, and so do stranger shapes.

Definition 6.25. If S is a solid, we say the cross-sectional area at a point x is the area of

the intersection of our solid with the plane which passes through x and is perpendicular to

the x-axis (and thus parallel to the yz plane).

If S is a solid lying between x = a and x = b, and A(x) is a function giving the cross-

sectional area at x, then we say the volume V of S is

V = lim
max∆xi→0

n∑
i=1

A(x∗
i )∆xi =

∫ b

a

A(x) dx.

Example 6.26. What is the volume of a cone with height 2 and base radius 4?
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We draw a picture. By a similar triangles argument, we see that when we are x distance

from the point, the radius is 2x and thus the area of the cross-section is 4πx2. Thus the

volume is ∫ 2

0

4πx2 dx =
4πx3

3
|20 =

32

3
π.

This matches the formula for the volume of a cone, which is 1
3
πr2h.

In fact, we can also rederive that formula. If a cone has height h and base radius b, then

the radius at x distance from the height is x b
h
and the area is πx2b2/h2. So the volume of

the cylinder is ∫ h

0

πx2b2/h2 dx = πb2/h2x
3

3
|h0 =

b2hπ

3
.

Example 6.27. What is the volume of a solid with a circular base of radius one, where each

cross-section is an equilateral triangle?

Make the circle x2 + y2 = 1. Then the width of the base of the cross-section at x is

2
√
1− x2. Since sin 60◦ =

√
32, we know the height of each triangle is

√
3b/2, and thus the

area of the triangle is
√
3(1− x2). Thus the volume is∫ 1

−1

√
3(1− x2) dx =

√
3x−

√
3x3

3
|1−1 =

(
√
3−

√
3

3

)
−

(
−
√
3− −

√
3

3

)
=

4
√
3

3
.

These problems are sometimes known as volumes of “solids of rotation,” because this

technique is particularly good at solving problems like the following:

Example 6.28. What is the volume of the solid obtained by rotating the region bounded

by y = x2, x = 5, y = 0 about the x-axis?

We draw a picture, and see that the region has height x2 at a point x, and thus the solid

has a cross-section which is a circle of radius x2, and thus an area of π(x2)2. It’s clear that

x varies from 0 to 5. So

V =

∫ 5

0

πx4 dx =
πx5

5
|50 = 54π − 0 = 625π.

Example 6.29. What is the volume of the solid obtained by rotatin the region bounded by

y = x2, y = 25 with x ≥ 0 around the y-axis?

As before, we draw a picture. Our region has width
√
y at a point y, and thus has

cross-sectional area πy. Then y varies from 0 to 25, and the volume is

V =

∫ 25

0

πy dy =
πy2

2
|205 =

625π

2
.
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Note that in these problems it’s easy to see which way to take our “slices”: we want to

get the circular cross-sections from the rotation, so we slice accordingly, and integrate along

the axis we rotate around.

If our region touches the axis we rotate it around, these problems are straightforward:

the cross-sectional area is the height (or width!) of the region squared times π. The problem

is trickier if we have a hollow inside. We can still compute the cross-sectional area; it is the

area of a washer, a circle with a smaller circle cut out of the center.

Remark 6.30. If a washer has outer radius R and inner radius r, then the area is πR2 − πr2,

the area of the outer circle minus the radius of the inner.

Example 6.31. What is the volume of the solid given by rotating the region bounded by

y = x2 and y = x around the x-axis.

At a point x, the cross-section of this solid is a washer. The outer circle has radius x and

the inner circle has radius x2, and thus the area of the cross-section is πx2 − πx4. So the

volume is

V =

∫ 1

0

(πx2 − πx4) dx =
πx3

3
− πx5

5
=

π

3
− π

5
=

2π

15
.

We often find ourselves rotating these regions around lines other than the x- or y-axes.

In this case we have to use our geometric intuition a bit more to sort out our cross-sectional

areas.

Example 6.32. Rotate the same region about y = 2. We draw a picture; we see that we

will get a solid whose cross-sections are washers centered at y = 2. The outer radius will be

2− x2 and the inner radius will be 2− x, so the volume is

V =

∫ 1

0

π(2− x2)2 − π(2− x)2 dx = π

∫ 1

0

4− 4x2 + x4 − 4 + 4x− x2 dx = π

∫ 1

0

x4 − 5x2 + 4x dx

= π

(
x5

5
− 5x3

3
+ 2x2

)∣∣∣∣1
0

= π(1/5− 5/3 + 2) =
4π

15
.

Example 6.33. Find the volume of the solid generated by rotating the region bounded by

y = x and y =
√
x about the line y = 1.

We will integrate with respect to x since we rotate about a line parallel to the x-axis. We

see that the curves intersect at x = y = 0 and x = y = 1. Our cross-sections are washers,

and we see the outer radius is 1− x and the inner radius is 1−
√
x. So the volume is

V = π

∫ 1

0

(1− x)2 − (1−
√
x)2 dx = π

∫ 1

0

x2 − 3x+ 2
√
x dx

= π

(
x3

3
− 3x2

2
+

4

3
x3/2

)∣∣∣∣1
0

= π

(
1

3
− 3

2
+

4

3

)
=

π

6
.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ 140

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/


Jay Daigle George Washington University Math 1231: Single-Variable Calculus I

6.4 Bonus material: Finding Volumes with Cylindrical Shells

Recall we want to find the volume of the solid obtained by rotating the region bounded by

x = 1, y = 2, y = lnx about the x-axis. Slicing it into washers as before generates a difficult

integral, so we will try to slice it a different way, by slicing it into cylindrical shells.

A cylindrical shell is what we get when we take a cylinder and remove a slightly smaller

cylinder from the inside. If the outer radius is r2 and the inner radius is r1, it’s not hard

to see that the volume of the shell is πr22h − πr21h = πh(r22 − r21). Less obviously, we factor

r22 − r21 = (r2 + r1)(r2 − r1) and write that the volume is 2π r1+r2
2

h(r2 − r1) ≈ 2πrh∆r.

In many solids of rotation, we can slice the solid into a collection of cylindrical shells to

approximate the volume, where the height of each cylinder is f(x) for some x. We get the

formula

V ≈
n∑

i=1

2πx∗
i f(x

∗
i )∆x.

As before, our approximation gets better as we use more and thinner cylinders, and when

we take the limit, we get

V = lim
max∆xi→0

n∑
i=1

2πx∗
i f(x

∗
i )∆x =

∫ b

a

1πxf(x) dx,

where a is the inner radius of our entire solid, and b is the outer radius of the entire solid.

(Note that this formula is essentially the surface area of the cylinder; this isn’t an accident).

So for our earlier example, we can slice into cylinders whose height is in the x-direction.

We see that

V =

∫ 2

0

2πy(ey − 1) dy = 2π

(
yey − ey − y2

2

)∣∣∣∣2
0

= 2π(e2 − 1).

Remark 6.34. Unlike in the method of washers, this time we will typically integrate with

respect to x when we rotate around the y-axis, and vice versa.

Example 6.35. Find the volume of the solid obtained by rotating the region bounded by

y = 0 and y = x− x2 around the line x = 2.

Inverting the function y = x − x2 would be a huge pain; so we’d like to integrate with

respect to x, and thus use the cylinder method. Note that in this case the radius r is not x,

but is 2− x. So the volume is

V =

∫ 1

0

2π(2−x)(x−x2) dx = 2π

∫ 1

0

2x−3x2+x3 dx = 2π

(
x4

4
− x3 + x2

)∣∣∣∣1
0

= 2π(1/4−1+1) =
π

2
.
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Example 6.36. What is the volume of the solid obtained by rotating the region bounded

by y = x3, y = 0, x = 1 around the line x = 1?

V =

∫ 1

0

2π(1− x)x3 dx = 2π

(
x4

4
− x5

5

)∣∣∣∣1
0

= 2π

(
1

4
− 1

5

)
=

π

10
.

Example 6.37. What is the volume of the solid obtained by rotating the same region around

the line x = 4?

V =

∫ 1

0

2π(4− x)x3 dx = 2π

(
x4 − x5

5

)∣∣∣∣1
0

= 2π

(
1− 1

5

)
=

8π

5
.

Example 6.38. What is the volume of the solid obtained by rotating the region bounded

by xy = 1, x = 0, y = 1, y = 3 about the x-axis?

We draw a picture, and conclude that to use the method of washers we’d have to break

the region up into two pieces. Instead we integrate with respect to y and use cylindrical

shells. We have y varying from 1 to 3, and the “height” of each cylinder is 1/y − 0. So the

volume is

V =

∫ 3

1

2πy(1/y) dy =

∫ 3

1

2π dy = 2πy|31 = 4π.

Example 6.39. A word has to be said at this point about finding the volume of a sphere.

We can view the sphere as a solid of rotation and find its volume using cross-sections:

V =

∫ r

−r

π(
√
r2 − x2)2 dx = π

∫ r

−r

r2 − x2 dx = π

(
r2x− x3

3

)∣∣∣∣r
−r

= π
((
r3 − r3/3

)
−
(
−r3 + r3/3

))
= 4πr3/3.

But we can actually use another approach, similar in spirit to the method of cylindrical

shells. We can look at the sphere as being made up of a collection of spherical shells. Taking

inspiration from the cylindrical shells method, we see that the volume of each spherical shell

will be “about” the surface area of the sphere times thickness; so we integrate the surface

area of a sphere of radius x, as x varies from 0 to r. We get

V =

∫ r

0

4πx2 dx =
4πx3

3
|r0 =

4πr3

3
.

We haven’t entirely justified our argument, but with more care we certainly could.
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