Math 1231 Midterm Solutions

Instructor: Jay Daigle

Problem 1 (M1). Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-3}{x-1}=
$$

Solution:

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-3^{\nearrow^{-2}}}{x-1_{\searrow 0}}= \pm \infty
$$

(b)

$$
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x-3} \\
& =\lim _{x \rightarrow 3} x+2=5
\end{aligned}
$$

(c)

$$
\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-3 x+2}}{x+5}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-3 x+2}}{x+5} & =\lim _{x \rightarrow+\infty} \frac{\sqrt{4-3 / x+2 / x^{2}}}{1+5 / x} \\
& =\frac{\sqrt{4-0+0}}{1+0}=2
\end{aligned}
$$

(d)

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x) \tan (5 x)}{3 x^{2}}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x) \tan (5 x)}{3 x^{2}} & =\lim _{x \rightarrow 0} \frac{\frac{\sin (2 x)}{2 x} \cdot 2 x \frac{\sin (5 x)}{\cos (5 x) 5 x} 5 x}{3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 x \cdot 5 x}{\cos (5 x) 3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{10}{3 \cos (5 x)}=\frac{10}{3} .
\end{aligned}
$$

Problem 2 (M2). Compute the derivatives of the following functions using methods we have learned in class. Show enough work to justify your answers.
(a) Compute $\frac{d}{d x}\left(\frac{x^{3}+\sqrt[5]{x}-3}{\sec \left(x^{2}\right)+2}\right)^{2}$.

Solution:

$$
=2 \frac{x^{3}+\sqrt[5]{x}-3}{\sec \left(x^{2}\right)+2} \cdot \frac{\left(3 x^{2}+\frac{1}{5} x^{-4 / 5}\right)\left(\sec \left(x^{2}\right)+2\right)-\sec \left(x^{2}\right) \tan \left(x^{2}\right) 2 x\left(x^{3}+\sqrt[5]{x}-3\right)}{\left(\sec \left(x^{2}\right)+2\right)^{2}}
$$

(b) Compute $\frac{d}{d x} \tan \left(x^{2}+\csc ^{2}\left(x^{3}+\sin \left(x^{5}\right)\right)\right)$.

Solution:

$$
\begin{array}{r}
\frac{d}{d x} \tan \left(x^{2}+\csc \left(x^{3}+\sin \left(x^{5}\right)\right)\right) \\
=\sec ^{2}\left(x^{2}+\csc \left(x^{3}+\sin \left(x^{5}\right)\right)\right)\left(2 x-2 \csc ^{2}\left(x^{3}+\sin \left(x^{5}\right)\right) \cot \left(x^{3}+\sin \left(x^{5}\right)\right)\right) \cdot\left(3 x^{2}+\cos \left(x^{5}\right) \cdot 5 x^{4}\right) .
\end{array}
$$

Problem 3 (S1).
Suppose $f(x)=5 x+4$, and we want an output of approximately 14 . What input a should we aim for? Find a formula for δ in terms of ε so that if our input is $a \pm \delta$ then our output will be $14 \pm \varepsilon$. Justify your answer.

Solution: We want an input of about $a=2$. Our output error will be $|5 x+4-14|=|5 x-10|=5|x-2|$. We want this to be less than ε, so we need

$$
\begin{aligned}
5|x-2| & <\varepsilon \\
|x-2| & <\varepsilon / 5
\end{aligned}
$$

so we can take $\delta=\varepsilon / 5$.
Problem 4 (S2). Directly from the definition of derivative, compute the derivative of $f(x)=\sqrt{x-2}$ at $a=6$.

Solution:

$$
\begin{aligned}
f^{\prime}(6) & =\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-\sqrt{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(4+h)-4}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{2+2}=\frac{1}{4} .
\end{aligned}
$$

Problem 5 (S3). Give a formula for the linear approximation of the function $f(x)=\frac{x+2}{x-1}$ near the point $a=2$. Use your formula to estimate $f(2.2)$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x-1-(x+2)}{(x-1)^{2}} \\
f^{\prime}(2) & =\frac{-3}{1}=-3 \\
f(2) & =\frac{4}{1}=4 \\
f(x) & \approx 4-3(x-2) \\
f(2.2) & \approx 4-3(2.2-2)=4-3(.2)=3.6
\end{aligned}
$$

