Math 1231 Midterm 2 Solutions

Instructor: Jay Daigle

Problem 1 (M3). (a) The function $f(x)=\frac{x^{2}-4 x+8}{2 x-1}$ has absolute extrema either on the interval $[-3,0]$ or on the interval $[0,3]$. Pick one of those intervals, explain why f has extrema on that interval, and find the absolute extrema.

Solution: f is continuous on the closed interval $[-3,0]$, so it must have an absolute maximum and an absolute minimum on that interval.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x-4)(2 x-1)-2\left(x^{2}-4 x+8\right)}{(2 x-1)^{2}} \\
& =\frac{4 x^{2}-8 x-2 x+4-2 x^{2}+8 x-16}{(2 x-1)^{2}} \\
& =\frac{2 x^{2}-2 x-12}{(2 x-1)^{2}} \\
& =\frac{2(x-3)(x+2)}{(2 x-1)^{2}}
\end{aligned}
$$

so there are critical points at $3,-2,1 / 2$. The only one we care about is -2 . So we compute

$$
\begin{aligned}
f(-3) & =\frac{29}{-7} \\
f(-2) & =\frac{20}{-5}=-4 \\
f(0) & =\frac{8}{-1}=-8
\end{aligned}
$$

so the minimum is -8 at 0 , and the maximum is -4 at -2 .
(b) Find and classify the critical points of $f(x)=x^{3}+2 x^{2}-4 x+5$.

Solution: We compute $f^{\prime}(x)=3 x^{2}+4 x-4=(3 x-2)(x+2)$ so this function has critical points at $2 / 3$ and -2 .
From here we have two choices. We can make a chart and use the first derivative test:

$$
\begin{array}{cccc}
& 3 x-2 & x+2 & f^{\prime}(x) \\
x<-2 & - & - & + \\
-2<x<2 / 3 & - & + & - \\
2 / 3<x & + & + & +
\end{array}
$$

so f has a relative maximum at $x=-2$ and a relative minimum at $x=2 / 3$.
Or we can use the second derivative test: $f^{\prime \prime}(x)=6 x+4$. We have $f^{\prime \prime}(-2)=-8<0$ so f has a maximum at $x=-2$, and $f^{\prime \prime}(2 / 3)=8>0$ so f has a minimum at $x=2 / 3$.

Problem 2 (S4). The force a magnet exerts on a piece of iron depends on the distance between the magnet and the metal. Let $F(d)=\frac{2}{d^{2}}$ give the force exerted by the magnet in Newtons, where d is the distance between them in meters.
(i) What are the units of $F^{\prime}(d)$? What does it $F^{\prime}(d)$ represent physically? What would it mean if $F^{\prime}(d)$ is big?
(ii) Calculate $F^{\prime}(2)$. What does this tell you physically? What physical observation could you make to check your calculation?

Solution:

(i) The derivative is the rate at which the amount of force changes as you change the distance between the magnet and the iron; its units are Netwons per meter. If $F^{\prime}(d)$ is big, that means that moving the magnet a little bit will change the force on it by a lot.
(ii) $F^{\prime}(d)=\frac{-4}{d^{3}}$ so $F^{\prime}(3)=\frac{-4}{8}=-1 / 2$. This means that moving the iron another meter away from the magnet should reduce the force by about half a Newton.
Problem 3 (S5). Find a formula for y^{\prime} in terms of x and y if $y \cos (x y)=3 y^{2}+x$.

Solution:

$$
\begin{aligned}
y^{\prime} \cos (x y)-y \sin (x y)\left(y+x y^{\prime}\right) & =6 y y^{\prime}+1 \\
y^{\prime} \cos (x y)-x y y^{\prime} \sin (x y)-6 y y^{\prime} & =1-y^{2} \sin (x y) \\
y^{\prime} & =\frac{1-y^{2} \sin (x y)}{\cos (x y)-x y \sin (x y)-6 y} .
\end{aligned}
$$

Problem 4 (S6). A waterskier is moving horizontally at $30 \mathrm{ft} / \mathrm{s}$ and rides up a ramp that is 15 ft long and 4 ft tall. How fast is she rising as she leaves the ramp? Answer in a complete sentence that directly and clearly answers the question.

Solution: We want to know how quickly the waterskier is moving upwards, and we know how fast she's moving horizontally. She's moving in a triangular direction based on the ramp, so we can relate her vertical and horizontal position with the similar triangles formula.

By similar triangles, we know that $\frac{h}{w}=\frac{4}{15}$; solving gives us $15 h=4 w$. Taking a derivative gives $15 h^{\prime}=4 w^{\prime}$. We know that $w^{\prime}=30 \mathrm{ft} / \mathrm{s}$, so we get

$$
\begin{aligned}
15 h^{\prime} & =4 \cdot 30 \mathrm{ft} / \mathrm{s} \\
h^{\prime} & =8 \mathrm{ft} / \mathrm{s} .
\end{aligned}
$$

Thus the waterskier is rising at eight feet per second when she leaves the ramp.
Problem 5 (S7). Let $f(x)=\sqrt[3]{x^{2}-2 x}=\sqrt[3]{x(x-2)}$. We compute that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2(x-1)}{3 x^{2 / 3} \cdot(x-2)^{2 / 3}} \\
f^{\prime \prime}(x) & =\frac{-2\left(x^{2}-2 x+4\right)}{9(x-2)^{5 / 3} \cdot x^{5 / 3}}
\end{aligned}
$$

Sketch a graph of f. Your answer should explicitly discuss the domain, roots, limits at infinity, critical points and values, intervals of increase and decrease, and potential points of inflection, and concavity.

Solution: The function is defined everywhere. We see there are roots at $x=0,2$, and $\lim _{x \rightarrow \pm \infty} f(x)=$ $+\infty$.

We see that $f^{\prime}(x)$ is undefined at $x=0,2$, and is zero when $x=1$. So our critical points occur at $0,1,2$. We calculate $f(0)=f(2)=0$, and $f(1)=\sqrt[3]{-1}=-1$. By making a chart, we get

	$2(x-1)$	$x^{-2 / 3} / 3$	$(x-2)^{-2 / 3}$	f^{\prime}
$x<0$	-	+	+	-
$0<x<1$	-	+	+	-
$1<x<2$	+	+	+	+
$2<x$	+	+	+	+

so f is decreasing on $(-\infty, 1)$ and it's increasing on $(1,+\infty)$.
The second derivative is undefined at 0,2 and is zero when $x^{2}-2 x+4=0$, which never happens. We still have $f(0)=f(2)=0$. We can again make a chart:

$$
\begin{array}{ccccc}
& -2\left(x^{2}-2 x+4\right) & (x-2)^{-5 / 3} / 9 & x^{-5 / 3} & f^{\prime \prime} \\
x<0 & - & - & - & - \\
0<x<2 & - & - & + & + \\
2<x & - & + & + & -
\end{array}
$$

so the function is concave up for $0<x<2$, and it's concave down for $x<0$ and $x>2$.
Thus we have the graph

Problem 6 (S8). Find the point on the line $y=2 x+5$ that is closest to the origin.

Solution: Our objective function is $D=\sqrt{x^{2}+y^{2}}$, and our constraint is that $y=2 x+3$. So we have

$$
\begin{aligned}
D(x) & =\sqrt{x^{2}+(2 x+5)^{2}}=\sqrt{x^{2}+4 x^{2}+20 x+25} \\
& =\sqrt{5 x^{2}+20 x+25} \\
D^{\prime}(x) & =\frac{10 x+20}{2 \sqrt{5 x^{2}+20 x+25}}
\end{aligned}
$$

has a critical point only at $x=-2$, which gives us the point $(-2,1)$.
To check this is really a minimum, we can't really use the EVT since x can be infinitely big or small on the line. However, we can observe that the denominator of $D^{\prime}(x)$ is always positive, but the numerator is positive for $x>-2$ and negative for $x<-2$, which makes it a minimum. Or if we really want to, we can
compute the second derivative

$$
\begin{aligned}
D^{\prime \prime}(x) & =\frac{20 \sqrt{5 x^{2}+20 x+25}-(10 x+20) \frac{10 x+20}{\sqrt{5 x^{2}+20 x+25}}}{4\left(5 x^{2}+20 x+25\right)} \\
& =\frac{20\left(5 x^{2}+20 x+25\right)-(10 x+20)^{2}}{4\left(5 x^{2}+20 x+25\right)^{3 / 2}} \\
& =\frac{100 x^{2}+400 x+500-100 x^{2}-400 x-400}{4\left(5 x^{2}+20 x+25\right)^{3 / 2}} \\
& =\frac{100}{4\left(5 x^{2}+20 x+25\right)^{3 / 2}}
\end{aligned}
$$

which is always positive. So the distance function is concave up, so we have a minimum.

