Math 1231 Practice Midterm

Instructor: Jay Daigle

- This is a practice test. It is deliberately somewhat harder than I expect the real test to be, because that's good practice. These are the same instructions you will see on the real test.
- You will have 75 minutes for this test.
- You are not allowed to consult books or notes during the test, but you may use a one-page, one-sided, handwritten cheat sheet you have made for yourself ahead of time.
- You may not use a calculator. You may leave answers unsimplified, except you should compute trigonometric functions as far as possible.
- The exam has 6 problems, one on each mastery topic we've covered. The exam has 5 pages total.
- The question on S 7 is worth 15 points. The other questions are worth 10 points each. The whole test is scored out of 75 points.
- Read the questions carefully and make sure to answer the actual question asked. Make sure to justify your answers - math is largely about clear communication and argument, so an unjustified answer is much like no answer at all.

When in doubt, show more work and write complete sentences.

- If you need more paper to show work, I have extra at the front of the room.
- Good luck!

Problem 1 (M3). 1. Find and classify all the critical points of $f(x)=(x-5) \sqrt[3]{x^{2}}$. [Note: this is quite hard but it's good practice.]
2. The function $g(x)=\left(x^{2}-3 x\right) \sqrt[3]{x-3}$ has absolute extrema either on $(-4,-1)$ or on $[1,4]$. Pick one of those intervals, explain why g has extrema on that interval, and find the absolute extrema.

Problem $2(\mathrm{~S} 4)$. Suppose that $Q(p)=3 p^{2}+10 p-100$ is the number of widgets you can buy at a price of p dollars.

1. What are the units of $Q^{\prime}(p)$? What does it represent physically? What does it mean if $Q^{\prime}(p)$ is big?
2. Calculate $Q^{\prime}(10)$. What does this tell you physically? What physical observation could you make to check your calculation?

Problem 3 (S5). Find a tangent line to the curve given by $x^{4}-2 x^{2} y^{2}+y^{4}=16$ at the point $(\sqrt{5}, 1)$.

Problem 4 (S6). Consider this baseball diamond, which is a square with 90 ft sides. A batter hits the ball and runs from home toward first base at a speed of $22 \mathrm{ft} / \mathrm{s}$. At what rate is the distance between the runner and second base changing when the runner has run 30 ft ?

Problem 5 (S8). We want to build a rectangular fence that will enclose $200 \mathrm{~m}^{2}$. One pair of parallel sides cost $\$ 3 / \mathrm{m}$ and the other pair costs $\$ 8 / \mathrm{m}$. What dimensions minimize the cost of the fence? Justify your claim that this is a minimum.
\$3/m

\$3/m

Problem 6 (S7). Let $f(x)=\frac{x^{3}-2}{x^{4}}$. We compute that $f^{\prime}(x)=\frac{8-x^{3}}{x^{5}}$ and $f^{\prime \prime}(x)=\frac{2 x^{3}-40}{x^{6}}$. Sketch a graph of f.

Your answer should discuss the domain, asymptotes, roots, limits at infinity, critical points and values, intervals of increase and decrease, and concavity.

